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Abstract: Data cube computation is an essential task in data warehouse implementation. Data cube analysis is important tool for 

analyzing multidimensional data. The pre-computation of all or part of a data cube can greatly reduce the response time and enhance 

the performance of on-line analytical processing. However, such computation is challenging since it may require substantial 

computational time and storage space. We introduce general concepts and computation strategies relating to cube materialization. So, 

here we explore the various methods for data cube computation, several strategies of cube materialization and also specific  algorithms 

for computations’ such as BUC, Star Cubing,  Multiway array aggregation, the computation of shell fragments and parallel algorithms. 

But these techniques have limitation so we introduce MapReduced based MR Cube approach. It is one of the efficient methods among 

various cube computation methods. 
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1. Introduction 
 

A data warehouse is a subject oriented, united, non volatile 

and time-variant collection of data organized in support of 

management decision-making. Several factors distinguish 

data warehouses from operational databases. Because the two 

systems provides quite different functionalities and require 

different kinds of data, it is necessary to maintain data 

warehouses separately from operational database. 

 

The Data cube is the N-dimensional generalization of simple 

aggregate functions, which is introduced by Grey[1]. In 

OLAP systems, a data cube is a way of organizing data in N-

dimensions so as to perform analysis over some measure of 

interest. Measure is a term used to refer numerical facts that 

can be algebraic (SUM, COUNT etc.) or non-algebraic 

(DISTINCT, TOP-K etc.).The data cube is used for 

conveniently supporting multiple aggregates in OLAP 

databases. It requires computing group-bys on all possible 

combinations of a list of attributes, and is equivalent to the 

union of a number of standard group-by operations. 

  

The basic cube problem is to compute all of the aggregates as 

efficiently as possible. Concurrently computing the 

aggregates offers the opportunity to share partitioning and 

aggregation costs between various group bys. The chief 

difficulty is that the cube problem is exponential in the 

number of dimensions. In addition, the size of each group-by 

depends upon the cardinality of its dimensions. As many 

techniques are proposed for efficient cube computation. 

 

Our paper is organized as follows: Firstly explanation of 

various priory concepts related to data cube  and various 

methods of cube computation  Next is Limitations of these 

method. Then MapReduce based Approach used for data 

cube materialization and mining over massive data sets using 

important subset of holistic measure. And last the conclusion 

of our study 

 

 

 

2. Preliminary Concepts 
 

Data cubes facilitate the on-line analytical processing of 

multidimensional data. To compute data cubes in advance, so 

that they are handy and readily available for query 

processing, this section contrasts full cube materialization 

(i.e., precomputation) versus various strategies for partial 

cube materialization. 

 

Cube Materialization 

 

Full Cube, Iceberg Cube, Closed Cube, and Shell Cube 

 

 
Figure 1: Lattice of cuboids, making up a 3-D data cube with 

the dimensions A, B, and C 

 

Figure 1 shows a 3-D data cube for the dimensions A, B, and 

C, and an aggregate measure, M. A data cube is a lattice of 

cuboids. Each cuboid represents a group-by. ABC is the base 

cuboid, containing all three of the dimensions. A cell in the 

base cuboid is a base cell. A cell from a non-base cuboid is 

an aggregate cell. An aggregate cell aggregates over one or 

more dimensions, where each aggregated dimension is 

indicated by a “*" in the cell notation. 

 

Full Cube:  

 

In order to ensure fast on-line analytical processing, it is 

sometimes desirable to precompute the full cube, i.e., all the 
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cells of all of the cuboids for a given data cube. This, 

however, is exponential to the number of dimensions. 

 

Iceberg Cube: 

 

In order to save processing time and disk space and for more 

focused analysis. The cells that cannot pass the threshold are 

likely to be too trivial to warrant further analysis. Such 

partially materialized cubes are known as iceberg cubes. 

“iceberg" is the potential full cube including all cells. An 

iceberg cube can be specified with an SQL query, 

 

Closed Cube: 

 

A closed cube is a data cube consisting of only closed cells. 

 

Shell Cube: 

 

Another strategy for partial materialization is to precompute 

only the cuboids involving a small number of dimensions, 

such as 3 to 5. These cuboids form a cube shell for the 

corresponding data cube. 

 

General Strategies for Cube Computation 

 

With different kinds of cubes as described above, we can 

expect that there are a good number of methods for efficient 

computation. In general, there are two basic data structures 

used for storing cuboids. Relational tables are used as the 

basic data structure for the implementation of relational 

OLAP (ROLAP), while multidimensional arrays are used as 

the basic data structure in multidimensional OLAP 

(MOLAP). 

 

Optimization Technique 1: Sorting, hashing, and grouping.  

 

Sorting, hashing, and grouping operations should be applied 

to the dimension attributes in order to reorder and cluster 

related tuples. In cube computation, aggregation is performed 

on the tuples (or cells) that share the same set of dimension 

values. Thus it is important to explore sorting, hashing, and 

grouping operations to access and group such data together to 

facilitate computation of such aggregates. 

 

This technique can also be further extended to perform 

shared-sorts, i.e., sharing sorting costs cross multiple cuboids 

when sort-based methods are used, or to perform shared-

partitions, i.e., sharing the partitioning cost across multiple 

cuboids when hash-based algorithms are used. 

 

Optimization Technique 2: Simultaneous aggregation and 

caching intermediate results.  

 

In cube computation, it is efficient to compute higher-level 

aggregates from previously computed lower-level aggregates, 

rather than from the base fact table. Moreover, simultaneous 

aggregation from cached intermediate computation results 

may lead to the reduction of expensive disk I/O operations. 

 

Optimization Technique 3: Aggregation from the smallest-

child, when there exist multiple child cuboids.  

 

When there exist multiple child cuboids, it is usually more 

efficient to compute the desired parent (i.e. more generalized) 

cuboid from the smallest, previously computed child cuboid. 

 

In the following sections, we introduce several popular 

methods for efficient cube computation that explore some or 

all of the above optimization strategies. 

 

3. Different Method for Cube Computation 
 

1. General Cube Computation with Optimizing 

 

Techniques: Multi- Dimensional aggregate computation 

[2] 

 

Author’s extended basic sort based and hash based methods 

to compute multiple group-bys by incorporating 

optimizations techniques like smallest-parent, cache-results, 

Amortize-scans, share-sorts and share-partitions. 

 

Smallest-parent: This optimization aims at computing a 

group by from the smallest previously computed group-by. In 

this, each group-by can be computed from a number of other 

group bys. 

 

Cache-results: This optimization aims at caching (in 

memory) the results of a group-by from which other group 

bys are computed to reduce disk I/O. 

 

Amortize-scans: This optimization aims at amortizing disk 

reads by computing as many group-bys as possible, together 

in memory. 

 

Share-sorts: This optimization is specific to the sort-based 

Algorithms and aims at sharing sorting cost across multiple 

group bys. 

 

Share-partitions: This optimization is specific to the hash 

based algorithms. When the hash table is too large to fit in 

memory, data is partitioned and aggregation is done for each 

partition that fits in memory. We can save on partitioning 

cost by sharing this cost across multiple group bys. 

 

4. Bottom-Up Approach: Bottom-Up 

Computation (BUC) [4] 
 

BUC is an algorithm for sparse and iceberg cube 

computation. BUC uses the bottom-up approach that allows 

pruning unnecessary computation by recurring to A-priori 

pruning strategy. if a given cell does not satisfy minsup, then 

no descendant will satisfy minsup either. The Iceberg cube 

problem is to compute all group-bys that satisfy an iceberg 

condition. First, BUC partitions dataset on dimension A, 

producing partitions a1, a2, a3, a4.Then, it recurses on 

partition a1,the partition a1 is aggregated and BUC produces 

<a1,*,*,*>. Next, it partitions a1 on dimension B. It produces 

<a1, b1,*,*> and recurses on partition a1, b1. Similarly, it 

produces <a1, b1, c1,*> and then <a1, b1, c1, d1>. Now, it 

returns from recursion and produces <a1, b1, c1, d2> etc. 

After processing partition a1, BUC processes partition a2 and 

so on as shown in Figure 2 below. 
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Figure 2: BUC Partitioning 

 

BUC is sensitive to data skew and to the order of the 

dimensions processing first most discriminating dimensions 

improves performance. It shares partitioning costs.BUC does 

not share computation between parent and child cuboids. 

 

5. Top-Down Approach: Multi-Way Array 

Aggregation [3] 
 

The computation starts from the larger group-bys and 

proceeds towards the smallest group-bys. As show in below 

figure; 

 

 
Figure 3: Top-Down Approach 

 

In this, a partition-based loading algorithm designed and 

implemented to convert a relational table or external load file 

to a (possibly compressed) chunked array. There are no direct 

tuple comparisons. It perform Simultaneous aggregation on 

multiple dimensions. In MultiWay array aggregation 

Intermediate aggregate values are re-used for computing 

ancestor cuboids .It cannot do Apriori pruning means it 

cannot perform iceberg cube optimization. 

 

In Multi-Way array aggregation, it partition arrays into 

chunks (a small sub cube which fits in memory). It uses 

compressed sparse array addressing: (chunk_id, offset) and 

compute aggregates in ― “multiway” by visiting cube cells 

in the order which minimizes the # of times to visit each cell, 

and reduces memory access and storage cost. 

 

What is the best traversing order to do multi-way 

Aggregation? 

 

Method: the planes should be sorted and computed according 

to their size in ascending order 

Idea: keep the smallest plane in the main memory, fetch and 

compute only one chunk at a time for the largest plane. 

 

Limitation of the method: computing well only for a small 

number of dimensions. If there are a large number of 

dimensions, top-down computation and iceberg cube 

computation methods can be explored. 

 

6. Mixed Approach: Star Cubing [8] 
 

Star Cubing integrate the top-down and bottom-up methods. 

It explores shared dimensions. E.g., dimension A is the 

shared dimension of ACD and AD. ABD/AB means cuboid 

ABD has shared dimensions AB. Star cubing allows for 

shared computations .e.g., cuboid AB is computed 

simultaneously as ABD. Star Cubing aggregate in a top down 

manner but with the bottom-up sub-layer underneath which 

will allow Apriori pruning. Its shared dimensions grow in 

bottom-up fashion. As shown in Fig 4. 

 

 
Figure 4: An Integrating Method: Star Cubing 

 

7. Parallel Approaches [7] 
 

Parallel Algorithms are introduced for cube computation over 

small PC clusters. Algorithm BPP (Breadth-first Writing, 

Partitioned, Parallel BUC), in which the dataset is not 

replicated, but is range partitioned on an attribute basis. The 

output of cuboids is done in a breadth-First fashion, as 

opposed to the depth-first writing that BUC do. In Depth 

First writing, cells may belong to different cuboids. For 

example, the cell a1 belongs to cuboid A, the cell a1b1 to 

cuboid AB, and the cells a1b1c1 and a1b1c2 belong to ABC. 

The point is that cuboids is scattered. This clearly incurs a 

high I/O over-head. It is possible to use buffering to help the 

scattered writing to the disk. However, this may require a 

large amount of buffering space, thereby reducing the amount 

of memory available for the actual computation. 

Furthermore, many cuboids may need to be maintained in the 

buffers at the same time, causing extra management 

overhead. In BPP, this problem is solved by breadth-first 

writing, implemented by first sorting the input dataset on the 

“prefix” attributes. Breadth-First I/O is a significant 

improvement over the scattering I/O used in BUC. 

 

Another Parallel algorithm PT (Partitioned Tree) works with 

tasks that are created by a recursive binary division of a tree 

into two sub trees having an equal number of nodes. In PT, 

there is a parameter that controls when binary division stops. 

PT tries to exploit a affinity scheduling. During processor 

assignment, the manager tries to assign to a worker processor 

a task that can take advantage of prefix affinity based on the 

root of the subtree.PT is top-down. But interestingly, because 
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each task is a sub tree, the nodes within the sub tree can be 

traversed / computed in a bottom up fashion. In fact, PT calls 

BPP-BUC, which offers breadth-first writing, to complete the 

processing. Algorithm PT load-balances by using binary 

partitioning to divide the cube lattice as evenly as possible PT 

is the algorithm of choice for most situations. 

 

8. Limitations of Existing Methods 
 

There are three main limitations in the existing techniques: 

 

1. They are designed for a single machine or clusters with 

small number of nodes. It is difficult to process data with 

a single (or a few) machine(s) at many companies where 

data storage is huge (e.g., terabytes per day) 

2. Many of the techniques use the algebraic measure and 

use this property to avoid processing groups with a large 

number of tuples. This allows parallelized aggregation of 

data subsets whose results are then post processed to 

derive the final result. Many important analyses over 

logs, involve computing holistic (i.e., nonalgebraic) 

measures. Holistic measures pose significant challenges 

for distribution. 

3. Existing techniques failed to detect and avoid extreme 

data skew. Extension of cube analysis usage can be 

avoided by these limitations.  

 

There is need of technique to compute cube efficiently in 

parallel and identification of interesting cube groups on 

important subset of holistics measures over massive data sets. 

Hadoop based Mapreduce [8] environment handles large 

amount of data in clusters with thousands of machines. So 

MapReduce based technique which supports holistic 

measures is best option for data analysis. It helps to detect 

extreme data skew problem. 

 

9. MapReduce Based Approach-MR Cube 
                     

MR-Cube, a MapReduce-based algorithm was introduced 

[13] for efficient cube computation and identification of 

interesting cube groups on holistic measures. Here each node 

in the lattice represents one possible grouping/aggregation. 

We use the term cube region to denote a node in the lattice 

and the term cube group to denote an actual group belonging 

to the cube region. First we begin by identifying a subset of 

holistic measures that are easy to compute in parallel than an 

arbitrary holistic measure. We call them partially algebraic 

measures. This notion is inspired by common ad hoc 

practices for computing a single holistic measure from an 

extremely large number of data tuples. 

 

 
Figure 5: Proposed System Architecture 

 

MR-Cube, a MapReduce-based algorithm was introduced 

[13] for efficient cube computation and identification of 

interesting cube groups on holistic measures. Here each node 

in the lattice represents one possible grouping/aggregation. 

We use the term cube region to denote a node in the lattice 

and the term cube group to denote an actual group belonging 

to the cube region. First we begin by identifying a subset of 

holistic measures that are easy to compute in parallel than an 

arbitrary holistic measure. We call them partially algebraic 

measures. This notion is inspired by common ad hoc 

practices for computing a single holistic measure from an 

extremely large number of data tuples. 

 

Then two techniques needed for effectively distribute the data 

and computation workload. Value Partitioning is used for 

effectively distribute data for that we are going to run Naïve 

Algorithm [12].we want to perform value partitioning only 

on groups that are likely to be reducer unfriendly and 

dynamically adjust the partition factor. We adopt a sampling 

approach where we estimate the reducer un friendliness of 

each cube region based on the number of groups it is 

estimated to have, and perform partitioning for all groups 

within the list of cube regions (a small list) that are estimated 

to be reducer unfriendly. 

 

For effectively distribute computation we use partitioning 

technique called Batch Area. Each batch area represents a 

collection of regions that share a common ancestor region. 

 

The combined process of identifying and value partitioning 

unfriendly regions followed by the partitioning of regions 

into batches is referred to as ANNOTATE .So lattice formed 

is annotated lattice. 

 

In MR-Cube algorithm, the MR-CUBE-MAP emits key: 

value pairs for each batch area. In required, keys are 

appended with a hash based on value partitioning, the shuffle 

phase then sorts them by key. The BUC Algorithm is run on 

each reducer, and the cube aggregates are generated. All 

value partitioned groups need to be aggregated to compute 

the final measures. 
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After materializing the cube (i.e., computing measures for all 

cube groups satisfying the pruning conditions) we can 

identify interesting cube groups for that cube mining 

algorithm is used which takes the partially materialized cube. 

By using the parent group label as the primary key and the 

group label as the secondary key, measures are clustered 

based on the parent group level, while ensuring sort endless 

on the group label. This allows a one-pass discovery of the 

most interesting group for each parent 

 

Group-dimension combination, Using above mentioned 

approach now it is now feasible to perform both large scale 

cube materialization and mining in the same distributed 

framework. 

 

10. Conclusion 
 

Efficient Cube computation is important problem in data 

cube technology. So many techniques are used for computing 

cube like Multiway array aggregation, BUC, Star Cubing, the 

computation of shell fragments and parallel algorithms. BUC 

is sensitive to skew in the data; the performance of BUC 

degrades as skew increases. However, unlike MultiWay, the 

result of a parent cuboid does not help compute that of its 

children in BUC. For the full cube computation, if the dataset 

is dense, Star Cubing performance is comparable with 

MultiWay, and is much faster than BUC. If the data set is 

sparse, Star-Cubing is significantly faster than MultiWay and 

BUC, in most cases. Parallel algorithm like BPP and PT are 

designed for small PC clusters and therefore cannot take 

advantage of the MapReduce infrastructure. Proposed 

approach effectively distributes data and computation 

workload .Using important subset of holistic measures we are 

doing cube materialization and identifying interesting cube 

groups. 

 

MR-Cube algorithm efficiently distributes the computation 

workload across the machines and is able to complete cubing 

tasks at a scale where a previous algorithm fails. 
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