
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Survey Paper for Bug Localization

Dhanashree P. Pathak1, Srinu Dharavath2

1, 2 Savitribai Phule Pune University, G.S.Moze College of Engineering, Balewadi, Pune-411045, India

Abstract: Bug localization is the task to locate the source code entities which are relevant from the bug report. Manual bug
localization is a time consuming and labor consuming task as developers has to go through thousands of source code entities to locate
the relevant one. Current research provides methods as various IR techniques, classifiers, combination of classifiers to improve bug
localization. To make bug localization partial or maximum automated some tools are available but mostly they are based on simple
query, IR techniques or eliminating unnecessary stack traces or use basis of previous bug reports and its changed files and based on
that history relevant source files will be identified. There is automated path generation for software fault localization. But none of all
these tools/techniques achieves highest efficiency as they work only on one area or combination of areas. To make automation more
successful and efficient there is a need for finding hybrid approaches. This paper provides the literature survey about what is done
regarding bug localization so far and what is the future scope for automation in bug localization. It also points how efficient automated
bug localization may help maintain the software cost.

Keywords: Bug Localization, Software maintenance, Information Retrieval, Query Expansion, Classifiers, Automation of Bug
Localization.

1. Introduction

This survey paper has been divided into four sections.
Section 1describes what is bug, bug life cycle and describes
one can maintain software cost if we speed up bug fixation
process and also states ‘bug localization’. Section 2 points
bug localization as IR(Information Retrieval) problem,
various methods used so far and discuss its effectiveness.
Comparison between IR methods, classifier methods, some
research work. Section 3discusses the shortcomings of above
techniques to achieve maximum efficiency and need for
proper automation. Discussion about what automation
tools/techniques and their basis have been researched so far.
Section 4 suggests our proposed research work for
automation of bug localization as to use the hybrid approach
for combining different right classifier combination and
combination of classifier combinations to achieve more
efficiency and successfully automating it in addition with
concept location with Relational Topic
Model/BugScout/BM25F, Query expansion, Preprocessing
bug reports by removing noise from stack traces and code
snippets. By combining all, creating a hybrid automated
model which may lead to better efficiency.

1.1 Bug, Bug Life Cycle, Bug Localization

A software bug is a error, flaw, failure or fault in a computer
program or system because of which the intended program,
system is not meeting the desired results as expected. To
achieve high quality software engineering tasks have
included software testing tasks to start side by side with
development activities. When the initial software is ready to
test then that version goes to software testers who test those
scenarios as per the customer requirements/system
requirements. Testing is the conformance to the
requirements. Testers test various scenarios and log the
defect/flaw/bug in some defect tracking tool so that later
developers can check it and find the source code which is the
root cause for such error and make necessary changes to the
source code files and fix the defect.

The Defect life cycle starts when the defect is found by the
tester and he/she logs it in the defect tracking system. The
different states defect goes through its life cycle are as below;
1. New: When a defect is logged for the first time by the

tester.
2. Assigned: After defect is logged by the tester the test lead

verifies and approves the defect as genuine defect and
assign the bug to the corresponding developer or
developer team.

3. Open: Here in this state the developer starts analyzing and
working on the defect.

4. Fixed: When developer makes necessary changes to the
source code files to remove the error/bug, he changes the
state as ‘Fixed’.

5. Retest: At this state the tester again tests the
functionality/bug and verifies that whether the changes
made by developer are adequate and functionality is
working as expected.

6. Verified: Once the tester has tested and confirmed that the
functionality is working as expected then he/she changes
the state as ‘Verified’. It is the assurance that what the
developer has changed in source code that has been
effective and without creating any further error the error
has been removed.

7. Reopen: While testing the bug fix if the tester feels that
the issue is not fixed and error still persists then he/she
changes the state as ‘Reopen’ and then then the developer
should work again on that and the bug follows the whole
cycle again.

8. Closed: Once the tester is assured about the bug fix then
he/she closes the bug and changes its state as ‘Closed’.

9. Duplicate: Many testers are working simultaneously so
there is possibility that same bug is logged by others. In
such cases only one copy is kept and others are marked as
‘Duplicate’ and will not be entertained.

10. Rejected: In many scenarios the development team might
be in disagreement of a bug in such scenarios with
consultation and approval with
customer/client/analysts/end stakeholders development
team marks the bug as ‘Rejected’.

Paper ID: SUB1429 2835

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

11. Deferred: In many situations the based on the priority and
timeline and severity few bugs are ‘Deferred’ to be fixed
in later releases.

From the above bug cycle we want to concentrate on the
states ‘OPEN’ till ‘FIXED’ as these are the states involved in
bug localization. Now once the defect is ‘OPEN’ and
developer is working on that he/she should go thoroughly
through the bug report and should try to find out the relevant
source code entities which has caused the error in order to fix
the bug. This process is called as ‘Bug
Localization’[1][2][3]. Considering the source code is a large
entity and through bug report finding relevance to that is a
considerable time and effort consuming task. Often it has
been seen that the there are large number of source files
while the bug usually affect only a few number of files. Lucia
et.al reported that 84-93% of bugs only affect 1-2 source
code files[4]. As the large number of bug reports can
overwhelm the developers, for instance, in the Eclipse
project, developers receive an average of 115 new bug
reports every day, the Mozilla and IBM Jazz projects get 152
and 105 new reports per day, respectively[5]. The current
bug localization efforts are manual which increases the fixing
time as to manually locate appropriate entities and which is
difficult[6] and expensive[7]. As the time for bug fixation
increases the overall time for software development increases
and the total software cost increases in proportion. So to
maintain the software cost we must control the bug fixation
time to minimal. Here comes the need of using the effective
IR techniques, different classifier approaches and also
automating the bug localization.

2. Information Retrieval Models For Bug

Localization

Information Retrieval is the study of querying for text within
a collection of documents [8]. It is more or less similar as
finding some keyword from Google engine. In the similar
way IR based bug localization classifiers use IR models to
find textual similarities between the bug report(query) and
the source code entities(documents). If a bug reports contains
“Trimmed 30 bytes off each pageRequest object”, then an IR
model looks for the source code entities which contains the
words “trim”, “bytes”, “pageRequest” etc.

Bug localization can be defined as a classification problem as
: Given the n source code entities and a bug report b, classify
the bug report b as belonging to one of the n source code
entities. The classifier returns the ranked list of possibly
relevant entities, along with a relevancy score of each entity
in the list. An entity is considered relevant if it indeed needs
to be modified to resolve the bug report and irrelevant
otherwise[5]. Current bug localization techniques uses IR
techniques. We will see some popular IR techniques and their
comparisons for bug localization and related research work
by others.

2.1 Vector Space Model (VDM)

The Vector Space model is a simple algebraic model based
on the term-document matrix of a corpus[9]. The term-

document matrix is a m × n matrix whose rows represent
individual terms(i.e. words) and columns represent individual
documents . The ith and jth entry in the matrix is the weight
of term wi in document dj. The vector space model
represents documents by their column vector in the term-
document matrix , a vector containing the weights of the
words present in the document and zeros if not. The
similarity between the two documents is calculated by
comparing their two vectors.
VSM uses the following parameters:

Term weighting (TW): The weight of a term in a document.
It is like the number of occurrences of the term in the
document. Or tf-idf i.e. term frequency, inverse document
frequency [8].

Similarity metric (Sim): The similarity between two
document vectors. It is Euclidean distance, cosine distance,
hellinger distance, KL divergence.

2.2 Latent Symantic Indexing

Latent Symantic Indexing is a extension to VSM. It uses
Singular Value Decomposition (SVD)to project the original
term-document matrix into three new metrics. These three
new matrices are used as ; a topic document matrix D, a term
topic matrix T and a diagonal matrix S of eigenvalues [10].
Here the terms which are related by collocation are grouped
together into “concepts” or “topics”. For example in any
computer related document the words “monitor”,
“keyboard”,” mouse”, “printer” are tend to appear in the
same document as they are related to the same subject/topic.
This reduced dimensionality of topic-document matrix has
increased the performance over the VSM in some areas. LSI
vectors contains the weights of topics whereas VSM contains
the weights of single terms. LSI and VSM can use the same
similarity measures to determine the similarity between the
two documents. Here Term weight (TW) and Similarity
Metric(Sim) are same as VSM. Only Number of Topics (K)
is the parameter which controls how many topics are kept
during the SVD reduction.

2.3 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation [11] is a statistical topical model
which provides automatically index, search and cluster
documents that are unstructured and unlabeled [12]. LDA
discovers the “topics” from documents as first task same as
LSI. The key difference between LSI and LDA is the method
used to generate the topics. In LSI the topics were generated
as byproduct of the SVD reduction of the term-document
matrix. But in LDA topics are created through a generative
process using machine learning algorithms.
LDA uses following parameters:
Number of topics (K) : IT decides how many topics to be
created.
α : A document- topic smoothing parameter
β : A word-topic smoothing parameter.
Similarity metric (sim) : Similar as VSM sim.

The research of Rao and Kak employed several popular IR
techniques for bug localization and evaluated their

Paper ID: SUB1429 2836

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

performances[3]. Rao and Kak’s work includes evaluating
the various IR models as VSM(Vector Space Model), LSI
and LDA and various combinations. They performed a case
study and concluded that the simpler IR models often
outperform more sophisticated models. Lukis et.al. applied
Latent Dirichlet Allocation(LDA) for bug localization[1].
Using LSI and LDA he build the two classifiers on the
identifiers and comments of the source code and compute the
similarity between a bug report and each source code entity
using the cosine and conditional probability similarity
metrics. His conclusions were based on performing the
experiments on Eclipse and Mozilla bug reports and
concluded that LDA often outperforms LSI. Neguyen et
al.[2] worked on a new Topic Model which was based on the
earlier IR model LDA, it was called BugScout. It mainly
considered the past bug reports in addition to the identifiers
and comments. When finding the key search concepts it used
both data sources concurrently and concluded that BugScout
improves the performance by 20% over the sole use of LDA
only to source code.

Along with these IR based techniques there are also many
data processing techniques are used to work out the bug
localization. Preprocessing the bug reports always improves
the results. Removing unnecessary data from data set and
then searching for required data makes more sense. The basic
stopping, stemming and splitting activities are done first. To
move forward only to keep the necessary data many
techniques includes the query expansion for searching in
source code entities based on the bug report entity. Also the
redundant bug reports gets removed as many times, once the
developers identify the relevant entity using bug localization
they use the change propagation techniques [13] to identify
the other entities that also be modified. Removing noises
from stack traces and source code preprocessing is also been
the area of research for improving the bug localization along
with IR techniques.

Also for bug localization some IR-based concept/Feature
location approaches can also be helpful. The common thing
between both approaches is finding the relevant source code
entity to the given query.

In above all VSM, LSI, LDA IR models use these IR
classifiers to locate source code entities that are textually
similar to bug reports. However the current results are
ambiguous and contradictory as some claim VSM provides
the best performance [3]and some claim LDA [1]. Some
claim new IR model is required [2]. These mixed results are
based on different data sets and mainly the different classifier
combinations. A classifier combination defines the value of
all the parameters that specify the behavior of a classifier,
such as the way in which the source code is processed, how
terms are weighted and mainly the similarity between the bug
report and the source code entities. But given that the range
of parameters is vast we simply cannot use all combinations
as it is highly difficult to understand exactly which
parameters to consider and which to left out. The work of
Thomas, Nagappan, Boistein and Hassen [5] has delivered
the limitations of current research and how researchers and
practitioners are left to guess which configuration to use for
their project. They have come up with the discoveries which

might improve the performance based on classifiers
combination and classifier configurations. After considering
IR based classifiers and entity metric based classifiers and
evaluating the results they have concluded that the
configuration of IR based classifier matters. [5] The best IR
based classifier uses VSM with index built using tf-idf term
weighting on all available data in the source code entities
which has been stopped, stemmed and split and queried with
all available data in the bug report with cosine similarity [5].
Classifier combination helps in almost all cases, no matter
the underlying classifiers used or the specific combination
technique used [5]. They have proposed two frameworks, one
for defining and analyzing the classifier configurations and
one for combining the results of disparate classifiers. The
configuration of a classifier has a significant impact on its
performance.

3. Practical Better Ways for Bug Localization

for Researchers

So far we have seen concept of bug localization and how it
can be done with various IR techniques, how we can improve
it with right classifier configurations and should combine
them in most effective way to accelerate the time and efforts
for finding and fixing the bugs and decreasing the
maintenance cost. But there are some practical shortcomings
to achieve these techniques in practical day today
development cycle for at least small/mid size companies.
First thing is the accessibility of the tools. It requires the
developers to download the bug reports and source code files
and run techniques to localize bugs. The better solution might
be the tool which can be plug-in in bug tracking system and
version control system and helps in performing bug
localization online. Such tool is bug localizer [14]. It is based
on Zhou et al [15]. It is implemented as Bugzilla extension, it
extracts information from summary and description parts and
uses revised VSM and bug file graph from past similar bug
reports. So based on the past source code entities which
developers changed at that time, developers can get links for
this similar bug.

There is another tool available for researchers called as
BOAT (A bug localization experimental platform) [16]. In
this web application researchers can use their newly proposed
bug localization techniques and compare them against the
existing techniques. This tool is already loaded with
thousands of bug reports and source code entities.
Developers and managers can use this application to reduce
their manual efforts for bug localization and hence decrease
the maintenance cost. Still bug localization is in its
preliminary stage as it has not reached the level where it is
completely automated.

4. Future Scope for Bug localization to make

it automated completely

As of now still in industry bug localization is mainly done
manually. To use the full potential of bug localization the
scenario should be where majority of bug localization has
become automated. Now much research has been done on
what IR techniques needs to be used for bug localization. In

Paper ID: SUB1429 2837

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

this paper we have seen many IR based techniques, their
comparisons also seen research for classifiers and their
combinations. In section three we have seen some tools that
can be used by researchers to propose new techniques. The
future scope of this paper or conclusion we can say is there is
still many areas of research needs to be experimented as
addition of formal concept analysis[17], static analysis,
Relational Topic model [18], concept location need to fully
investigate many possible combination techniques but mainly
as the previous research suggests about classifiers we should
need to do research on hybrid techniques/combination
techniques as using two ,three methods for bug localization
as using combination of classifiers and along with that using
the Relational Topic Model along with using preprocessing
steps for bug reports and query expansion techniques and
removing noise from stack traces and code snippets. There
should be automated software that will have the combination
of all above mentioned techniques. It will ensure the 2-3
layers/2-3 projections simultaneously for achieving bug
localization and by then we can test and say it improves the
efficiency and hence decreases the maintenance cost. This
combination techniques and their feasibility together needs
more specific research.

References

[1] S.K. Lukins, N.A. Kraft, and L.H. Etzkorn, “Bug

Localization Using Latent Dirichlet Allocation,”
Information and Software Technology, vol. 52, no. 9, pp.
972-990, 2010

[2] A.T. Nguyen, T.T. Nguyen, J. Al-Kofahi, H.V. Nguyen,
and T.N.Nguyen, “A Topic-Based Approach for
Narrowing the Search Space of Buggy Files from a Bug
Report,” Proc. 26th Int’l Conf. Automated Software
Eng., pp. 263-272, 2011.

[3] S. Rao and A. Kak, “Retrieval from Software Libraries
for Bug Localization: A Comparative Study of Generic
and Composite Text Models,” Proc. Eighth Working
Conf. Mining Software Repositories, pp. 43-52, 2011.

[4] Lucia, F. Thug, D. Lo and L.Jaig, “Are faults
localizable?”, MSR, pp 74-77,2012.

[5] S. Thomas, M.Nagappan, D.Blostein,A.Hassan, “The
Impact of Classifier Configuration and Classifier
Combination on Bug Localization”, IEEE Transactions
on Software Engineering, vol. 39no. 10, pp. 1-2, 2013

[6] R.L. Glass, Facts and Fallacies of Software Engineering.
Addison-Wesley Professional, 2003

[7] R.W. Selby, “Enabling Reuse-Based Software
Development of Large-Scale Systems,” IEEE Trans.
Software Eng., vol. 31, no. 6 pp. 495-510, June 2005.

[8] C.D. Manning, P. Raghavan, and H. Schutze,
Introduction to Information Retrieval, vol. 1, Cambridge
Univ. Press Cambridge, 2008

[9] G. Salton, A. Wong, and C.S. Yang, “A Vector Space
Model for Automatic Indexing,” Comm. ACM, vol. 18,
no. 11, pp. 613-620,1975.

[10] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K.
Landauer, and R.Harshman, “Indexing by Latent
Semantic Analysis,” J. Am. Soc.Information Science,
vol. 41, no. 6, pp. 391-407, 1990.

[11] D.M. Blei, A.Y. Ng, and M.I. Jordan, “Latent Dirichlet
Allocation,”J. Machine Learning Research, vol. 3, pp.
993-1022, 2003.

[12] M. Blei and J.D. Lafferty, “Topic Models,” Text
Mining:Classification, Clustering, and Applications, pp.
71-94. Chapman &Hall, 2009.

[13] R. Arnold and S. Bohner, “Impact Analysis—Towards a
Framework for Comparison,” Proc. Int’l Conf. Software
Maintenance, pp. 292-301, 1993.

[14] Ferdian Thug, “Bug Localizer: Integrated tool support
for bug localization”[,pp. 767-770, FSE 2014
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
2014.

[15] J. Zhou, H. Zhang, and D. Lo, "Where Should the Bugs
[16] Be Fixed?—More Accurate Information Retrieval-Based

Bug Localization Based on Bug Reports," Proc. 34th
Int'l Conf. Software Eng., pp. 14-24, June 2012.

[17] Xinyu Wang, "BOAT: An Experimental Platform for
Researchers to comparatively and reproducibly evaluate
bug localization techniques",ICSE Companion, pp. 572-
575, 2014

[18] D. Poshyvanyk and A. Marcus, “Combining Formal
Concept Analysis with Information Retrieval for
Concept Location in Source Code,” Proc. 15th Int’l
Conf. Program Comprehension, pp. 37-48, 2007.

[19] J. Chang and D.M. Blei, “Relational Topic Models for
Document Networks,” Proc. 12th Int’l Conf. Artificial
Intelligence and Statistics,pp. 81-88, 2009.

Author Profile

Dhanashree Pathak received B.E. from Walchand
Engineering College, Sangli in 2001. After graduation
Dhanashree was associated with TKTE’s Engineering
College in capacity of associate professor. From Year
2005 to 2013, she was handling various assignments

with software testing, product services and was associated with
reputed IT services companies in India as well as in US. Since June
2013 she is associated with G.S.Moze Engineering College as
associate professor for computer engineering department.

Srinu Dharavath is B Tech in Computer from GEIT
and M Tech in AI from Hyderabad University. He is
currently associated with G.S. Moze Engineering
college as Associate professor.

Paper ID: SUB1429 2838

http://creativecommons.org/licenses/by/4.0/�

	Introduction
	Bug, Bug Life Cycle, Bug Localization

	Information Retrieval Models For Bug Localization
	Vector Space Model (VDM)
	Latent Symantic Indexing
	Latent Dirichlet Allocation (LDA)

	Practical Better Ways for Bug Localization for Researchers
	So far we have seen concept of bug localization and how it can be done with various IR techniques, how we can improve it with right classifier configurations and should combine them in most effective way to accelerate the time and efforts for finding ...
	There is another tool available for researchers called as BOAT (A bug localization experimental platform) [16]. In this web application researchers can use their newly proposed bug localization techniques and compare them against the existing techniqu...

	Future Scope for Bug localization to make it automated completely

