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Abstract: In this paper, we introduce a new model of genetic algorithm that permutes the pieces of nucleotides in aligned DNA 
sequences using a bipartite graph and the action of largest subgroup  of dihedral Group , 𝑛𝑛 is multiple of 6 on  - 

contingency tables with fixed two dimensional marginals and their Markov basis 𝐁𝐁 such that is -invariant,. Where 𝐁𝐁 is the Markov 
basis found by H. H. Abbass and H. S. Mohammed Hussein in [7]. 
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1. Introduction 
 
Since 1998 the publication of P.Diaconis and B.Sturmfels, 
the new field of computational algebraic statistics has been 
developing rapidly, and in the same year P.Diaconis and 
B.Sturmfels defined the notion of Markov basis for 
constructing a connected Markov chain for sampling from a 
conditional distribution over a discrete sample space and 
proved the fundamental fact that a Markov basis 
corresponds to a set of binomial generators of a toric 
ideal[11]. In 2000, M. Dyer, and C. Greenhill, found a 
Polynomial-time counting and sampling of two-rowed 
contingency tables[10]. In 2001, A.Dobra showed that the 
only moves that have to be included in a Markov basis that 
links all contingency tables having a set of fixed marginals 
when this set of marginals induces a decomposable 
graphical models[1]. In 2002, A. Dobra, and S. Sullivant, 
described a divide-and-conquer algorithm for generating 
Markov basis of multi-way tables that connects all tables of 
counts having a fixed set of marginal totals[2]. In 2003, S. 
Aoki and A.Takemura proved that there exists a unique 
minimal basis for 3×3×K contingency tables consisting of 
four types of indispensable moves [14], and in the same year 
S. Aoki, and A.Takemura presented a list of indispensable 
moves of unique minimal Markov basis of 3×4×K and 
4×4×K contingency tables with fixed two- dimensional 
marginals[13], also A.Takemura, and S. Aoki. gave some 
characterizations of minimal Markov basis for connected 
Markov chain and given a necessary and sufficient condition 
for uniqueness of minimal Markov basis[3]. In 2005, A. 
Takemura, and S. Aoki. Studied the Markov basis for 
sampling from discrete sample space, which is equipped 
with some convent metric and they started from two state in 
the sample space, and they asked whether they can always 
move closer by an element of a Markov basis and they 
called a Markov basis distance reducing[4]. 
 

In [7] H. H. Abbass and H. S. Mohammed Hussein found a 
Markov basis  and toric ideals for - 

contingency tables with fixed two dimensional marginals,  
is a multiple of 3 greater than or equal 6, also they [8] found 
the largest subgroup of dihedral Group , such that is -
invariant,  is a multiple of 3. 
 
In this paper, we use the Markov basis  and action of the 
subgroup of dihedral Group  on these contingency tables 
to give a new model of permutation the pieces of nucleotides 
in DNA sequences. 
 
2. Preliminaries 
 
In this section, we review some basic definitions and 
notations of contingency table, dihedral group, connected 
graph, bipartite graph, moves, Markov basis, and toric ideals 
that we need in our work. 
 
Definition 1(see[17]).Let  be a positive integer greater than 
or equal . The group of all symmetries of the regular 
polygon with n sides, including both rotations and 
reflections, is called dihedral group and denoted by  . If 
we center the regular polygon at origin then the elements of 
the dihedral group acts as linear transformation of the plane. 
Lets us represent the elements of  as matrix, with 
composition multiplication. Dihedral groups are among 
simplest examples of finite groups and they play an 
important role in group theory, geometry, and chemistry. 
The set of rotations is generated by - counterclockwise 
rotation with angle 2π / n of order , and the set of 
reflections is of order 2 and every element generates {e, 

} , where  is the identity element in Dn .  can be 

written as:{ , ,  … , , , , , … , 

}.In general, we can write  as:  
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={ : ≤ ≤  , 0 ≤ j ≤ 1} which has the 

following properties:  , 

The 

composition of two elements of the  is given by 

,   s , 

. 
 
Remark 1(see [17]).If we label the vertices (of the regular 

-gon)  to  in a counterclockwise direction around -gon 
then the elements of  can be written as permutations of 
vertices, let be a counterclockwise rotation, and let be the 
reflection of the -gon about an axis through the center and 
vertex  , as indicated in below . The element generates the 
cyclic group of order  Cn which is a normal cyclic 
subgroup of . In all cases, addition and subtraction should 
be performed using modular arithmetic with modulus . 

 
Any symmetry will fix the origin and is determined by the 
image of two adjacent vertices , say  and  .The vertex  
can be taken to any of  vertices and then the vertex  must 
be taken to one of the two vertices adjacent to the image of 

. Hence,  is a non abelian group of order  generated 
by  and . 
 
Now, we give some concepts about the action of a group on 
a set that we use later. 
 
Definition 2(see[12]). Let  be a finite set  elements, 
we call an element of  a cell and denoted by .  is often 
multi-index . A non-negative integer  
denotes the frequency of a cell . The set of frequencies is 
called a contingency table and denoted as , with 
an appropriate ordering of the cell , we treat a contingency 
table  as a -dimensional column vector of 
non-negative integers. Not that a contingency table can also 
be considered as a function from  to  defined as . 
 
Definition 3(see [12]).The -norm of  is called the 
samplesize and denoted as 

 We will denote  be the set of integer 
numbers, also we denote to the as fixed 
column vectors consisting of integers. A -dimensional 
column vector  as 

. Here  denotes the transpose of a 
vector or matrix. We also define a  matrix , with its 

-row being given by  and if  is a -

dimensional column vector, we define the set 
. In typical situations 

of a statistical theory,  is sufficient statistic for the nuisance 
parameter. The set of 's for a given , 

-fibers),is considered for 
performing similar tests, for the case of the independence 
model of two–way contingency tables, for example, is the 
row sums and column sums of  , and is the set of s 
with the same row sums and column sums to . The set of -
fibers gives a decomposition of . An important 
observation is that -fiber depends on given only through its 
kernel, . For different A's with the same kernel, the 
set of -fibersare the same. In fact, if we define 

this relation is an equivalence 
relation and  is partitioned into disjoint equivalence 
classes. The set of -fibers is simply the set of these 
equivalence classes. Furthermore,  may be considered as 
labels of these equivalence classes. 
 
Definition 4(see [12]).A -dimensional column vector of 
integers is called a move if it is in the 
kernel of , i.e. . 
Remark 2 (see[3]).For a move , the positive part 

and the negative part  are 
defined by , 
respectively, Then  and 

 . Moreover,  and  are in the 
same -fiber, i.e., for . We 
define the degree of  as the sample size of or ( ) and 
denote it by . In the following we 
denote the set of moves (for a given ) 
by . 
 
Definition 5 (see[12]).Let  be a linear 
transformation, , and  be the set of -fibers, and 
let  , then we define  be the graph with 
vertex set  and  an edge if and only if 

. 
 
Definition 6 (see[3]).Let . A set 
of finite moves  is called Markov basis if for all ,  
constitutes one  equivalence class.  
 
Definition 7 (see[6]). A graph  is connected if for every 
pair of distinct vertices  where be the set 
of vertices of the graph  the graph  has a -path. 
Otherwise, we say the graph is disconnected. 
 
Definition 8(see[6]).A graph  is a bipartite graph if there 
are  meeting the following conditions: 
1.  
2.  
3.  and  are both null graphs, where  and  
are subgraphs of the graph  induced by the set of vertices 

 respectively.  
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Theorem 1(see[6]). 
For a graph  the following statements are equivalent: 
1.  is bipartite. 
2. Every cycle in  has an even length. 
 
Definition 9 (see [6]).Let  be the set of moves and 
let . We say that  accessible from by  
if there exists a sequance of moves  and 

 such that 

 

 
 
Definition 10(see[3]). If  is a set such that 

 is connected for all , then  is a Markovbasis for  
 
Remark 3: Throughout this paper, the symbol  denotes a 
field of complex numbers, the set  is the vector space of 

-tuples of elements in . 
 Henceforth  denote indeterminate, that is, 
polynomial variables. A monomial  in the indeterminates 

 is a expression of the form 
 , where  are nonnegative 

integers. We will often use the shorthand 
 to denote this monomial. A 

polynomial is a linear combination of finitely many  
monomials where the 

 and at most finitely many of them are nonzero. Note 
any polynomial  is also a function from to , simply 
by evaluating the polynomial at a point of . The set of all 
polynomials in the  indeterminates  is denoted 
by either  or , for short. Note that has 
the structure of a ring because we can add and multiply two 
polynomials to produce new polynomials, and these addition 
and multiplication operations are well-behaved with respect 
to one another. 
 
Definition 11 (see[16]). Let  be a linear 
transformation, the toric ideal is the ideal 

 
where  
Remark 4 (see [7]). Let  be a multiple of 3 such that 

, and let  be the representative 

elements of the set of contingency tables and 

such that each  , , is a 

matrix of dimension  either has two columns 

 (  or either 
 ) and the other columns are zero 

denoted by , or it two columns  ( 
 or either  ) and 

the other columns are zero denoted by , or it has two 

columns (  or 
 ) and the other columns are zero 

denoted by ,like 

 

 

. 

Also, we can write all elements of as one-dimensional 
column vectoras follows:  

and such 
that 
If  

 
If  

 
If  
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Theorem 2 (see [7]).The number of elements in  equal to 

 
Remark 5(see [7]).Given a contingency 
table  , the entry of the matrix  in the 
column indexed by  respectively and its rows 
indexed by 

 respectively. The entry in the column indexed by  in the 
matrix A will be equal to one, if  a pears in the index of its 
row, and otherwise it will be zero. Then 
A

 
Theorem 3 (see [7]).The set  is a set of 

moves. 
Corollary 1 (see [7]).The set  of moves in theorem10 is a 
Markov basis. 
Corollary 2 (see [7]).The toric ideal  for  - 
contingency tables are 

 , such that  
Remark 6 (see [7]). Now, we will construct a connected 
graph by using the elements of  Let  be an element of 

such that  , is an edge 

connected  and , …, and  is 

an edge connect  and 

where .Then 

we can connected all  - contingency tables 

with fixed two dimensional marginals by  edges by 

applying moves from  one by one and go from  to 
 without causing negative cell frequencies on the 

way, and also from  to  of this type, by forming 

undirected graph , where the 
contingency tables interpreted as vertices and connecting 
moves are interpreted as edges of a graph, 

} and as 

shown in figure1 
 

 
Figure 1: The graph . 

 
In [8] H. H. Abbass and H. S. Mohammed Hussein 
assumed  is a multiple of 6, and  is the subgroup 

 of dihedral group , where 
 and . 

Theorem 4 (see [7]).The graph is a connected 
bipartite graph (up to graph isomorphism). 
 
Theorem5 (see [8]). The Markov basis is -invariant. 
Corollary3 (see [8]).The is the Largest 
Subgroup ofthe group such that the Markov basis is -
invariant. 
 
Remark 7 (see [8]). Let , 

and . 
Then where

. So, we have six types of -fibers , 

 

and . 

Theorem 6 (see [8]).If , then is a Markov basis for 

 contingency tables  in  

Corollary 4 (see [8]).The toric ideal for  -

contingency table in is  

 
 

, such that , for all 
. 

 
 
 
 

3. The Main Results 
 
Let  is multiple of 6, 

and  be 

representative elements of the set of contingency 
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tables. Then we write  as  permutation matrix 
, where  is the Kronecker's delta 

such that  for , and . 
The identity matrix of the order  denoted by  fur the unit 
element . 
Now, we consider a left action of dihedral 
group , on  the set of  - 

contingency tables, and the action of dihedral group on 
the set of Markov basis . 
Theorem 7. Let , if . Then  
accessible from by  if and only if  accessible from 

by , for all  

Proof: If  accessible from by ,then there exists a 
sequence of moves  and 

 such that 

 (definition 9) 
Let  

If  

 

 
If then we write as a  permutation matrix, i.e. 

, then  

 

 

 

 

 
If , then ,  

 

 

 

 

. 
If , then ,  

 

 

 

 
If , then 

,  

 

 

 

 

 

 

 

 

 
If

, 

 

 

 

 
  

Therefore  accessible from by  
 
Conversely, 
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If  accessible from by then there exists a 
sequence of moves  and 

 such that 

 

 
(definition 9) 
By multiplying the previous equations by , we 
have  

 

 
This implies, 

 

 

Hence  

 

Therefore,  

[since

and ] 
Then  accessible from by  
Remark 8.Now, we will construct a connected graph by 
using the elements of  Let  be an element 
of  for all such 
that  

, is an edge connected  and 

 and, … , and 
 be an 

edge connected  and , 

where . Then 

we canconnect all  - contingency tables with 

fixed two dimensional marginals by  edges by applying 

moves from  to  one by one and go from  to 
 without causing negative cell frequencies on the 

way, and also from  to . This forms 

undirected graph as shown in figure 2 
 

 
Figure2. The 
graph
, where the contingency tables interpreted as vertices and 
connecting moves are interpreted as edges of a graph, 

} and 

. 

Theorem 8. The graphs are 
connectedbipartite graphs (up to graph isomorphism).  
Proof : 
Let , if 

, by remark 8there exists a 
path  

 , and if  by 

remark 8there exists a path 
 

, and that implies there exists a path between 
every pair of distinct vertices of the 
graph, by (definition 8), is a connected graph . 
Now, we prove the graph  is a 
bipartite graph.  
Let be a cycle 
in . Suppose . Then , since the 
edge , 
then sincetheedge 

. Continuing in this way, 
we see that if  is an odd, then and if  is even, 
then . Since , it implies 
that  is even and thus the cycle is of even length. By 
theorem 1, then the graph  is a 
bipartite graph.  
4. Genomics and Phylogenetic 
In this section, we describe some of the basic biological 
facts needed to understand phylogenetic models and then 
delve into the practical side of the algebraic statistics of 
these models. The basic genetic information of an organism 
is (almost always) carried in the form of DNA, a double 
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helix consisting of two complementary B polymers bound 
together. The DNA molecules in a genome are typically 
represented as a number of frequencies of letters from the 
four letters alphabet= {A, C, G, T}. These letters correspond 
to the bases in the double helix that is the nucleotides 
Adenine, Cytosine, guanine and Thymine. The four 
nucleotides that form DNA come in two types: the purines 
(A and G) and the pyrimidine's (C and T). The two strands 
of the double helix are joined together via the base pairings 
A to T (via 2 hydrogen bonds) and C to G (via 3 hydrogen 
bonds). Since each cell typically contains a copy of the DNA 
of the organism, DNA copying occurs frequently. Several 
types of errors are possible during the replication of DNA. 
Single bases can mutate, or large pieces of DNA can 
separate and become reattached, possibly at another 
position, possibly in the opposite direction, these are just 
some of the events that occur over the course of evolution 
(C. Semple, M [5] and J. Felsenstein[9]). 
 
5. A New Model of Genetic Algorithm Using the Action 
of Largest Subgroup of for Invariance Markov Basis 
In this section, we construct a new model of genetic 
algorithm that permutes the pieces of nucleotides in aligned 
DNA sequences using the actions of largest subgroup  of 

 for invariance Markov basis and toric ideals. Now, we 
describe our model in the following steps. 
Step (1):Suppose we have -taxons of DNA sequences each 
taxion of length  such as 
Taxon1: A G C T A A CG G T A T  
Taxon2: C G A T C T G A C C T T  

 
Taxon : A C G T C A C G T A G C  
Now, we define a pattern to be the sequence 
of characters. We look at a single site (column) of our 
sequence data. In the sequences above, we can look at the 
first site in the sequences and see the pattern "AC . . .A". A 
pattern frequency is that appears in our set of sequence 
data , and we denote to the number of frequencies by 

where is a multiple of 6. 
Step (2):We can input pattern frequency  of above 
sequences in  -contingency table as follows : 

 
Where  is the length of sequences (the 
sample size), and 

 is the frequency of the first pattern .  

 is the frequency of the second pattern. 

 
 is the frequency of the  pattern. 

 is the frequency of the  pattern. 

 is the frequency of the  pattern.  

 
 is the frequency of the  pattern. 

 
UStep (3) U:Represent the contingency table 

as a - dimensional column vector of non- 
negative integers ,Where  denotes the 
transpose of a vector or matrix , then isa -fiber 
(i.e) where  
UStep(4) U: From remark 5,  is  matrix and 
A

 
 

 

 
Where the columns of the matrix  index by the elements of 
the column vector  
UStep (5)U:We can find the Markov basis from remark 4. 
UStep (6)U:  is a linear 
transformation, , and  be the set of -
fibers, and . Use remark 6 to find the bipartite 
graph . 
UStep (7) U: We can find the toric ideals by using corollary 2 
for each contingency tables. 
UStep (8) U:Find  for all 

 where  is a permutation matrix of . 
UStep (9) U:Find the set 

-fibers) for all 

where 
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, , 

 and 

 

Step (10):Use remark 8 and theorem 8 to find the graphs 
for all  

Step (11):Use corollary 4 to find the toric ideal 

 , such that . 

Step (12):Use the  -contingency tables ( -

fibers) in step (6), and  -contingency tables 

( -fibers) in step (9) for all  to find the permutation 
of nucleotides in aligned DNA sequences. 
Example 1:Suppose we have the following three aligned 
DNA sequences 
Taxon 1: A G C T G A G G G C T G G A 
Taxon 2: A A T C T T A A A T C T T T 
Taxon 3: T C A G AT C C C A G A A T 
Step (1):There are three taxons of above DNA sequences 
with and nine patternsAAT, GAC, 
CTA, TCG, GTA, ATTwith frequencies  and  
respectively where . 
Step (2):Now, we input the patterns frequency  of above 
sequences in -contingency table as follows: 

 
Then the table of marginal and conditional probability is: 

 
Step (3):Represent the contingency table 

as a - dimensional column vector of non- 
negative integers ,then isa -fiber  

(i.e. , where  

Step(4):  is  matrix and  

, and 

 

 

 
Where the columns of the matrix  index by the elements of 
the column vector and 

 
 

 
UStep (5) U:We can find the Markov basis from remark 4. Then 
the number of moves is  elements in the 
set 

 
UStep (6)U: The connected graph  
with 

 ( - fibres) - contingency tables as vertices 
of it. 

 
Figure 3 : The graph , where the 
contingency tables interpreted as vertices and connecting 
Markov basis are interpreted as the edges of a 
graph, } and },where 
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Step (7):We can find the toric ideals by using corollary 2 for 
each contingency tables  Then the toric ideals that 
correspond the Markov basis that shown in the previous 
figure is: . 
 
Step (8):we find the 
set }

. 
And we find the 
set }

. And we find the 
set }

. 
And we find the 
set }

. And we find the 
set }

. 
 
Step (9): We find the set  

-
fibers), where . We have. 
 

 
 
 
 

And we find the set 
 

-fibers), where 
 We have. 

 
And we find the set 

 

 
-fibers), where . We have. 

 
 
And we find the set  

-fibers), where 
. We have. 
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And we find the set  

-fibers), where 
, and 

 
 
Step (10): Use remark 8 and theorem 8 to find the graph 

. 

 
Figure 4: The graph 

, 
where the contingency tables interpreted as vertices and 

connecting moves are interpreted as edges of a graph, 
} and  

And find the graph . 
 

 

Figure 5: The graph 
, 

where the contingency tables interpreted as vertices and 
connecting moves are interpreted as edges of a graph, 

} and  
And find the graph . 

 
 
Figure 6: The graph 

, 
where the contingency tables interpreted as vertices and 
connecting moves are interpreted as edges of a graph, 

} and  
And find the graph . 

And find the graph . 

 
Figure 7: The graph 

, where the contingency tables interpreted as vertices and 
connecting moves are interpreted as edges of a graph, 
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} and 
 

And find the graph . 

  
 
Figure 8: The graph 

, where the contingency tables interpreted as vertices and 
connecting moves are interpreted as edges of a graph, 

} and 
 

Step (11):Use corollary 4 to find the toric ideal 
 

, such that 

.  
Step(12):Use the  -contingency tables ( -fibers) in 
step (6),  -contingency tables ( -fibers) in step 
(9) to find the permutation of nucleotides in aligned DNA 
sequences. 
Then the change in the type of DNA sequences under the 
Markov basis.  
Be as Figure 3, Where 

 

 
 

 
 

 
 

 
 

 
 

 
And the change in the type of DNA sequences under the 
action of  on the set of Markov basis be as Figure 4 where 

 

 
 

 
 

 
 

 
 

 
 

 
And the change in the type of DNA sequences under the 
action of  on the set of Markov basis be as Figure 5 where 
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And the change in the type of DNA sequences under the 
action of  on the set of Markov basis be as Figure 6 where 

 

 
 

 
 

 
 

 
 

 

 

 
And the change in the type of DNA sequences under the 
action of  on the set of Markov basis be as Figure 7 
where 

 

 
 

 
 

 
 

 
 

 
 

 
And the change in the type of DNA sequences under the 
action of  on the set of Markov basis be as Figure 8 
where 
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Remark 9: We refer to ①, ②, ③, ④, ⑤and⑥ in 
example 1to the frequencies of thepatterns in DNA 
sequences. 
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