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Abstract: In this paper, we introduce a new model of genetic algorithm that permutes the pieces of nucleotides in aligned DNA

sequences using a bipartite graph and the action of largest subgroup H of dihedral Group Dy, 7 is multiple of 6 on —;
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contingency tables with fixed two dimensional marginals and their Markov basis B such that Bis H-invariant,. Where B is the Markov

basis found by H. H. Abbass and H. S. Mohammed Hussein in [7].
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1. Introduction

Since 1998 the publication of P.Diaconis and B.Sturmfels,
the new field of computational algebraic statistics has been
developing rapidly, and in the same year P.Diaconis and
B.Sturmfels defined the notion of Markov basis for
constructing a connected Markov chain for sampling from a
conditional distribution over a discrete sample space and
proved the fundamental fact that a Markov basis
corresponds to a set of binomial generators of a toric
ideal[11]. In 2000, M. Dyer, and C. Greenhill, found a
Polynomial-time counting and sampling of two-rowed
contingency tables[10]. In 2001, A.Dobra showed that the
only moves that have to be included in a Markov basis that
links all contingency tables having a set of fixed marginals
when this set of marginals induces a decomposable
graphical models[1]. In 2002, A. Dobra, and S. Sullivant,
described a divide-and-conquer algorithm for generating
Markov basis of multi-way tables that connects all tables of
counts having a fixed set of marginal totals[2]. In 2003, S.
Aoki and A.Takemura proved that there exists a unique
minimal basis for 3x3xK contingency tables consisting of
four types of indispensable moves [14], and in the same year
S. Aoki, and A.Takemura presented a list of indispensable
moves of unique minimal Markov basis of 3x4xK and
4x4xK contingency tables with fixed two- dimensional
marginals[13], also A.Takemura, and S. Aoki. gave some
characterizations of minimal Markov basis for connected
Markov chain and given a necessary and sufficient condition
for uniqueness of minimal Markov basis[3]. In 2005, A.
Takemura, and S. Aoki. Studied the Markov basis for
sampling from discrete sample space, which is equipped
with some convent metric and they started from two state in
the sample space, and they asked whether they can always
move closer by an element of a Markov basis and they
called a Markov basis distance reducing[4].

In [7] H. H. Abbass and H. S. Mohammed Hussein found a

ni-2n

Markov basis B and toric ideals for ><3><§—

contingency tables with fixed two dimensional marginals, n
is a multiple of 3 greater than or equal 6, also they [8] found
the largest subgroup Hof dihedral GroupZ,,, such thatBis H-
invariant, n is a multiple of 3.

In this paper, we use the Markov basis B and action of the
subgroup Hof dihedral GroupZ,, on these contingency tables

to give a new model of permutation the pieces of nucleotides
in DNA sequences.

2. Preliminaries

In this section, we review some basic definitions and
notations of contingency table, dihedral group, connected
graph, bipartite graph, moves, Markov basis, and toric ideals
that we need in our work.

Definition 1(see[17]).Let n be a positive integer greater than
or equal 3. The group of all symmetries of the regular
polygon with n sides, including both rotations and
reflections, is called dihedral group and denoted byZ,, . If
we center the regular polygon at origin then the elements of
the dihedral group acts as linear transformation of the plane.
Lets us represent the elements of I, as matrix, with
composition multiplication. Dihedral groups are among
simplest examples of finite groups and they play an
important role in group theory, geometry, and chemistry.
The set of rotations is generated by r- counterclockwise
rotation with angle 2x/ n of order n, and the set of
reflections is of order 2 and every element s+ generates {e,
sr1} | where e is the identity element in Dn . D,, can be
written as:{e ,r, >, .., r"" 1 s sr st ..

s 1N

general, we can write D, as
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D,={s’r¥:0<k<m—1 , 0 <j <1} which has the

following properties: r?=1,srks = 7%

(sr¥)* =1, forall0 < k < n—1.The

composition of two elements of the D, is given by

pipd =il rios pd = g7l gpipl = gptti

srigpd =778,

Remark 1(see [17]).If we label the vertices (of the regular
n-gon) 1 to = in a counterclockwise direction around n-gon

then the elements of I, can be written as permutations of
vertices, let + be a counterclockwise rotation, and let $be the
reflection of the n-gon about an axis through the center and
vertex 1, as indicated in below . The element rgenerates the
cyclic group of order m Cn which is a normal cyclic
subgroup of I,. In all cases, addition and subtraction should
be performed using modular arithmetic with modulus =.

- Al

Elements of Cn Elements of Dn
Any symmetry will fix the origin and is determined by the
image of two adjacent vertices , say 1 and 2 .The vertex 1

can be taken to any of n vertices and then the vertex 2 must

be taken to one of the two vertices adjacent to the image of
1. Hence, I, is a non abelian group of order 2n generated

by r and =.

Now, we give some concepts about the action of a group on
a set that we use later.

Definition 2(see[12]). Let I be a finite set n = II| elements,
we call an element of I a cell and denoted by i € I. i is often
multi-index i =i; ..im A non-negative integer x; € M
denotes the frequency of a cell i. The set of frequencies is
called a contingency table and denoted as x = {x;};;, with

an appropriate ordering of the cell , we treat a contingency
tablex = {x;};; € H™ as a n-dimensional column vector of

non-negative integers. Not that a contingency table can also
be considered as a function from I to ¥ defined as i +— x;.

Definition 3(see [12]).The L;-norm of x € ™ is called the
samplesize and denoted as

lx| =%, x;. We will denote I be the set of integer
numbers, also we denote to the a; € Z",j = 1.....v. as fixed

column vectors consisting of integers. A v-dimensional
column vector t=(ty....t,) €E¥ as
t = a.'J.-.-x .J =1....v. Here ' denotes the transpose of a
vector or matrix. We also define a v ® p matrix 4, with its
ﬂ-.l

,and if t=Ax is a v-

j-row being a’;given by A =
gy

dimensional column vector, we define the set
T={tt=Ax.x e N"} = AN" c I" In typical situations
of a statistical theory, t is sufficient statistic for the nuisance
parameter. The set of x's for a given t,
AT[t] =[x € N": Ax = £} (t-fibers),is  considered  for
performing similar tests, for the case of the independence
model of two—way contingency tables, for example, tis the
row sums and column sums of x , and 4~*[¢]is the set of x's
with the same row sums and column sums to &. The set of t-
fibers gives a decomposition of HM". An important
observation is that ¢-fiber depends on given only through its
kernel, ker (4). For different A's with the same kernel, the
set of t-fibersare the same. In fact, if we define
x,~x, & x, — x, € ker(A) this relation is an equivalence
relation and M™ is partitioned into disjoint equivalence
classes. The set of t-fibers is simply the set of these
equivalence classes. Furthermore, & may be considered as
labels of these equivalence classes.

Definition 4(see [12]).A n-dimensional column vector of
integers z = {z;};; € E"is called a move if it is in the
kernel of 4, i.e. Az = 0,

Remark 2 (see[3]).For a movez, the positive part
z" ={z";}and the negative part z~ ={z7;}; are
defined by z*; = max(z;, 0),z7; = max (—z; 0),
respectively, Then
zt,z- e W"z",z” e " | Moreover, z* and 2~ are in the
same t-fiber, i.e., z*.z7 € A7 [#] fort = Az™ = Az". We
define the degree of z as the sample size of z¥or (z7) and
denote it bydeg(z) = lz*|=1z"I|. In the following we

g=z"—z" and

denote the set of moves (for a givenA)
by M = My = Z® N ker (4).
Definition 5 (see[12]).Let A:EZ" = Z" be a linear

transformation, t € ¥, and A=*[¢] be the set of ¢-fibers, and
let B = ker; (A}, then we define A~1[#]z be the graph with
vertex set A™*[¢] and u — —v an edge if and only if
u—ve+E,

Definition 6 (see[3]).LetA™*[t] = {x € W™: Ax = £]. A set
of finite moves E is called Markov basis if for all t, A=1[¢]
constitutes one E equivalence class.

Definition 7 (see[6]). A graph & is connected if for every
pair of distinct vertices w.v € V{&), where V(6)be the set
of vertices of the graph &. the graph & has a u.-path.
Otherwise, we say the graph is disconnected.

Definition 8(see[6]).A graph & is a bipartite graph if there
are X.¥ € V(&) meeting the following conditions:

1.ViG) =xuy,

2.XNn¥ =%,

3. GLx] and G[¥] are both null graphs, where G [X] and G[¥]
are subgraphs of the graph & induced by the set of vertices
X. ¥ € V(&) respectively.
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Theorem 1(see[6]).
For a graph & the following statements are equivalent:

1. & is bipartite.
2. Every cycle in & has an even length.

Definition 9 (see [6]).Let B = M , be the set of moves and
letx,. x; £ A~*[t]. We say that x; accessible from x;by B
if there exists a sequance of moves zj....zz € B and
g €1{-1.1Lk =1....K. such that

P
Xg=xy+ E &g Zp,
k=1
P

xL+ZERzR eA Mt forl =k =K.

k=1

Definition 10(see[3]). If E E ker-({A) is a set such that
A~1[t]g is connected for allt, then E is a Markovbasis for A

Remark 3: Throughout this paper, the symbol € denotes a
field of complex numbers, the set &7 is the vector space of
p-tuples of elements in C.

Henceforth F.F;.....E, denote indeterminate, that is,
polynomial variables. A monomial m in the indeterminates
PP, ... Fz is aexpression of the form

m=[I%, P%, | wherea,.&;. ..., are nonnegative
integers.  We  will often use the shorthand
m=1II_,P%;=P% to denote this monomial. A

polynomial is a linear combination of finitely many ¥
monomials f{p} = f(P,.F;.....B,) = ¥ c, P*where the
t; € € and at most finitely many of them are nonzero. Note
any polynomial f(P) is also a function from €*to €, simply
by evaluating the polynomial at a point of&¥. The set of all
polynomials in the » indeterminates Fy. Fs, ... F, is denoted
by either C[P,, P, .... B,] or [P], for short. Note that Clplhas
the structure of a ring because we can add and multiply two
polynomials to produce new polynomials, and these addition

and multiplication operations are well-behaved with respect
to one another.

linear
ideal

Definition 11 (see[16]). Let A:Z™ —Z% be a
transformation, the toric ideal I4is the
< P*— P":u,v e N" Alu) = A(v) =€ C[P,..... ]
where P* = R™* R " . B"F,

Remark 4 (see [7]). Let n be a multiple of 3 such that
n =6, and let x; € AT = 1.... k be the representative
elements of the set of Exé—contingency tables and
B ={z,.2;....%}such that each z; ,j=1.2...k, is a
matrix of dimension 3 ><§ either has two columns
(1,—-1,0),(—1,1,00 ( (10,-1),(—1,0,1) or either
(0.1,—-1).(0,—1.1) ) and the other columns are zero
denoted by +z;, or it two columns (1,-1,0),{—1,1.0) (
(1,0,—1),(=1,0,1) or either (0,1,—1),(0,-1,1) ) and
the other columns are zero denoted by +z;, or it has two

'R

columns (—1,0,1).(1.0,-1}( (-1L.0,1).(1.0.—1) or
(0,—1,13.¢0.1, -1} ) and the other columns are zero
denoted by —z; like
[1 -1 0] 1 -1 0]
-1 1 0f.|0 0 0
L 0 o ol -1 1 0d
[0 o oypr-1 1 07
1 -1 0.1 -1 10
-1 1 o Lo 0l
[—1 1 0] [0 07
0 o o]./]-1 1 0
L1 -1 o4 L1 -1 o0l
Also, we can write all elements of Bas one-dimensional
column vectoras follows:
z;=(zy,.,2,)j=1,...kandz; = 1 or — 1 or 0 such
that
Ift=1,2..°

=t
5
2]
|
7
(B
+
2]
|
7
:
i
Il
|
L
i
[~

Z[=—1

i=1
i=t
n

3
Zp = 4 —]_:sz_E-I-zH_? = 1and E Z[:].
i=1
i=t
n

3
0 :'fzr%-i-z”% =0 and Zz[ =0

i=1

i=t

L

=1

Ift=-+L-+2..

R

o |

1"'|..'||-s

a.g_'f'
1:'fzr_§+zr+§ = —1and Z =-1
[=§+1

i=t

in
3
Zp = _lifzr—§+zr+§= 1 and E =1
. T
l—3+1
=t
in
3
Uffzt_rz_=+zt+§=ﬂmﬂd E =0
. M

l=.;+1
=t

L
ft=T+1T+2..n

;
lifz, m+z, = =—1and Z ;= -1
E E

Volume 3 Issue 12, December 2014

WWW.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: OCT14464

544



http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (1JSR)
ISSN (Online): 2319-7064
Impact Factor (2012): 3.358

Theorem 2 (see [7]).The number of elements in B equal to
ni-3n

Remark 5(see [7]).Given a contingency
tablex = (x, .x5....x,) , the entry of the matrix 4 in the
column indexed byx; .x3... .x, respectively and its rows

indexed by
xi ! ELFI:%EL

]
S S
EI::].J:i-l E[=§+l

respectively. The entry in the column indexed by x; in the
matrix A will be equal to one, if x; a pears in the index of its
row, and otherwise it will be zero. Then

xi,x1+x§+l

A
11 11 00 .. 0000 00
0o 00111100 00
00 oo o0 0011 11
=11 0 oo 10~ 0010 0 o0
01 o001 0001 00

T

Theorem 3 (see [7]).The set B L Eql_zn 1S aset of

3

=iz ..

moves.
Corollary 1 (see [7]).The set B of moves in theorem10 is a
Markov basis.

Corollary 2 (see [7]).The toric ideal I, for ”::!” ® 3 x:—' -
contingency tables ) z_alre_
Iy =< PuiBui— BuPuxitj=12,. Jand Lk = 0,0,
,suchthatl{;and{::k::-cc‘[ﬂ,P:,...,R!]. o

Remark 6 (see [7]). Now, we will construct a connected
graph by using the elements of B. Let z,; be an element of

n®-an.
Bsuch thatz, = x4y —Xm_y ;n =12, v, —— IS an edge

connected X, and Xy _y, ..., ANd Zp2_zpn = Xy — XnZozn . is

3 3

an edge connect £ and

Tl

_Wwherex; € A™'[dli=0.2, e, =22~ 1.Then

Apl_zn
3

we can connected all —— x 3 ><— - contlngency tables

with fixed two dlmensmnal marginals by edges by

applying moves from B one by one and go from x; to
. without causing negative cell frequencies on the

Hpl_zn
L

way, and also from a.z_;.
==

undirected graph & =(R.W.B) = A *[t]g, where the
contingency tables interpreted as vertices and connecting
moves are interpreted as edges of a graph,

, to xy. of this type, by forming

Ia=<Tisnfgiivio = Busn fgrivipit = 1.2,

, such that i< jand!l <k =cCIR.F,...B]l, for all

geH,

ta A T AR, T,

R={xpx,. ... 22 ;. Jand W =[x, 2, ... 22 o l}as
- BEE
shown in figurel
Xg Xz Xy Xnlogn | Fnl-an
3 3
L
X1 X3 Ag Xnl-gn _Fnl-an
E R

Figure 1: The graph ¢ = (R, W, B} = A~ [#]g.

In [8] H. H. Abbass and H. S. Mohammed Hussein
assumed n is a multiple of 6, and H is the subgroup

n a.T' ]_

fe.r3,rs: ,sr,srz +1} of dihedral group I, where
r=(123 .m)ands=CnBn—-1)..CCo+2).
Theorem 4 (see [7]).The graph & = (R, W, B}is a connected
bipartite graph (up to graph isomorphism).

Theorem5 (see [8]). The Markov basisBis H-invariant.

Corollary3 (see [8]).The subgroup His the Largest

Subgroup ofthe group I;;such that the Markov basisBis H-

invariant.

Remark 7 (see [8]). Let t= (tl, [ S t5+,) ,
S+3

x; € At[tlandg € H.

Thengx; € A~*[gt]lwhere

gt =gt gts. 9tz gtz _,) A [gtl = {x € N": Ax = g1}
"3

So, we have six types of gt-fibers ATM[e],
A [*r?t] LA [r;_r t] ,A‘l[s:r't],
At [ ]andﬂr [ ”t].

Theorem 6 (see [8]).If g € H, then Bis a Markov basis for

n®_1n .
; contingency tablesgax,. gx,. ...

-'.g't'r::—z'r:
3

i -1
_,in4 [gt].

Corollary 4 (see [8]).The toric ideal for “==x 3 x = -

contingency table in 4~ *[gtlis

Cand Lk=0,7,7
3. The Main Results
Let ] is multiple of 6,
gx; e Atgtlj=0,.., “‘:!“ — land geH be

representative elements of the set of 3 x ;—contingency
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tables. Then we write g as = x#n permutation matrix
T, = {B;} = (6. g()}, where & is the Kroneckers delta
such that Ty o, =T, T, for g1.9; €H, and Ty-: =T,
The identity matrix of the order = denoted by E;, fur the unit
element e.

Now, we dihedral

><3><— -

consider a left action of

group D, .n =111, on Ai[¢] the set of =

contingency tables, and the action of dlhedral group &y, on
the set of Markov basis B.

Theorem 7. Let x.x;€ A™'[t], if g€ H. Then x;
accessible from x;by B if and only if Tx; accessible from

n®-In

3

Tyx;iby B, foralli,j=1,2,..,

Proof: If x; accessible from x;byBE then there exists a
sequence of moves Zy.0.Z; EB and
g el-1.,1 k=1, “‘:!ﬂ, such that
ni-zn -1'::—31':
x=x+L 0 sz x+l 0 sz e AT
(definition 9)
Letg € H
.‘15—5-.‘1
Ifg=e = E,x;, =E,x; + X % £.E,z, Ex;
.‘15—5.‘1

[>T

+ e E z, € H(AT[t])
k=1
n* —3n
forl <k <———
3
|f_g = rsthen we write 7"3 as am X m permutation matrix, i.e.
1,.3 = Tfi +1. 1)z 2 —+. = +2). I'*' 'ﬂ‘l’then
Tl 2 Bz B 2 I'E‘—" a1 = T B )z Bag B2g) (B 22 )
P T T T T A U T Tz RS g TR g TRy g T
1'::—31':
+ :E: g T, n ,2n Ni, m 20 3 fRIn \Ep
£ i [1 T3 +1.JII:. 3+. +.)l... I35 noE
T Im .y mImn x4
|r1 —+:L +1||r ?*“2""':;? ﬂzl J
ne —37‘
3
Z fe (2 2002 Zea +2).(F 3 n)%k
= Vo3 3 L 3
k=1
. n* —3n
€ H{A‘ [t]] forl <k <
R — 2 -
”:‘J_;| T thenTE Trl 1"+1_+1||" ?+‘;+,I I-:'r- n 31-}',
T:_' L IR YR ‘”'T'_T_"" n . n mk;
|:1 3 +13+1.HI|:‘ P 3+.HI...|:3 n L h +1.3+1.I|r S +2 3+ 1. F3 ny) ) J

»—-3n Z_3n

+ Z & 1"Iri. 3 —+1.I|r —+. —+. |m i’!%:'z;"'

J"Irl Te1 etz Fer ez n ‘:jx_i"l'
ne _37'
2

Z k Tfi Tt Tet)lz Tea Tea) (T T)FR

k=1

€ H(A™*[t]
Ifg = sr, thensr =T

(1ml(Zn-1). |'—::+1.j’

Ti1 w2 n-1).. +1}x T1 myz n—i}...{% §+1}xj
n*—zn
+ E ST )2 n—i}...(% E+1}zk,
k=1
n®—gn

Tey iz ;-:—1}...(% §+1}xj + Z T miz n—l}...(% E+1}zk

k=1
1 n® —3n
EH(AT[t]) fDrlEf{ET
Ifg S'r?'l, then
Sr: _Tlfj.%jl::‘—’"—ll +1|Ir lﬂ:IEE+:ﬂ—L;I f”"’"+1|!
J"I:L""‘llr T-t)ul T+ Fean)(Frzn-1)
I"[::E'F':T' lel =
1"I:L""‘llr Tt To+)(Fean)(Frn-1)
T" _37'
:'I":'I" ;'l:l-l- Z E T’I"lnﬂ'-llf ;1" l‘l
k=1
Ir%uﬁr +1r||f—+ n—1).. f£l+1l e
T[L?:ﬂ::‘—r—ll —+1.I—+1.r'llr—+ n—1}
nl-in
3
Z &k Tl_ri?jl_r:ﬂ—il (E5+1)(Fan)
k=1 : ’
n? —3n

. - -1 -
[‘?ﬂ+: ﬂ—l:'...l:??+l:|z;‘. E H{i—'] [t]:] forl = k = 3

If
Zi =
g=sr3thensr: " = 1"Irj.?"llr 1) |'*+1r-llr"+ n—1}- Ir‘r‘;'+1;|

In Im VX

1wlr!. I|r 1_| L

= Tfl Sk

—Ll |rF+1. i"||r—+. n— Ll |r

Zn In

Eo1)o[Ter m)(Fez n-a) f Te1)¥i

ne —37‘

+EF¢=31 £ TI:L E:”f

®” Y (R % (1 3 In In '-_Z'!
7 =1 ]| = 1 |=+2 n—-1] - |= |
St} (T4t n)(Tez no1) (T T

Tl::. 1;—":IIr E— 1) I'E+ in) I'E+ In- 1.:1- f Inim, :I.\I't.l +
n-sn

-
s FTE D0 20 w302 ne) (2 )

2_
EH(AE]) forl = k=222

Therefore T,x; accessible from T,x;by H(B).

Conversely,
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IfT,x; accessible from T,x;by H(B).then there exists a
sequence of moves gz;....gz; € H(B).ge H. and
g e {-1,1Lk=1,... 2=, such that

2
ni-an
2

ﬂl

Txi =Tgxi + J, s g%k,
k=1
ni-zn

Tx; + X, % & Tz, € HA [t forl <k <
(definition 9)

By multiplying the previous equations byT';.g € H, we
have

ni-2n

2

ni-an

3
Ty = Ty(Tyx)+ . exT'g(Tyze)
k=1

ni-in
2 -
] , 4 n-—3n
T'o(T,x;) + Z T3 (T, 2zi) e HA T ) forl < k <
k=1
This implies,
ni-zn
(TgTg)xi = (T'gTxj+ L, 5 &l T gTgzs
ni-an
3 n
. . 1 n* —3n
(T, Tx; + Z (T’ Tz e HAT ) forl < k <
k=1
ni-in
HenceE, x; = E x; + ER=31 sy En 2z
ni-zn
3 n
-1 n° —3n
En-""_i' + Z g Bz e H(A [t]j forl = &k =<
k=1
ni-zn
Therefore, x; = x; + X, ° & 2;
1'::—31': -
xj+ 5,3 &z e Al forl = k == [since

E,x; = xandE,z; = 2]
Thenax; accessible from x;by B.O

Remark 8.Now, we will construct a connected graph by
using the elements of H(B). Let gz; = T, z; be an element

of H(B) for all g € Hsuch
thatg zx = gax —gxy_y = Tgag — Tpap_y

k= 1,2,...,“::!”is an edge connected gx; = Tyx; and
gxp_3 = Ié'tk—-j_ and, , and
Ez¥ = gxp —gﬂ:%_l =Tpxp— T ":%_1 be an

edge connected T and TgXn2-an_,
3
n’-an
T

X3 X< - contingency tables with
2

n°—an

— edges by applying
moves from H(B) to T, x; one by one and go from T, x; to

Ty Xpiozn . without causing negative cell frequencies on the
3

wheregx; € At [gtl. g e Hi =012, ... —1. Then

n"—3n

we canconnect all

Z

fixed two dimensional marginals by

and also from T, This forms

Xni-zn
g ¥niam

undirected graph as shown in figure 2

way, toT,xp.

T x,T x,...T nxz_ Trnaz_
g 0tgmaTtt FUR A e

Tr

T x.=

T, 2T, x5...T, x2_5y o To Xn?oen

B B

1

Figure2. The

. graphT,G = (T, R.T, W,.H(B)) = A™*[gt]xm = A *[gtlg

, Where the contingency tables interpreted as vertices and

connecting moves are interpreted as edges of a graph,

I;R = {I;lxn.- T;'-T:.- ---;T;'-t-p;:_gn_:} and
3

T;,W = {I;l-tj_.-%xg.- ) %xn:—zn_l}-
3

Theorem 8. The graphs T,G = (T, R, T, W, H(B))are
connectedbipartite graphs (up to graph isomorphism).

Proof :
Let I;l't["T;"T'_i. = *:!'-_L[Et]a If

“—an

0=i<j= -

—1,i# j.by remark 8there exists a

path < Tyrp. Tz s, Tyweas TyZisns o T 22y

Trz; Trxj>,and if 0= j< is “0—1i2, by
3 ra =
remark 8there exists a path

< Ty Tz Ty Ty 2z o Ty i
T,z; . Tyx; =, and that implies there exists a path between
every pair of distinct vertices Tyx;.T;x; € A™[t]of the
graph, by (definition 8), & is a connected graph .

Now, we prove the graph G = (T,R.T,W.H(B)) is a
bipartite graph.

Let Toxp Tgarppg, o Tparj_ g Toa; Tox; g = Toax;be a cycle
inG. Supposelyx; € T,R. ThenT;x;., € T,W, since the
edgeTyzisy = Tyxiy —Tpx; € H(B),

thenTy x;.. € TR, sincetheedge

T,Zi42 = Tyx;.; — Tyx;, € H(B). Continuing in this way,
we see that if & is an odd, thenT;x; € T, W, and if & is even,
thenTyxy € T, R, SinceTyx;., = Tpa; € T,R, it implies
thatj + 1 is even and thus the cycle is of even length. By
theorem 1, then the graph G =(T,R.T,W . H(B)) is a
bipartite graph.

4. Genomics and Phylogenetic

In this section, we describe some of the basic biological
facts needed to understand phylogenetic models and then
delve into the practical side of the algebraic statistics of

these models. The basic genetic information of an organism
is (almost always) carried in the form of DNA, a double
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helix consisting of two complementary B polymers bound
together. The DNA molecules in a genome are typically
represented as a number of frequencies of letters from the
four letters alphabet= {A, C, G, T}. These letters correspond
to the bases in the double helix that is the nucleotides
Adenine, Cytosine, guanine and Thymine. The four
nucleotides that form DNA come in two types: the purines
(A and G) and the pyrimidine's (C and T). The two strands
of the double helix are joined together via the base pairings
A to T (via 2 hydrogen bonds) and C to G (via 3 hydrogen
bonds). Since each cell typically contains a copy of the DNA
of the organism, DNA copying occurs frequently. Several
types of errors are possible during the replication of DNA.
Single bases can mutate, or large pieces of DNA can
separate and become reattached, possibly at another
position, possibly in the opposite direction, these are just
some of the events that occur over the course of evolution
(C. Semple, M [5] and J. Felsenstein[9]).

5. A New Model of Genetic Algorithm Using the Action
of Largest Subgroup of D for Invariance Markov Basis
In this section, we construct a new model of genetic
algorithm that permutes the pieces of nucleotides in aligned
DNA sequences using the actions of largest subgroup H of
D, for invariance Markov basis and toric ideals. Now, we
describe our model in the following steps.

Step (1):Suppose we have I-taxons of DNA sequences each
taxion of length L such as

Taxonl: AGCTAACGGTAT

Taxon2, CGATCTGACCTT

Taxonl: ACGTCACGTAGC -

Now, we define a pattern i = i;.i5.....i,zto be the sequence
of characters. We look at a single site (column) of our
sequence data. In the sequences above, we can look at the
first site in the sequences and see the pattern "AC . . .A". A
pattern frequency x;is that i appears in our set of sequence
data , and we denote to the number of frequencies by
n where nis a multiple of 6.

Step (2):We can input pattern frequency x; of above

. i .
sequences in3 x < -contingency table as follows :

n
Xy Xg xn z
E] X
i=1

- Xn Xin
s ¥ S ?|x|=E_ x
xXm xXm Ll
z+L z e + x,
+x‘?"+1 +'r‘?"+:

Where lxl =X;,,x; =L is the length of sequences (the

sample size), and
x4 is the frequency of the first pattern .

x4 is the frequency of the second pattern.

x= is the frequency of the ; pattern.
: 2

TE is the frequency of the ? + 1 pattern.

x=_, is the frequency of the ; + 2 pattern.
2 = =

x,, is the frequency of the n pattern.

Step (3):Represent the contingency table
x = {x;};, € H"as a n- dimensional column vector of non-

negative integers x = (x; .x;... .x,) ,Where' denotes the
transpose of a wvector or matrix , then xisa t-fiber
(i.e) x € A"*[t]whereA™*[t] = {x € N": Ax = t}.

Step(4): From remark 5,4 is %9 * m matrix and

A

11 = 1100 ..0000 -« 0 0]
00 -~ 001 1= 1100 00
00 = 0000 =2001T1..1T1
=l 0 =00 100010220 0
01 =00 01 000T1:w 00
00 - 0 10 0~ 0100 = 0 1h,
Ax =ti.e

111100 20000« 00]
00 001 1=1100- 00 .
00 =0 000 = 001111 Py
10« 0010=20010wwa0o0 [
01 0001 = 0001 00 :*
00 = 0 10 0 = 0100 0 ths, "
tl

t’:

£y
=t-4

tn

E+!

Where the columns of the matrix 4 index by the elements of
the column vector x.

Step (5):We can find the Markov basis from remark 4.
Ste 6): Az L zFE s g
transformation, ¢ € Z2*7"/2 and A~'[¢] be the set of -
fibers, and B = kery (A)). Use remark 6 to find the bipartite
graphG = (R, W,B) = A™*[t]g.

Step (7): We can find the toric ideals by using corollary 2
for each contingency tables.

Step (8):FindT,B = {T;z,.T;2,. ... ;2.2 } =B for all

3

linear

g € H, where T is a permutation matrix of g.

Step (9):Find the set

Mo Tyxyn Tyanian } A gt] (gt-fibers) for all
3

g € H.where

" in
rig= (t!,tl,t:,t4, ...,r£+,] r3t= (t:,t!,tl, £y ...,r5+,]
=R =
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, srt=(tptatytn tn j.ty), AXStie
n S 11000 07 [}
-+1, _
st = (ot T ts) and  1p p 1 1 0 0 ;
=, 000011
sr3 ‘—{*v*!**v*;w*‘fu ot 101010 g
Step (10):Use remark 8 and theorem 8 to find the graphs 01010 Isal,y -
- ®
T,GC = A™*[gt]gforall g € H. - &
Step (11):Use corollary 4 to find the toric ideal 4 ty
.. Tl ]
Iy=<FunFyvia — Fygan Friviitf = 1.2 gand Lie =3, E, N
,suchthati < jand [ <k =forall g € H. 4
2 8 5x1 tE- Sul

n"—an

n -
® 3 Xz -contingency tables (&-

Step (12):Use the
fibers) in step (6), and %x 3 x% -contingency tables

(gt-fibers) in step (9) for all g € H to find the permutation
of nucleotides in aligned DNA sequences.

Example 1:Suppose we have the following three aligned
DNA sequences

Taxon1: AGCTGAGGGCTGGA

Taxon2: AATCTTAAATCTTT

Taxon3: TCAGATCCCAGAAT

Step (1):There are three taxons of above DNA sequences
with x| = E;; x; = L = 14and nine patternsAAT, GAC,
CTA, TCG, GTA, ATTwith frequencies 1.4.2.2,3 and 2
respectively where n = 6.

Step (2):Now, we input the patterns frequency x; of above
sequences in3 x 2-contingency table as follows:

1 4 5

2 2 4

3 2 5

6 (5] 14
Then the table of marginal and conditional probability is:

1 4 5

14 14 | 14

2 2 4

14 14 14

3 2 5

14 14 | 14

G a8 1

14 14

Step (3):Represent the contingency table
x = {x;}; € H%as a 6- dimensional column vector of non-

negative integers x = (1.4.2,2,3,2) then xisa t-fiber

=
J.'l 5
. - B *
(ie.x e A™M[f], where A7 [t] = {x e N*: 4| “|=|5}.)
s o]
.1'_.1_ E
5
Step(4): A is 5 = 6 matrix and
1 1 0 0 0 0
00 1 1 0 0
A=l0 0 0O 1 1 , and
1 0 1 0 1 0
101 0 1,

Where the columns of the matrix 4 index by the elements of
the column vector x, and
ty=x,+x, =0t =x by =4ty mx 42, =6, 8, =

xytagtx =0t =, x, +oxg
=8
Step (5):We can find the Markov basis from remark 4. Then

. nf-3n B -3x6 .
the number of moves is =——— = ——— = 6 elements in the

set
1] -1 1| -1
5 = Al 1] 27 |0
-1 1
_ 0 0 -1 1
% = 1 ]2 T 1] -1
-1 1 0
1)1 0
Z; = 0|0 | +Ze= |1 |1
1]-1 1 |1
Step (6): The connected graph A~*[tlg = G = (R.W.B)
with
f‘q;‘f‘ =6 (t- fibres) 3 ® 2Z- contingency tables as vertices
of it.
Xg Xo Xy
X3 X3 Xg

Figure 3 : The graph G = (R.W,B) = A™*[t]g, where the
contingency tables interpreted as vertices and connecting
Markov basis are interpreted as the edges of a
graph,R = {xq. x5 2} and W = {x,.25. x5}, where

1[4 5 2[3 5
22 3 13 |4
xo= |3]2]5 |.x,= [3|2]5
68|14 68|14
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3[2]5 3[2] 3
13| 4 2121 4
2131 5 1(4] 5
%= [6[8]14 %= (6|8 14
|
2375 1]4] 3
3111 4 31| 4
x,= [1]4]5 Es= [2]3] 3
68|14 6|8 14

Step (7):We can find the toric ideals by using corollary 2 for
each contingency tables. Then the toric ideals that

correspond the Markov basis that shown in the previous
figureis:fy =< R F -PRPF RARF —FEF,BF, —FF =

Step (8):we find the
setl':B = {T,22,.T,22,, T, 225, 7,22, T2 2. T22,: }

= {22.24. 25, 26,24, 23} = B,

And we find the
setl' +B = (T 22, T 42, T, 425, 7,42, T2 2. Tp42, }
={2:.%:,.%.2,.2.%, =B,  And we find the
setlee B = Tz, T 27 T 22, T 24 Tor 2. Tor 2 }

= {23, 24,2.24.%5.24 } = B,

And we find the
Setlg=B = {T22). T 2. T3 23, T3 2. T2 25, T2 25 }
=1%,,%:2:.24.%:.2,} =B,  And we find the
setlesB = {To5 2. To5 200 T o5 Zga T o5 240 T o5 Z2u T 5 25 }
=12:,24.25.2;.2,.%; } = B,

Step (9): We find the set {Tz xq, Ty2xy,
Trrxg, Trrxg, Trrx, Tox,Tizxg 1 E A 2] {r:t-
fibers), where +*t = (6, 5,4.7.8)". We have.

3[2] 5 3]2[5
1[4] 5 BE
212711 (13[4
Ta%= gl 1a | 17% = [6]8[14
2[3] 5 174] 5
3(2]5 32 5

1(3] 4 2|2] 4
Tex= [e|8]14|T=%:= [6]28] 14
145 B

23] 5 174] 5

3[1] 4 3 1] 4
Toxg= |68 14 |7.x = |6]|8] 13

And we find the set
TrexgToemy Toeay Toery T, Toexs,
T,exg ) € A7 [r4t] (r*t-fibers), where
vt =(4,6,5.7.9)". We have.
212 4 113 4
3120 5 3|12 5
145 2131 5
Taxo= |68 14 |7.x, = |68
113 4 202 4
203 5 114 5
3|12 5 312 5
T 4% = 6|8 |14 |Tsx;=|6|8| 14
3|11 4 311 4
1(4] 5 23] 3
o 213 5 3 1{4| 5
TeXe= T8 14 [ 1+%s = [6] 8| 14
And we find the set

{Irsr X I;r Xy I:sr Xy I:sr 't!JI:sr Xy I:sr X
T, xg} S A *[srt]
(srt-fibers), where srt = (6,4,5.8.7)". We have.

213|535 23] 5
212 4 3| 1| 4
411 35 312] 5
Toxg= |8 |6 14 |7 x =|8/6]14
3[2] 5 411] 3
31| 4 212] 4
2{3 | 5 213] 5
ToX2=| 8|6 | 14 | T,x;=|8|6| 14
4(1] 35 312] 5
1134 1/3| 4
312]5 41 1] 3
Toxs= |8|6|14 T x = |86/ 14

And we find the set{T; 22 To 22, T, 2 20, T2 25, T2 2y,
Tep3xe Topzx;} © A Y[sr3t](srit-fibers), where
srt =(4,5,6,8,7)". We have.
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connecting moves are interpreted as edges of a graph,

21214 31 4 TR ={rixgrix,rixand T2 W = e rixg, rix: )
41115 312] 5 And find the graph T,+G = A~ [+*#].
213| 3 T ex. = 213 3
=X, =
T_:x%0=|8| 6| 14 LR | Bl 6| 14 T 4% T, ax, T, ix,
31 4 212 4
213| 3 213 3
3[21 5 4]1] 5 T, sz,
T.,iXz= |8 |6| 14 |T_=x,:= |8 6] 14
113 4 1{3] 4 T.ax T 433 T sxg
3(2( 3 411] 5 Fi ;. ™ h
21115 312 5 igure e grap
T.oXs= [glelia 1% = [816l 13 TG = (TR TwW HB)) = A [r* 8]y = A [r*tlg,
where the contingency tables interpreted as vertices and
connecting moves are interpreted as edges of a graph,
And we find the set '[T_g rExDJ T_g rs xj_.lrg rs:.::.lrgrsxg.l T_g ra-t_-t.l TF‘H = {T41D’ ':'"4:.::_.':'"4:.:4} and T’r‘ ln'l. = {T4xl".r4x!" T4'1:E-}'
Topsxs. Topsxg) © A [srt](sr t-fibers), where  And find the graph T, G = A™*[srt]g.
sr5t = (5,6,4,8,7)", and Xp TorX Torka
4 (1] 3 32 5
203 3 213 3
2121 4 3|11 4
TosX0= |8 [6| 14 |T.,=x, = | 8| 6] 14
213] 3 213] 5
3121 3 1 1] 3 Tex T4 T .XEg
T_sx,= 3]1] 4 T ex. = 212| 4 Figure 6: The graph
= 8|6 |14 737 | 86| 14 TG = (ToR. To W, H(B)) = A~ [srt] gy = A [s7e]g,
where the contingency tables interpreted as vertices and
connecting moves are interpreted as edges of a graph,
3121 5 a1l 35 TR = {srxg. srag, sra,} and T, W = {sra, srxg, sraech
1111 5 3 2] 5 And find the graph T, =6 = A~ *[sr*t]g.
13| 4 13| 4 : _ a-1f..3
T5%4= et 1a T, s x: = [glel 1 And find the graph T, .= G = A” *[sr°t]p.

T_.3xp T.p2%, To3x%y

Step (10): Use remark 8 and theorem 8 to find the graph
T,2G = A~ [r%#]p.

T,2x, T,=X, T 2%,

T i T _3x%g T 3%
T2xy Ty2x3 Ty2xs Figure 7: The graph
Flgure > 1 The graph Tzl = {Tsr3 R.Tos 1-1-",H{E:]} = A7 [sr¥t]gm = A7 [sr3t]g
Tt = {T BT 2W, H{E]} = AT tlm = AT s, , where the contingency tables interpreted as vertices and
where the contingency tables interpreted as vertices and connecting moves are interpreted as edges of a graph,
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To:R = [srixpsrix,srix,}and OO0

To:W = {srix, srixgsrixgh Taxon1:4 G CT GAAGGCCAAA

Taxon 2: A AT CTTAAATTTTT

And find the graph T;,sG = A~ [sr®¢]p. Taxon 3:T C A G ATTCCAATTT

T _5xg T, sX, T_5xs Xy =

DOEORE

Taxon 1:A G C T GAGGGCCGAA

Taxon 2:4 AT CTTAAATTTTT

Taxon 3: T C A G ATCCCAAATT

And the change in the type of DNA sequences under the
action of »* on the set of Markov basis be as Figure 4 where

T.. Tpxg =
AELEHEE
T5% Tos¥s Tos%s Taxon1:A G CT GAAAGTTTG A
) Taxon 2:4 AT CTTAAACCCTT
Figure 8: The graph Taxon 3:T C A G ATTTCGGGAT
TesG = (Tos R Tos W H(B)) = A [sr58] ey = A [s7%8]g Tz, =
, where_ the contingency_ tables interpreted as vertices and @@E0GE
connecting moves are interpreted as edges of a graph, Taxon1l:4A G C T CAAAGCTTAARA
TosR = {srixg, srixgsrinz,} and  |Taxon2:4 A T C TTAAATCCTT
TosW = {srix,, srixg,srix L Taxon 3: AGAT CAGGTT
Step (11):Use corollary 4 to find the toric ideal Tex, =
Iy =< Pg l:[+DPg [+ — o @:@:@:@:@:@:
Fyjeny Fgrizipitj = L2, —and.[ E=10,- T such that :ax':'ﬂ 1;4 "3 5’ E 1'{ ;4 "3 G $ fi_ E ;;
i<jandl <k >=<P,P, — B,P, PP, P.P,P,P — B P 0T &S 2
Jan 174 =230l — Rty Fate TS IToyon 3T C A G ATTCC AAGTT
. Tex, =
Step(12):Use the & = 3 = 2 -contingency tables (t-fibers) in o o o e e
. . B RL:\E;:HEJ\E;:\E;:\EJ
step (6)_, Bx3x2 -con_tlngency table_s (.g'f‘,-flb_ers) in step Taxon 1: A C CT CAGCGGCCTGA
(9) to find the permutation of nucleotides in aligned DNA Taxon 2A AT CTTAAATTCTT
sequences. . Taxon 3:T C 4 C ATCCC AAGAT
Then the change in the type of DNA sequences under the
. T :x4 =
Markov basis.
Be as Figure 3, Where LEEEE
g = Taxon 1:4A G C T GAGGGCTTOGG
——— Taxon 2: 4 AT CTTAAATCCTT
WLERZNZ N3N Taxom 3:T C A G ATCCCAGGAA
Taxon 1:A G C T GAGGGCTGGA T,2x5 =
Taxon 224 AT CTTAAATCTTT —————
Taxon3:T C A G ATCC CAGAAT 2L
Taxon 1:4 G C T GAAGGTTTGG
Xy = Taxon 2:4 A TCTTAAACCCTT
ENTIEEE Taxon 3: T C A G ATTCCGGGAA
R e N
Taxom1:4 G C T GAAGGTTGG A And the change in the type of DNA sequences under the
Toon 224 AT CTTAAACCTTT action of »* on the set of Markov basis be as Figure 5 where
Taxon 3:T C A G ATTCCGGAAT Tpexy =
o EEEOE
GEOEEE Taxon 1:A G C T GAAGCCT AAA
Taxon 1: 4 G C T GAAAGTTGAA Taxon 2: A AT CTTAATTCTTT
Taxon2:A AT CTTAAACCTTT Taxon 3: AGCATTCAACGTIT
Taxon 3:T C A G ATTTCGGATT Tpex, =
- OEEEEE
00000 Taxon1:4 G C T GAGGCCT GAA
Taxon 1:4 G C T G A AAGCTAAA Taxon 2: A AT CTTAATTCTTT
Taxon2:A AT CTTAAATCTTT Taxon3:T C A G ATCCAAGATT
Taxon 3:T C A G AT AGTTT Tysxy =
Id_ =
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srix,

action of sr® on the set of Markov basis be as Figure 7

where

2

srex,
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900000
Taxon 1:4 G C T GAAAGCCCAA
Taxon 2:4 A T CTTAAATTTTT
Taxon 3 CAGATTTCAAATT
srix, =

DODDDE
Taxon 1:4 G C T GAAAACCTAA
Taxon 2: 4 A T CTTAAATTCTT
Taxon 3: T C A G ATTTTAAGTT

Remark 9: We refer to (D), @), ®), @), &and(6) in
example 1to the frequencies of thepatterns in DNA
sequences.
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