
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Survey Paper on Load Rebalancing for Distributed
File Systems in Clouds

Juhi Shah1, D. N. Rewadkar2

1RMD Sinhgad School of Engineering, Warje, Pune - 411058, India

2RMD Sinhgad School of Engineering, Head of the Computer Department

Abstract: Distributed file systems (DFS) are key building blocks for cloud computing applications based on the MapReduce
programming paradigm. In Distributed file systems (DFS), nodes simultaneously serve computing and storage functions; a file is
partitioned into a number of chunks and allocated in distinct nodes so MapReduce tasks can be performed in parallel over the nodes.
And in a cloud failure is the norms/files, and nodes/files may be upgraded, replaced, added in the system. Files can also be dynamically
created, deleted, and updated/appended. However, this results in load imbalance in a distributed file system (DFS); that is; the file
chunks are not distributed as uniformly as possible among the nodes/files. Emerging distributed file systems in production systems
strongly depend on the central node for chunk reallocation/migration. And this dependence is clearly inadequate in a large-scale,
failure-prone environment because of the central load balancer is put under considerable workload that is linearly scaled with the
system size. This may thus become the performance bottleneck and the single point of failure in DFS. In this paper, a fully distributed
load rebalancing algorithm is used to present to cope with the load imbalance problem. Our algorithm is compared against a centralized
approach in a production system and a competing distributed solution presented in the literature (related work). The simulation results
indicate that our proposal system is comparable with the existing centralized approach to and considerably outperforms the prior
distributed algorithm in terms of load imbalance factor, movement cost, and algorithmic overhead.

Keywords: Load balance, Distributed File Systems, Cloud, Distributed Hash Table, MapReduce

1. Introduction

In Cloud computing, the number of computers that are
connected using communication network. The notation of
cloud indicates that internet is mandatory to perform the
various cloud operations i.e. to create append/update, delete,
and replace. It is used in IT-companies to share information
and resources with the all users on network. There are
various characteristics of cloud i.e. Scalable, on demand
service, Versatile, User centric, Powerful, Platform
independent etc. In cloud three technologies are included the
Virtualization, MapReduce programming, and distributed
file systems for the data storage purpose.

Distributed file system (DFS) is classical model of file
system that is used in the form of chunks for cloud
computing. Cloud application is based on the MapReduce
programming used in distributed file system (DFS).
MapReduce is the master-slave architecture in Hadoop.
Master act like Namenode and Slave act like Datanode.
Master takes large problem, divides it into the sub problem
and assigns it to worker node i.e. to multiple slaves to solve
problem individually. InDistributed file system, a large file is
divided into number of chunks and allocates each chunk to
separate node to perform MapReduce function parallel over
each node. For example in word count application it
identifies the occurrences of each distinct word in large file.
In this application a large file is divided into fixed-size
chunks (parts) and assigns each chunk (parts) to different
cloud storage node. Then each storage node calculates the
occurrences of each distinct word by scanning or parsing its
own chunk. Then give its result to master to calculate the
final result. In distributed file system, the load of each node
is directly proportional to number of file chunks/parts that
node consists. As the increase in storage and network, load
balancing is the main issue in the large scale distributed

systems. Load should be balance over multiple nodes to
improve system performance, resource utilization, response
time, cost and stability. Load balancing is divided into two
categories: static and dynamic. In static load balancing
algorithm, it does not consider the previous behavior of a
node while distribute the load. But in case of dynamic load
balancing algorithm, it checks the previous behavior of node
while distribute the load. In cloud, if number of storage
nodes, number of files and assesses to that file increases then
the central node (master in MapReduce) becomes bottleneck.
The load rebalancing task is used to eliminate the load on
central node. In load balancing algorithm, storage nodes are
structured over network based on the distributed hash table
(DHT); each file chunk having rapid key lookup in DHTs, in
that unique identifier is assign to each file chunk [1]. DHTs
enable nodes to self-recognize and repair while it constantly
offers lookup functionality in node. Here aim is to reduce the
movement cost which is caused by load rebalancing of nodes
to maximize the network bandwidth. Each Chunkserver first
find whether it is light node or heavy node without global
knowledge of node. The numbers of file chunks are migrated
from heavy node to light node to balance their load. This
process repeats until all heavy nodes becomes the light
nodes. To overcome this load balancing problem each node
perform load rebalancing algorithm independently without
global knowledge about load of all nodes.

2. Some of the Frameworks

2.1 The Apache Foundation’s Hadoop Distributed File
System (HDFS) and MapReduce

Engine comprises a distributed computing infrastructure
inspired by Google MapReduce and the Google File System
(GFS). The Hadoop framework allows processing of massive
(bulky) data sets with distributed computing techniques by

Paper ID: SUB14222 2993

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

leveraging large numbers of physical hosts. However,
hadoop’s use is spreading far beyond its open source search
engine roots. Also the Hadoop frame-work is being offered
by “Platform as a Service” cloud computing providers.
Hadoop is made up of two primary components. These
components are the Hadoop Distributed File System (HDFS)
and the MapReduce engine and HDFS is made up of
geographically distributed Data Nodes and Access to these
Data Nodes is coordinated by a service called the Name
Node. Data Nodes communicate over the network in order to
rebalance data and en-sure data is replicated throughout the
cluster. The MapReduce engine is made up of two main
components. Users submit jobs to a Job Tracker which then
distributes the task to Task Trackers as physically close to
the required data as possible While these are the primary
components of a Hadoop cluster there are often other
services running in a Hadoop cluster such as a workflow
manager.

2.2 Amazon Elastic MapReduce

Amazon Elastic MapReduce (Amazon EMR) is a web
service that makes it easy to quickly and cost-effectively
process vast amounts of data. Amazon EMR uses Hadoop,
an open source framework, to distribute your data and
processing across a resizable cluster of Amazon EC2
instances. Amazon EMR is used in a variety of applications,
including log analysis, web indexing, data warehousing,
machine learning, financial analysis, scientific simulation,
and bioinformatics. A customer launches millions of
Amazon EMR clusters every year.

3. Literature Survey

Distributed Hash Tables are key building block for variety of
distributed applications. It uses the hashing approach and
both the keys and peers are hashed onto a 1D ring. After that
Keys are then assigned to the nearest peer in the clockwise
direction. Servers connected to their neighbors in the ring
and searching for a key reduces to traversing ring this result
a considerable load imbalance. One of the solution is the use
of virtual peers is that for each peers and assigning number
of virtual peers. In this case a large size request may not be
processed because of the tightly bounded expected value and
Substitute solution is that power of two choice paradigms. In
this paradigm use standard hashing scenarios using bins to
reduce or balanced the load. Less shared routing information
stored at each peer. [2] The use of range partitioning can
make partitioning a dynamic relation across a large number
of disks/nodes. Range portioning is frequently popular in
large scale parallel as well as peer-to-peer databases. Load
balancing is necessary in such scenarios to eliminate skew.
This introduces asymptotically optimal online load-balancing
algorithms that guarantee a constant imbalance ratio. The
data movement cost per tuple insert or delete is constant, and
was shown to be close to 1 in experiments. Advantages are
Decentralized System, Automatically performs all
operations, Avoid Data Skew. One of the disadvantages is
that it take too much of time to complete the task. [3] Antony
Rowstron et al presents the design and evaluation of Pastry,
distributed object location, a scalable, and routing scheme
for wide-area peer-to-peer applications. Pastry performs
application level routing and object location in a potentially

very large overlay network of nodes which connected via the
Internet. In application level routing, different applications
will have different requirements according to the routing is
performed. For example video conferencing requires high
requirements, if any one of use this path the requirement will
decreases and hence leads to complete no sharing of path. In
the case of low requirement application such as email and
text messages gives us a busy path. According to the
requirement application the routing is performed. It can be
used to support a wide range of peer-to-peer applications like
global data storage, global data sharing, and naming.
Advantages are Decentralized System, Automatically
performs all operations and one of the disadvantages is that
Every time lookup operation is needed. [4]

David R. Karger et al have given several provably efficient
load balancing protocols for distributed data storage in P2P
systems. Algorithms are simple, easy to implement, so its
obvious next research step should be a practical evaluation of
these schemes. In addition, several concrete open problems
follow from our work. First, it might be a possible to further
improve the consistent hashing scheme. It uses the hashing
approach; both the keys and peers are hashed onto a one
dimensional ring and Keys are then assigned to the nearest
peer in the clockwise direction. Server is connected to their
neighbors in the ring and searching for a key reduces to
traversing ring and this result is considerable load imbalance.
One of the solutions is the use of virtual peers and this is for
each peers and assigning number of virtual peers. In this case
large size request may not be processed because of the
tightly bounded expected value and Second, our range search
data structure does not easily generalize into more than one
order. For example when storing music files, one might want
to index them by both artist and song title, allowing lookups
according to two orderings. It provides efficient load
balancing but hard to achieve. [5] Jeffrey Dean et al
introduce the MapReduce programming model has been
successfully used at Google for many different purposes.
Attribute this success to several reasons. First, the model is
easy to use, even for programmers without experience with
parallel and distributed systems, since it hides the details of
parallelization, fault-tolerance, locality optimization, and
load balancing. Second, a large variety of problems are
easily expressible as MapReduce computations. MapReduce
is the programming model and associated implementation for
processing and generating large data sets. Users specify a
map function that processes a key-value pair to generate a set
of intermediate key-value pairs and reduce function that
merges all intermediate value associated with the same
intermediate key [6]. It has been emerging as a popular
paradigm for data intensive computing in clustered
environment such as enterprise data centers and cloud which
solves parallel problems using large number of computers
collectively called as cluster. Advantages are highly scalable,
Can compute large data set, but it is Expensive, More time to
compute the reducing functions.

The different qualitative metrics or parameters that are
considered important for load balancing in cloud computing
[10] are Throughput, Associated overhead, Fault tolerant,
Migration time, Response time, Resource utilization,
Scalability, and Performance. The major concerns of cloud
computing that is Load balancing. The goal of load balancing

Paper ID: SUB14222 2994

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

is to increase client satisfaction and maximize resource
utilization and substantially increase the performance of the
cloud system thereby reducing the energy consumed and the
carbon emission rate. Also the purpose of load balancing is
to make every processor or machine perform the same
amount of work throughout which helps in increasing the
throughput, minimizing the response time and reducing the
number of job rejection. Comparisons of papers are shown in
the table 1 bellow.

Table 1: Comparison table
Section Method Advantage Disadvantage

Pastry:
Scalable,
distributed
object
location and
routing for
large-scale
P2P systems

Distributed
File System

Decentralized
System
Automatically
performs all
the operations

Every time
lookup
operation is
needed

Simple
Efficient
Load
Balancing
Algorithms
for Peer to
Peer Systems

Hashing
scheme and
Range Search
DS

Provide
efficient load
balancing

Difficult to
achieve

Online
Balancing of
Range-
Partitioned
Data with
Applications
to Peer to
Peer

Range
Partitioning

Decentralized
System
Automatically
performs all
operations
Avoid Data
Skew

Take too
much of time
to complete
the task

Simple Load
Balancing for
DHT

Power of two
choice

Can take more
number of
keys

Less shared
routing
information

MapReduce:
Simplified
Data
Processing
on Large
Clusters

MapReduce
Programming
model

Highly
scalable
Can compute
large data set

Expensive
More time to
compute the
reducing
function

MapReduce: Simplified Data Processing On Large
Clusters [6]

MapReduce is the programming model used in
implementation for processing and generating large
scaledatasets. It is used at Google for many different
purposes. Here map and reduce functions are used. Map
function generate set of intermediate key pairs and reduce
function merges all intermediate key values associated with
same intermediate key. The map and reduce function allows
to perform parallelize operation easily and re-execute the
mechanism for fault tolerance. At the run-time, system takes
care of detail information of partitioning the input data,
schedule the program execution across number of available
machines, handling failures and managing
intercommunication between machines.

In distributed file system nodes simultaneously perform
computing and storage operations. The large file in
partitioned into number of chunks and allocate it to distinct
nodes to perform MapReduce task parallel over
nodes.Typically, MapReduce task processes on many
terabytes of data on thousands of machines. This model is
easy to use; it hides the details of parallelization,
optimization, fault-tolerance and load balancing. MapReduce
is used for Google’s production Web search service, machine
learning, data mining, etc. Using this programming model,
redundant executionused to reduce the impact of slow
machines, handle machine failure as well as data loss.

Load Balancing Algorithm for DHT based structured
Peer to Peer System [8]

Peer to peer system have an emerging application in
distributed environment. As compared to client-
serverarchitecture, peer to peer system improved resource
utilization by making use of unused resources over network.
Peer to peer system uses Distributed Hash Table (DHTs) as
an allocation mechanism. It perform join, leave and update
operations. Here load balancing algorithm uses the concept
of virtual server to temporary storage of data. Using
theheterogeneous indexing, peers balanced their loads
proportional to their capacities. In this, decentralized load
balance algorithm construct network to manipulate global
information and organized in tree shape fashion. Each peer
canindependently compute probability distribution capacities
of participating peers and reallocate their load in parallel.

4. Conclusion

The proposal strives to balance the loads of nodes/norms and
it reduce the demanded movement cost is much as possible
while taking advantage of physical network locality and node
heterogeneity in cloud. In the absence of representative real
workloads such as the distributions of file chunks in a large
scale storage system in the public domain that we have
investigated the performance of the proposal and compared it
against competing algorithms through the synthesized
probabilistic distributions of file chunks/parts. Emerging a
distributed file systems (DFS) in production systems strongly
depend on the central node for chunk the
reallocation.However, this dependence is clearly inadequate
in a large-scale and failure-prone environment because the
central load balancer is put under considerable workload that
is linearly scaled with the system size and this may become
the performance bottleneck and the single point of failure for
node. The algorithm is compared against a centralized
approach in a production system and a competing distributed
solution is presented in the literature. The simulation results
indicate that the proposal is comparable with the existing
centralized approach and considerably outperforms the prior
distributed algorithm in terms of load imbalance factor,
movement cost, and algorithmic overhead. A fully
distributed load rebalancing algorithm is presented to cope
with the load imbalance problem. In future increase
efficiency and effectiveness of design are further validated
by analytical models and a real implementation with a small-
scale cluster environment. Highly desirable to improve the
network efficiency by reducing each user’s download time.

Paper ID: SUB14222 2995

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

References

[1] Hung-Chang Hsiao, Member, IEEE Computer Society,

Hsueh-Yi Chung, HaiyingShen, Member, IEEE, and
Yu-Chang Chao, proposed a “Load Rebalancing for
Distributed File Systems in Clouds” IEEE transaction
onparallel and distributed systems, vol. 24, no. 5, May
2013

[2] J.W. Byers, J. Considine, and M. Mitzenmacher,
“Simple Load Balancing for Distributed Hash Tables,”
Proc. First Int’l Workshop Peer-to-Peer Systems (IPTPS
’03), pp. 80-87, Feb. 2003.

[3] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online
Balancing of Range-Partitioned Data with Applications
to Peer-to-Peer Systems,” Proc. 13th Int’l Conf. Very
Large Data Bases (VLDB ’04), pp. 444-455, Sept. 2004.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable,
Distributed Object Location and Routing for Large-
Scale Peer-to-Peer Systems,” Proc. IFIP/ACM Int’l
Conf. Distributed Systems Platforms Heidelberg, pp.
161-172, Nov. 2001.

[5] D. Karger and M. Ruhl, “Simple Efficient Load
Balancing Algorithms for Peer-to-Peer Systems,” Proc.
16th ACM Symp. Parallel Algorithms and Architectures
(SPAA ’04), pp. 36-43, June 2004.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters,” Proc. Sixth Symp.
Operating System Design and Implementation (OSDI
’04), pp. 137-150, Dec. 2004.

[7] AartiKhetan, VivekBhushan and Subhash Chand Gupta,
“A Novel Survey On Load Balancing In Cloud
Computing,” Proc. International Journal Of Engineering
Research & Technology (IJERT) ISSN: 2278-0181, Vol.
2 Issue 2, February 2013.

[8] ChahitaTanak, Rajesh Bharati “Load Balancing
Algorithm for DHT Based Structured Peer to
PeerSystem”, International Journal of Emerging
Technology and Advanced Engineering (ISSN 2250-
2459, ISO9001:2008 Certified Journal, Volume 3, Issue
1, January 2013)

Paper ID: SUB14222 2996

http://creativecommons.org/licenses/by/4.0/�

