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Abstract: The group delay deviation is minimized under the constraint that passband ripple and stopband are within the prescribed 
specifications and an applicable group delay can be achieved. By representing the filter in terms of a cascade of second-order sections, a 
non-restrictive stability constraint characterized by a set of linear inequality constraints can be incorporated in the optimization 
algorithm. Experimental results show that filters designed using the proposed method have much lower group-delay deviation for the 
same passband ripple and stopband attenuation when compared with corresponding filters designed with several state-of-the-art 
competing methods. 
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1. Introduction 
 
Digital filters are integral parts of many digital signal 
processing systems, including control systems, systems for 
audio and video processing, communication systems and 
systems for medical applications. Due to the increasing 
number of applications involving digital signal processing 
and digital filtering the variety of requirements that have to 
be met by digital filters has increased as well Consequently 
there is a need for flexible techniques that can design digital 
filters satisfying sophisticated specifications. Compared with 
FIR digital filter design, the major difficulties for designing 
an IIR digital filter are its nonlinearity and stability 
problems. Many algorithms have been developed to 
implement stable IIR digital filters. Some approaches 
implement filters in an indirect way, that is, an FIR digital 
filter satisfying the filter specifications are designed first, and 
then model reduction techniques are applied to approximate 
the FIR digital filter by a reduced-order IIR digital filter. In 
such cases, IIR filters are more attractive than FIR filters for 
two main reasons. Firstly, they can satisfy the given filter 
specifications with a much lower filter order thereby 
reducing the computational requirement and/or the 
complexity of hardware and, secondly, they have a much 
smaller group delay. In such indirect designs, approximation 
procedures can substantially guarantee the stability of 
designed IIR digital filters, which facilitates the design 
procedures. However, it is difficult to design filters with 
accurate cut off frequencies using this design strategy. As 
well as the presence of the denominator polynomial in IIR 
filters makes their design more challenging than that of FIR 
filters because it results in a highly nonlinear objective 
function that requires highly sophisticated optimization 
methods. As IIR filters lack the inherent stability of FIR 
filters, stability constraints must be incorporated in the 
design process to ensure that the filter is stable, which means 
constraining the poles to lie within the unit circle of the 
plane. 
 
 

The presence of the denominator polynomial in IIR filters 
makes their design more challenging than that of FIR filters 
because it results in a highly nonlinear objective function 
that requires highly sophisticated optimization methods. As 
IIR filters lack the inherent stability of FIR filters, stability 
constraints must be incorporated in the design process to 
ensure that the filter is stable, which means constraining the 
poles to lie within the unit circle of the z plane. 
 
In applications where the phase response is not important, a 
fairly large choice of methods is available to the filter 
designer ranging from closed-form methods based on 
classical analog filter approximations to numerous 
optimization methods. In [1] unconstrained algorithms of the 
quasi-Newton family are used in a least-Pth formulation. 
Filter stability is achieved by means of a well-known 
stabilization technique whereby poles outside the unit circle 
are replaced by their reciprocals. MATLA function 
irrlpnorm in [2] implements an unconstrained least-Pth quasi-
Newton algorithm of the type found in [3]. On the other 
hand, MATLAB™ function irrlpnormc in [2] implements a 
least-Pth Newton method that uses barrier constraints to 
assure the stability of the resulting filter and also provides for 
a specified stability margin. 
 
Nearly linear-phase IIR filters can be designed by using the 
classical equalizer approach whereby an IIR filter satisfying 
prescribed amplitude-response specifications is designed and 
is then cascaded with an IIR delay equalizer to 
approximately linearize the phase response [4].More recent 
methods typically involve designing IIR filters that 
simultaneously satisfy both the amplitude- and phase-
response constraints, as it results in filters of lower order. 
 
A methodology for the design of recursive digital filters 
having nearly linear phase response is in [5]. The underlying 
design method is of the direct type whereby the filter is 
designed as a single unit. The design problem is formulated 
as a cascade of filter sections where each section is 
represented by a bi-quadratic transfer function either in the 
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conventional polynomial form or in the polar form. The 
design problem is then solved using a constrained Newton's 
method whereby constraints are used to assure the stability 
of the filter, to control the step size in order to achieve fast 
convergence, and to eliminate a real-axis pole-migration 
problem that often interferes with the design process. 
 
2. The Optimization Problem 
 
In this section, we frame the design problem at hand as a 
constrained optimization problem. To this end, we derive 
formulations for the stability constraints, group-delay 
deviation, pass-band ripple, stop-band attenuation, and 
transition-band gain constraints. Then, we incorporate the 
formulations within the framework of a constrained 
optimization problem. 
 
We assume that the filter comprises a cascade of second-
order sections (SOSs), which can be represented by a product 
of bi-quadratic transfer functions of the form  

𝐻𝐻(𝑐𝑐, 𝑧𝑧) = 𝐻𝐻0 �
𝑎𝑎0𝑚𝑚 + 𝑎𝑎1𝑚𝑚𝑧𝑧 + 𝑧𝑧2

𝑏𝑏0𝑚𝑚 + 𝑏𝑏1𝑚𝑚𝑧𝑧 + 𝑧𝑧2

𝐽𝐽

𝑚𝑚=1

 

 
 = 𝐻𝐻0 ∏

𝑁𝑁𝑚𝑚 (𝑧𝑧)
𝐷𝐷𝑚𝑚 (𝑧𝑧)

𝐽𝐽
𝑚𝑚=1                            (2.1) 

Where 
 𝑐𝑐 = [𝑎𝑎01𝑎𝑎11𝑏𝑏01𝑏𝑏11 … 𝑏𝑏0𝐽𝐽𝑏𝑏𝑖𝑖𝑖𝑖 𝐻𝐻0]𝑇𝑇              (2.2) 

 
J is the number of filter sections, N=2J is the filter order, 
And H0 is a positive multiplier constant. An odd-order 
transfer function can be readily obtained by setting 
coefficients a0m and b0mto zero in one SOS. 
 
2.1.1 Group-Delay Deviation 
 
The group delay corresponding to transfer function H(c,z) in 
(2.1) is given by [4] 

 𝜏𝜏ℎ(𝑐𝑐, 𝑧𝑧) = −∑ 𝛼𝛼𝑛𝑛 (𝑐𝑐 ,𝑧𝑧 ,𝑖𝑖)
𝛽𝛽𝑛𝑛 (𝑐𝑐 ,𝑧𝑧 ,𝑖𝑖)

𝐽𝐽
𝑖𝑖=1 + ∑ 𝛼𝛼𝑑𝑑(𝑐𝑐 ,𝑧𝑧 ,𝑖𝑖)

𝛽𝛽𝑑𝑑 (𝑐𝑐 ,𝑧𝑧 ,𝑖𝑖)
𝐽𝐽
𝑖𝑖=1           (2.3) 

Where 
𝛼𝛼𝑛𝑛(𝑐𝑐, 𝑧𝑧, 𝑖𝑖) = 1 − 𝑎𝑎0𝑖𝑖

2 + 𝑎𝑎1𝑖𝑖(1 − 𝑎𝑎0𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐         (2.4)  
𝛽𝛽𝑛𝑛(𝑐𝑐, 𝑧𝑧, 𝑖𝑖) = 𝑎𝑎0𝑖𝑖

2 + 𝑎𝑎1𝑖𝑖
2 + 1 + 2𝑎𝑎0𝑖𝑖(2𝑐𝑐𝑐𝑐𝑐𝑐2𝑤𝑤 − 1) +

2𝑎𝑎1𝑖𝑖(𝑎𝑎0𝑖𝑖 + 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                         
(2.5) 

𝛼𝛼𝑑𝑑(𝑐𝑐, 𝑧𝑧, 𝑖𝑖) = 1 − 𝑏𝑏0𝑖𝑖
2 + 𝑏𝑏1𝑖𝑖(1 − 𝑏𝑏0𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐           (2.6)  

𝛽𝛽𝑑𝑑(𝑐𝑐, 𝑧𝑧, 𝑖𝑖) = 𝑏𝑏0𝑖𝑖
2 + 𝑏𝑏1𝑖𝑖

2 + 1 + 2𝑏𝑏0𝑖𝑖(2𝑐𝑐𝑐𝑐𝑐𝑐2𝑤𝑤 − 1) +
2𝑏𝑏1𝑖𝑖(𝑏𝑏0𝑖𝑖 + 1)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

(2.7) 
The group-delay deviation at frequency w is given by 

𝑒𝑒𝑔𝑔(𝑋𝑋, 𝑒𝑒𝑗𝑗𝑗𝑗 ) = 𝜏𝜏ℎ(𝑐𝑐, 𝑒𝑒𝑗𝑗𝑗𝑗 ) − 𝜏𝜏                       (2.8)  
Where 

𝑋𝑋 = [𝑐𝑐𝑇𝑇𝜏𝜏]𝑇𝑇                                      (2.9)  
And 𝜏𝜏 is the group delay, which may be an optimization 
variable. If Xk is the value of X at the kth start of the iteration 
and𝛿𝛿 isthe update to Xk , the updated value of the group-
delay deviation can be estimated by using the linear 
approximation 
𝑒𝑒𝑔𝑔(𝑋𝑋𝑘𝑘 + 𝛿𝛿, 𝑒𝑒𝑗𝑗𝑗𝑗 ) ≈ 𝑒𝑒𝑔𝑔(𝑋𝑋𝑘𝑘 , 𝑒𝑒𝑗𝑗𝑗𝑗 ) + ∇𝑒𝑒𝑔𝑔(𝑋𝑋𝑘𝑘 , 𝑒𝑒𝑗𝑗𝑗𝑗 )𝑇𝑇𝛿𝛿      (2.10)  

Which becomes more accurate as ‖𝛿𝛿‖2 gets smaller. 
 

If 𝑤𝑤𝑝𝑝𝑝𝑝 and 𝑤𝑤𝑝𝑝ℎ  are the lower and upper edges of the 
passband, the 𝐿𝐿𝑝𝑝  -norm of the passband group-delay 
deviation for the Kth iteration is given by 

 

Ep
(gd )(k) = [∫ �eg (Xk+1, ejw )�pdw]wph

wpl

1
p  ≈

𝑘𝑘𝑔𝑔[∑ �𝑒𝑒𝑔𝑔(𝑋𝑋𝑘𝑘+1, 𝑒𝑒𝑗𝑗𝑤𝑤𝑖𝑖)�𝑝𝑝]𝑁𝑁
𝑖𝑖=1

1
𝑝𝑝 𝑤𝑤𝑖𝑖 ∈ 𝜓𝜓𝑝𝑝  (2.11) 

≈ [∑ �𝑘𝑘𝑔𝑔𝑒𝑒𝑔𝑔(𝑋𝑋𝑘𝑘 , 𝑒𝑒𝑗𝑗𝑤𝑤𝑖𝑖) + 𝑘𝑘𝑔𝑔∇𝑒𝑒𝑔𝑔(𝑋𝑋𝑘𝑘 , 𝑒𝑒𝑗𝑗𝑗𝑗 )𝑇𝑇𝛿𝛿�𝑝𝑝]𝑁𝑁
𝑖𝑖=1

1
𝑝𝑝   

Where 𝜓𝜓𝑝𝑝𝜖𝜖[𝑤𝑤𝑝𝑝𝑝𝑝 ,𝑤𝑤𝑝𝑝ℎ ]is the set of passband frequency sample 
points and 𝑘𝑘𝑔𝑔  is a constant. Expressing (2.11) in matrix form, 
we get 

 𝐸𝐸𝑝𝑝
(𝑔𝑔𝑔𝑔 )(𝑘𝑘) ≈ ‖𝐶𝐶𝑘𝑘𝛿𝛿 + 𝑑𝑑𝑘𝑘‖𝑝𝑝                    (2.12) 

 

 Where 𝐶𝐶𝑘𝑘 = �
𝐾𝐾𝑔𝑔∇𝑒𝑒𝑔𝑔�𝑋𝑋𝑘𝑘 ,𝑒𝑒𝑗𝑗𝑗𝑗 1�

𝑇𝑇

:

𝐾𝐾𝑔𝑔∇𝑒𝑒𝑔𝑔�𝑋𝑋𝑘𝑘 ,𝑒𝑒
𝑗𝑗𝑗𝑗 𝑁𝑁𝑝𝑝 �

𝑇𝑇
�                 (2.13)  

 
𝑑𝑑𝑘𝑘 = [𝑑𝑑1𝑑𝑑2 …𝑑𝑑𝑁𝑁𝑝𝑝 ]𝑇𝑇                  (2.14) 

 
 𝑑𝑑𝑖𝑖 = 𝑘𝑘𝑔𝑔𝑒𝑒𝑔𝑔(𝑋𝑋𝑘𝑘 , 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 ),𝑤𝑤𝑖𝑖 ∈ 𝜓𝜓𝑝𝑝 .             (2.15) 

 
The right-hand side of (2.12) is the 𝐿𝐿𝑝𝑝  -norm of an affine 
function of 𝛿𝛿and, therefore, it is convex with respect to 𝛿𝛿[1]. 
The quality of the group-delay characteristic of the filter can 
be measured by using the normalized maximum variation of 
the filter group delay,𝜏𝜏ℎ  , over the passband as a percentage, 
i.e., [3] 

 𝑄𝑄𝜏𝜏 = 100(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 −𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 )
2𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎

                     (2.16) 

Where 
 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 +𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

2
                       (2.17) 

 
 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = max𝑤𝑤𝑤𝑤𝜓𝜓𝑝𝑝 𝜏𝜏ℎ(𝑒𝑒𝑗𝑗𝑗𝑗 )             (2.18) 

 
 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = min𝑤𝑤𝑤𝑤𝜓𝜓𝑝𝑝 𝜏𝜏ℎ(𝑒𝑒𝑗𝑗𝑗𝑗 ).              (2.19) 

 
Hence, 

 𝑄𝑄𝑇𝑇 = 100(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 −𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 )
(𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 +𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 )

                     (2.20) 
 

Qτ  will be referred to as the maximum group-delay deviation 
hereafter. 
 
2.1.2 Pass-band Error 
If 𝐻𝐻𝑑𝑑 (𝑤𝑤)is the desired frequency response of the filter and 
𝐶𝐶𝑘𝑘  is the value of vector at the start of the Kth iteration, a 
passband error function at frequency w can be defined as 

𝑒𝑒ℎ(𝑐𝑐𝑘𝑘 , 𝑒𝑒𝑗𝑗𝑗𝑗 ) = �𝐻𝐻(𝑐𝑐𝑘𝑘 , 𝑒𝑒𝑗𝑗𝑗𝑗 )�2 − |𝐻𝐻𝑑𝑑 (𝑤𝑤)|2.         (2.21)  
Without loss of generality, we can assume that the desired 
amplitude response is unity in the pass-band. Therefore, the 
pass-band error function becomes 

 𝑒𝑒ℎ
(𝑝𝑝𝑝𝑝 )(𝑐𝑐𝑘𝑘 , 𝑒𝑒𝑗𝑗𝑗𝑗 ) = �𝐻𝐻(𝑐𝑐𝑘𝑘 ,𝑒𝑒𝑗𝑗𝑗𝑗 )�2 − 1,𝑤𝑤𝑤𝑤𝜓𝜓𝑝𝑝 .         (2.22) 

Using the same approach as in above(group delay deviation), 
the𝐿𝐿𝑝𝑝  -norm of the pass-band error function,𝐸𝐸𝑝𝑝

(𝑝𝑝𝑝𝑝 )(𝑘𝑘) , in 
matrix form can be approximated as 

 𝐸𝐸𝑝𝑝
(𝑝𝑝𝑝𝑝 )(𝑘𝑘) ≈ �𝐷𝐷𝑘𝑘

(𝑝𝑝𝑝𝑝 )𝛿𝛿 + 𝑓𝑓𝑘𝑘
(𝑝𝑝𝑝𝑝 )�

𝑝𝑝
                 (2.23) 
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Where 

 𝐷𝐷𝑘𝑘
(𝑝𝑝𝑝𝑝 ) = �

𝑘𝑘𝑝𝑝𝑝𝑝 ∇𝑒𝑒ℎ
(𝑝𝑝𝑝𝑝 )�𝑐𝑐𝑘𝑘 ,𝑒𝑒𝑗𝑗𝑗𝑗 1�

𝑇𝑇
 0

∶∶

𝑘𝑘𝑝𝑝𝑝𝑝 ∇𝑒𝑒ℎ
(𝑝𝑝𝑝𝑝 )�𝑐𝑐𝑘𝑘 ,𝑒𝑒

𝑗𝑗𝑗𝑗 𝑁𝑁𝑝𝑝 �
𝑇𝑇

 0

�,𝑤𝑤𝑖𝑖 ∈ 𝜓𝜓𝑝𝑝       (2.24) 

 
 𝑓𝑓𝑘𝑘

(𝑝𝑝𝑝𝑝 ) = [𝑓𝑓1
(𝑝𝑝𝑝𝑝 )𝑓𝑓2

(𝑝𝑝𝑝𝑝 ) … 𝑓𝑓𝑁𝑁𝑝𝑝
(𝑝𝑝𝑝𝑝 )]𝑇𝑇 ,              (2.25) 

 
𝑓𝑓𝑖𝑖

(𝑝𝑝𝑝𝑝 ) = 𝑘𝑘𝑝𝑝𝑝𝑝 𝑒𝑒ℎ
(𝑝𝑝𝑝𝑝 )(𝑐𝑐𝑘𝑘 , 𝑒𝑒𝑗𝑗𝑗𝑗 𝑖𝑖),                 (2.26) 

 
𝛿𝛿 = [𝛿𝛿𝑐𝑐𝑇𝑇𝛿𝛿𝜏𝜏]𝑇𝑇 .                              (2.27) 

 
In the above equations,𝛿𝛿𝑐𝑐  is the vector update for 𝐶𝐶𝑘𝑘  ,𝛿𝛿𝜏𝜏  is 
the scalar update for 𝜏𝜏,𝑘𝑘𝑝𝑝𝑝𝑝  and is a constant. The elements of 
the last column of 𝐷𝐷𝑘𝑘

(𝑝𝑝𝑝𝑝 )in (2.24) are all zeros since (2.23) 
are independent. 
 
3. Design Approach 
 
Two general strategies for the design of digital filters have 
been developed to deal with design problems where the 
group delay is not specified or with problems where a 
prescribed group delay is required. In the former case, the 
group delay can be used as an additional independent 
variable that can be optimized in order to bring about 
additional improvements to the filter being designed. 
 
3.1 Optimized Group Delay 
 
When the group delay is assumed to be an independent 
variable, it is important that the initialization filter be chosen 
to be close to the desired optimal filter in order to assure fast 
convergence. To this end, a good first step would be to 
design the lowest-order IIR filter that would satisfy only the 
amplitude-response specifications. An elliptic filter would be 
the most suitable choice since it gives the lowest-order IIR 
filter for any given amplitude-response specifications 
because of the optimality of the elliptic approximation. Such 
a filter can be obtained by using the design method described 
in Chap. 12 of [3]. 
 
To reduce the group-delay deviation of the filter in the pass-
band, a number of additional general bi-quadratic SOSs are 
included depending on the degree of linearity required in the 
phase response. To achieve fast convergence, the additional 
SOSs are initialized as all pass sections. The poles and zeros 
of the additional SOSs are initially distributed in the pass-
band sector of the z plane, namely, the sector bounded by the 
pass-band edge frequencies. Under these circumstances, the 
transfer function assumes the form 
 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑧𝑧) = 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑧𝑧)  

 𝐺𝐺0 ∏
�𝑧𝑧−𝑟𝑟𝑘𝑘

−1𝑒𝑒𝑗𝑗𝑤𝑤𝑘𝑘 �(𝑧𝑧−𝑟𝑟𝑘𝑘
−1𝑒𝑒−𝑗𝑗𝑤𝑤𝑘𝑘 )

�𝑧𝑧−𝑟𝑟𝑘𝑘𝑒𝑒𝑗𝑗𝑤𝑤𝑘𝑘 �(𝑧𝑧−𝑟𝑟𝑘𝑘𝑒𝑒−𝑗𝑗𝑤𝑤𝑘𝑘 )
,𝑀𝑀

𝑘𝑘=1  (3.1) 𝑤𝑤𝑘𝑘𝜖𝜖Ψ𝑝𝑝  

 
Where 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑧𝑧) is the transfer function of the elliptic 
filter,𝐺𝐺0is a normalizing gain factor, M is the number of 
additional allpass SOSs, and 0 < 𝑟𝑟𝑘𝑘 < 1. An initialization 
group delay that was found to work well is the average of the 
pass-band filter-equalizer combination, which can be 
estimated as 

𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −1
𝑤𝑤𝑝𝑝ℎ−𝑤𝑤𝑝𝑝𝑝𝑝

∫ 𝑑𝑑
𝑑𝑑𝑑𝑑

{arg[𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑒𝑒𝑗𝑗𝑗𝑗 )]}𝑑𝑑𝑑𝑑.𝑤𝑤𝑝𝑝ℎ
𝑤𝑤𝑝𝑝𝑝𝑝

      (3.2) 

The required filter can be designed by using the following 
algorithm: 
Step 1: Obtain the transfer function of the required elliptic 
filter,𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑧𝑧), that satisfies the required amplitude response 
specifications; e.g., by using the D-Filter software package 
[20]. 
Step 2: Set the number of additional general bi quadratic 
SOSs to M and select 𝑟𝑟𝑘𝑘and 𝑤𝑤𝑘𝑘  to construct the transfer 
function 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑧𝑧), as in (3.1); from𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑧𝑧), compute the 
initialization group delay𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , using (3.2). This can be easily 
done by using D-Filter [20]. 
Step 3a: Using𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑧𝑧), and 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  for initialization, solve the 
optimization problem. 
Step 3b (optional): Solve the optimization problem using 
{𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑧𝑧), 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(𝑚𝑚𝑚𝑚𝑚𝑚 )}and {𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑧𝑧), 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑚𝑚𝑚𝑚𝑚𝑚 )}for initialization and 

then select the solution that has the smallest value of 𝑄𝑄𝜏𝜏  in 
Steps 3a and 3b. 
Step 4: Using (2.20), compute the maximum group delay 
deviation of the filter,𝑄𝑄𝜏𝜏 , obtained in Step 3. If 𝑄𝑄𝜏𝜏  is less than 
the prescribed value, the filter specifications are satisfied and 
the algorithm is terminated; otherwise, set M=M+1 and go to 
Step 2. 
The optional step, Step 3b, can be carried out if the amount 
of computation required is not a critical factor, in order to 
increase the possibility for obtaining a better solution. 
 
3.2 Prescribed Group Delay 
 
When a prescribed group delay is required, the initialization 
procedure described in 3.1 is not appropriate. Amore 
appropriate initialization scheme would be to use the balance 
model truncation (BMT) method described in [21], [22].The 
main steps of the BMT involve converting a high-order FIR 
filter into a state-space balanced model, then reducing the 
model order, and finally converting the lower-order model to 
a reduced-order IIR filter. 
 
To ensure that the IIR filter obtained with the BMT method 
as a group delay that is close to the prescribed value, the 
initialization linear-phase FIR filter is designed to have a 
group delay,𝜏𝜏𝑝𝑝𝑝𝑝 , that is close to the prescribed value. This 
can be done by selecting the filter length  

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓 = 2�𝜏𝜏𝑝𝑝𝑝𝑝 � + 1                            (3.3)  
Where [.] is the ceiling operator. The transfer function of the 
IIR filter can be expressed as 

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑧𝑧) = 𝐺𝐺0�
∏ (𝑧𝑧−𝑧𝑧𝑖𝑖� )𝑖𝑖
𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏 (𝑧𝑧)

= ∑ 𝑏𝑏𝑖𝑖� 𝑧𝑧𝑚𝑚−𝑖𝑖
𝑖𝑖
𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏 (𝑧𝑧)

                  (3.4) 
Sometimes, the filter obtained with the BMT method may 
have one or more zeros that are located far away from the 
origin. Such zeros can slow down the optimization 
algorithm. Experimental results have shown that faster 
convergence can be achieved by moving any zeros with a 
radius greater than a prescribed maximum𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

(𝑧𝑧) to the origin 
of the z plane by letting 

𝑧𝑧𝑖𝑖� = �0 𝑖𝑖𝑖𝑖 |𝑧𝑧𝑖̅𝑖| > 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
(𝑧𝑧)

𝑧𝑧𝑖̅𝑖  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
�                          (3.5) 

Where the normalizing gain factor 𝐺𝐺0� is chosen to ensure 
that the average pass-band gain of the filter is unity. 
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The required filter can then be designed by using the 
following procedure: 
Step 1: Design a linear-phase FIR filter of length given by 
(3.4) with the prescribed pass-band and stop-band edge 
frequencies, by using D-Filter or the MATLAB™ function 
fir1 or some other way. 
Step 2: If the total number of SOSs is 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡  , the IIR filter 
order is 2𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡  . Using the BMT method, transform the FIR 
filter obtained in Step 1 to an IIR filter of order 2𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡  . 
Step 3: Form the transfer function in (3.5). 
Step 4: Using𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑧𝑧), in (3.5) for initialization, solve the 
optimization problem for the prescribed group delay of𝜏𝜏𝑝𝑝𝑝𝑝  . 
Step5: Using (2.20) compute the group-delay deviation,𝑄𝑄𝜏𝜏 ,of 
the filter obtained in Step 4. If 𝑄𝑄𝜏𝜏 is less than the maximum 
prescribed value, the filter specifications are satisfied and the 
algorithm is terminated; otherwise, set𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡 + 1 and 
go to Step 2. 
 
4. Simulation Results 
 
This chapter illustrates the complete details about the 
performance evaluation of proposed approach. In order to 
compare the proposed method with other state-of-the-art 
competing methods, we have designed and tested many 
nearly linear-phase IIR filters satisfying a diverse range of 
specifications. 
 
Example1 
 
Low pass Digital Filter 
The following table illustrates the parameters required for the 
design of low pass filter. 
 

 Parameters  Values 
Maximum pass band ripple, dB  0.2 
Minimum stop band attenuation, dB   50 
Pass band edge, rad/sec 0.36 𝜋𝜋 
Stop band edge ,rad/sec 0.44𝜋𝜋 
Minimum pole radius  0.98 

 
And their corresponding waveforms are as follows 

 
Figure 4.1:.Passband, overall and stop band amplitude 

responses and group-delay characteristic for Design of the 
proposed method (solid curves) and the method in [4] 

(dashed curves) for Example 1. 
 
Example 2 
High pass Digital filter 
The following table illustrates the parameters required for the 
design of High pass filter. 

Parameters Values 
Maximum pass band ripple, dB  0.1 
Minimum stop band attenuation, dB   73 
Pass band edge, rad/sec  0.6 𝜋𝜋 
Stop band edge ,rad/sec  0.4𝜋𝜋 
Minimum pole radius  0.98 

And there corresponding waveforms are as follows 
 

 
Figure 4.2: Passband, overall and stop band amplitude 

responses and group-delay characteristic for Design of the 
proposed method (solid curves) and the method in [4] 

(dashed curves) for Example 2. 
Example3 
Band pass Digital Filter 
The following table illustrates the parameters required for the 
design of Band pass Digital filter. 

Parameters  Values 
Maximum pass band ripple, dB  1.0 
Minimum stop band attenuation, dB   41 
Low stop band edge, rad/sec  0.2 𝜋𝜋 
Low pas band edge ,rad/sec  0.3𝜋𝜋 
High pass band edge, rad/sec  0.5 𝜋𝜋 
High stop band edge, rad/sec  0.7 𝜋𝜋 
Minimum pole radius  0.98 

 
And there corresponding waveforms are as follows 
 

Figure 4.3: Overall, stop band, and pass band amplitude 
responses and group-delay characteristic for Design of the 

proposed method (solid curves) and the method in [3] 
(dashed curves) for Example 3. 

 
5. Conclusion  
 
A method for the design of nearly linear-phase IIR digital 
filters that satisfy prescribed specifications has been 
described. In the proposed method, the group-delay deviation 
is minimized under the constraints that the pass-band ripple 
and minimum stop-band attenuation meet the specifications 
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and either a prescribed or an optimized group delay can be 
achieved. By designing the filter as a cascade of second-
order sections, a non-restrictive stability constraint 
characterized by a set of linear inequality constraints can be 
incorporated in the optimization algorithm. An additional 
feature of the method, which is very useful in certain 
applications, is the inherent capability of constraining the 
maximum gain in transition bands to be below a prescribed 
value. This facilitates the elimination of transition-band 
anomalies which sometimes occur in filters designed by 
optimization. 
 
Experimental results have shown that the nearly linear-phase 
IIR filters designed using the proposed method have a much 
lower maximum group-delay deviation for the same pass-
band ripple and minimum stop-band attenuation when 
compared with several filters designed with state-of-the-art 
competing methods. It has also been demonstrated that 
nearly linear-phase IIR filters offer some substantial 
advantages when compared with their exact linear-phase FIR 
counterparts such as lower group delay and filter complexity 
without compromising the required amplitude-response 
specifications. 
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