
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

MR Cube-One of the Efficient Method among

Various Cube Computation Methods

Madhuri S. Magar
1
, Jayshree L. Chaudhari

2

1JSPM’s Bhivrabai Sawant Institute of Technology and Research, Wagholi, Pune, Maharashtra, India
2JSPM’s Bhivrabai Sawant Institute of Technology and Research, Wagholi, Pune, Maharashtra, India

Abstract: Data cube computation is an essential task in data warehouse implementation. Data cube analysis is important tool for

analyzing multidimensional data. The pre-computation of all or part of a data cube can greatly reduce the response time and enhance

the performance of on-line analytical processing. However, such computation is challenging since it may require substantial

computational time and storage space. We introduce general concepts and computation strategies relating to cube materialization. So,

here we explore the various methods for data cube computation, several strategies of cube materialization and also specific algorithms

for computations’ such as BUC, Star Cubing, Multiway array aggregation, the computation of shell fragments and parallel algorithms.

But these techniques have limitation so we introduce MapReduced based MR Cube approach. It is one of the efficient methods among

various cube computation methods.

Keywords: Data cube, Cube Computation Methods, MR cube

1. Introduction

A data warehouse is a subject oriented, united, non volatile

and time-variant collection of data organized in support of

management decision-making. Several factors distinguish

data warehouses from operational databases. Because the two

systems provides quite different functionalities and require

different kinds of data, it is necessary to maintain data

warehouses separately from operational database.

The Data cube is the N-dimensional generalization of simple

aggregate functions, which is introduced by Grey[1]. In

OLAP systems, a data cube is a way of organizing data in N-

dimensions so as to perform analysis over some measure of

interest. Measure is a term used to refer numerical facts that

can be algebraic (SUM, COUNT etc.) or non-algebraic

(DISTINCT, TOP-K etc.).The data cube is used for

conveniently supporting multiple aggregates in OLAP

databases. It requires computing group-bys on all possible

combinations of a list of attributes, and is equivalent to the

union of a number of standard group-by operations.

The basic cube problem is to compute all of the aggregates as

efficiently as possible. Concurrently computing the

aggregates offers the opportunity to share partitioning and

aggregation costs between various group bys. The chief

difficulty is that the cube problem is exponential in the

number of dimensions. In addition, the size of each group-by

depends upon the cardinality of its dimensions. As many

techniques are proposed for efficient cube computation.

Our paper is organized as follows: Firstly explanation of

various priory concepts related to data cube and various

methods of cube computation Next is Limitations of these

method. Then MapReduce based Approach used for data

cube materialization and mining over massive data sets using

important subset of holistic measure. And last the conclusion

of our study

2. Preliminary Concepts

Data cubes facilitate the on-line analytical processing of

multidimensional data. To compute data cubes in advance, so

that they are handy and readily available for query

processing, this section contrasts full cube materialization

(i.e., precomputation) versus various strategies for partial

cube materialization.

Cube Materialization

Full Cube, Iceberg Cube, Closed Cube, and Shell Cube

Figure 1: Lattice of cuboids, making up a 3-D data cube with

the dimensions A, B, and C

Figure 1 shows a 3-D data cube for the dimensions A, B, and

C, and an aggregate measure, M. A data cube is a lattice of

cuboids. Each cuboid represents a group-by. ABC is the base

cuboid, containing all three of the dimensions. A cell in the

base cuboid is a base cell. A cell from a non-base cuboid is

an aggregate cell. An aggregate cell aggregates over one or

more dimensions, where each aggregated dimension is

indicated by a “*" in the cell notation.

Full Cube:

In order to ensure fast on-line analytical processing, it is

sometimes desirable to precompute the full cube, i.e., all the

Paper ID: SUB14206 2997

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

cells of all of the cuboids for a given data cube. This,

however, is exponential to the number of dimensions.

Iceberg Cube:

In order to save processing time and disk space and for more

focused analysis. The cells that cannot pass the threshold are

likely to be too trivial to warrant further analysis. Such

partially materialized cubes are known as iceberg cubes.

“iceberg" is the potential full cube including all cells. An

iceberg cube can be specified with an SQL query,

Closed Cube:

A closed cube is a data cube consisting of only closed cells.

Shell Cube:

Another strategy for partial materialization is to precompute

only the cuboids involving a small number of dimensions,

such as 3 to 5. These cuboids form a cube shell for the

corresponding data cube.

General Strategies for Cube Computation

With different kinds of cubes as described above, we can

expect that there are a good number of methods for efficient

computation. In general, there are two basic data structures

used for storing cuboids. Relational tables are used as the

basic data structure for the implementation of relational

OLAP (ROLAP), while multidimensional arrays are used as

the basic data structure in multidimensional OLAP

(MOLAP).

Optimization Technique 1: Sorting, hashing, and grouping.

Sorting, hashing, and grouping operations should be applied

to the dimension attributes in order to reorder and cluster

related tuples. In cube computation, aggregation is performed

on the tuples (or cells) that share the same set of dimension

values. Thus it is important to explore sorting, hashing, and

grouping operations to access and group such data together to

facilitate computation of such aggregates.

This technique can also be further extended to perform

shared-sorts, i.e., sharing sorting costs cross multiple cuboids

when sort-based methods are used, or to perform shared-

partitions, i.e., sharing the partitioning cost across multiple

cuboids when hash-based algorithms are used.

Optimization Technique 2: Simultaneous aggregation and

caching intermediate results.

In cube computation, it is efficient to compute higher-level

aggregates from previously computed lower-level aggregates,

rather than from the base fact table. Moreover, simultaneous

aggregation from cached intermediate computation results

may lead to the reduction of expensive disk I/O operations.

Optimization Technique 3: Aggregation from the smallest-

child, when there exist multiple child cuboids.

When there exist multiple child cuboids, it is usually more

efficient to compute the desired parent (i.e. more generalized)

cuboid from the smallest, previously computed child cuboid.

In the following sections, we introduce several popular

methods for efficient cube computation that explore some or

all of the above optimization strategies.

3. Different Method for Cube Computation

1. General Cube Computation with Optimizing

Techniques: Multi- Dimensional aggregate computation

[2]

Author’s extended basic sort based and hash based methods

to compute multiple group-bys by incorporating

optimizations techniques like smallest-parent, cache-results,

Amortize-scans, share-sorts and share-partitions.

Smallest-parent: This optimization aims at computing a

group by from the smallest previously computed group-by. In

this, each group-by can be computed from a number of other

group bys.

Cache-results: This optimization aims at caching (in

memory) the results of a group-by from which other group

bys are computed to reduce disk I/O.

Amortize-scans: This optimization aims at amortizing disk

reads by computing as many group-bys as possible, together

in memory.

Share-sorts: This optimization is specific to the sort-based

Algorithms and aims at sharing sorting cost across multiple

group bys.

Share-partitions: This optimization is specific to the hash

based algorithms. When the hash table is too large to fit in

memory, data is partitioned and aggregation is done for each

partition that fits in memory. We can save on partitioning

cost by sharing this cost across multiple group bys.

4. Bottom-Up Approach: Bottom-Up

Computation (BUC) [4]

BUC is an algorithm for sparse and iceberg cube

computation. BUC uses the bottom-up approach that allows

pruning unnecessary computation by recurring to A-priori

pruning strategy. if a given cell does not satisfy minsup, then

no descendant will satisfy minsup either. The Iceberg cube

problem is to compute all group-bys that satisfy an iceberg

condition. First, BUC partitions dataset on dimension A,

producing partitions a1, a2, a3, a4.Then, it recurses on

partition a1,the partition a1 is aggregated and BUC produces

<a1,*,*,*>. Next, it partitions a1 on dimension B. It produces

<a1, b1,*,*> and recurses on partition a1, b1. Similarly, it

produces <a1, b1, c1,*> and then <a1, b1, c1, d1>. Now, it

returns from recursion and produces <a1, b1, c1, d2> etc.

After processing partition a1, BUC processes partition a2 and

so on as shown in Figure 2 below.

Paper ID: SUB14206 2998

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: BUC Partitioning

BUC is sensitive to data skew and to the order of the

dimensions processing first most discriminating dimensions

improves performance. It shares partitioning costs.BUC does

not share computation between parent and child cuboids.

5. Top-Down Approach: Multi-Way Array

Aggregation [3]

The computation starts from the larger group-bys and

proceeds towards the smallest group-bys. As show in below

figure;

Figure 3: Top-Down Approach

In this, a partition-based loading algorithm designed and

implemented to convert a relational table or external load file

to a (possibly compressed) chunked array. There are no direct

tuple comparisons. It perform Simultaneous aggregation on

multiple dimensions. In MultiWay array aggregation

Intermediate aggregate values are re-used for computing

ancestor cuboids .It cannot do Apriori pruning means it

cannot perform iceberg cube optimization.

In Multi-Way array aggregation, it partition arrays into

chunks (a small sub cube which fits in memory). It uses

compressed sparse array addressing: (chunk_id, offset) and

compute aggregates in ― “multiway” by visiting cube cells

in the order which minimizes the # of times to visit each cell,

and reduces memory access and storage cost.

What is the best traversing order to do multi-way

Aggregation?

Method: the planes should be sorted and computed according

to their size in ascending order

Idea: keep the smallest plane in the main memory, fetch and

compute only one chunk at a time for the largest plane.

Limitation of the method: computing well only for a small

number of dimensions. If there are a large number of

dimensions, top-down computation and iceberg cube

computation methods can be explored.

6. Mixed Approach: Star Cubing [8]

Star Cubing integrate the top-down and bottom-up methods.

It explores shared dimensions. E.g., dimension A is the

shared dimension of ACD and AD. ABD/AB means cuboid

ABD has shared dimensions AB. Star cubing allows for

shared computations .e.g., cuboid AB is computed

simultaneously as ABD. Star Cubing aggregate in a top down

manner but with the bottom-up sub-layer underneath which

will allow Apriori pruning. Its shared dimensions grow in

bottom-up fashion. As shown in Fig 4.

Figure 4: An Integrating Method: Star Cubing

7. Parallel Approaches [7]

Parallel Algorithms are introduced for cube computation over

small PC clusters. Algorithm BPP (Breadth-first Writing,

Partitioned, Parallel BUC), in which the dataset is not

replicated, but is range partitioned on an attribute basis. The

output of cuboids is done in a breadth-First fashion, as

opposed to the depth-first writing that BUC do. In Depth

First writing, cells may belong to different cuboids. For

example, the cell a1 belongs to cuboid A, the cell a1b1 to

cuboid AB, and the cells a1b1c1 and a1b1c2 belong to ABC.

The point is that cuboids is scattered. This clearly incurs a

high I/O over-head. It is possible to use buffering to help the

scattered writing to the disk. However, this may require a

large amount of buffering space, thereby reducing the amount

of memory available for the actual computation.

Furthermore, many cuboids may need to be maintained in the

buffers at the same time, causing extra management

overhead. In BPP, this problem is solved by breadth-first

writing, implemented by first sorting the input dataset on the

“prefix” attributes. Breadth-First I/O is a significant

improvement over the scattering I/O used in BUC.

Another Parallel algorithm PT (Partitioned Tree) works with

tasks that are created by a recursive binary division of a tree

into two sub trees having an equal number of nodes. In PT,

there is a parameter that controls when binary division stops.

PT tries to exploit a affinity scheduling. During processor

assignment, the manager tries to assign to a worker processor

a task that can take advantage of prefix affinity based on the

root of the subtree.PT is top-down. But interestingly, because

Paper ID: SUB14206 2999

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

each task is a sub tree, the nodes within the sub tree can be

traversed / computed in a bottom up fashion. In fact, PT calls

BPP-BUC, which offers breadth-first writing, to complete the

processing. Algorithm PT load-balances by using binary

partitioning to divide the cube lattice as evenly as possible PT

is the algorithm of choice for most situations.

8. Limitations of Existing Methods

There are three main limitations in the existing techniques:

1. They are designed for a single machine or clusters with

small number of nodes. It is difficult to process data with

a single (or a few) machine(s) at many companies where

data storage is huge (e.g., terabytes per day)

2. Many of the techniques use the algebraic measure and

use this property to avoid processing groups with a large

number of tuples. This allows parallelized aggregation of

data subsets whose results are then post processed to

derive the final result. Many important analyses over

logs, involve computing holistic (i.e., nonalgebraic)

measures. Holistic measures pose significant challenges

for distribution.

3. Existing techniques failed to detect and avoid extreme

data skew. Extension of cube analysis usage can be

avoided by these limitations.

There is need of technique to compute cube efficiently in

parallel and identification of interesting cube groups on

important subset of holistics measures over massive data sets.

Hadoop based Mapreduce [8] environment handles large

amount of data in clusters with thousands of machines. So

MapReduce based technique which supports holistic

measures is best option for data analysis. It helps to detect

extreme data skew problem.

9. MapReduce Based Approach-MR Cube

MR-Cube, a MapReduce-based algorithm was introduced

[13] for efficient cube computation and identification of

interesting cube groups on holistic measures. Here each node

in the lattice represents one possible grouping/aggregation.

We use the term cube region to denote a node in the lattice

and the term cube group to denote an actual group belonging

to the cube region. First we begin by identifying a subset of

holistic measures that are easy to compute in parallel than an

arbitrary holistic measure. We call them partially algebraic

measures. This notion is inspired by common ad hoc

practices for computing a single holistic measure from an

extremely large number of data tuples.

Figure 5: Proposed System Architecture

MR-Cube, a MapReduce-based algorithm was introduced

[13] for efficient cube computation and identification of

interesting cube groups on holistic measures. Here each node

in the lattice represents one possible grouping/aggregation.

We use the term cube region to denote a node in the lattice

and the term cube group to denote an actual group belonging

to the cube region. First we begin by identifying a subset of

holistic measures that are easy to compute in parallel than an

arbitrary holistic measure. We call them partially algebraic

measures. This notion is inspired by common ad hoc

practices for computing a single holistic measure from an

extremely large number of data tuples.

Then two techniques needed for effectively distribute the data

and computation workload. Value Partitioning is used for

effectively distribute data for that we are going to run Naïve

Algorithm [12].we want to perform value partitioning only

on groups that are likely to be reducer unfriendly and

dynamically adjust the partition factor. We adopt a sampling

approach where we estimate the reducer un friendliness of

each cube region based on the number of groups it is

estimated to have, and perform partitioning for all groups

within the list of cube regions (a small list) that are estimated

to be reducer unfriendly.

For effectively distribute computation we use partitioning

technique called Batch Area. Each batch area represents a

collection of regions that share a common ancestor region.

The combined process of identifying and value partitioning

unfriendly regions followed by the partitioning of regions

into batches is referred to as ANNOTATE .So lattice formed

is annotated lattice.

In MR-Cube algorithm, the MR-CUBE-MAP emits key:

value pairs for each batch area. In required, keys are

appended with a hash based on value partitioning, the shuffle

phase then sorts them by key. The BUC Algorithm is run on

each reducer, and the cube aggregates are generated. All

value partitioned groups need to be aggregated to compute

the final measures.

Paper ID: SUB14206 3000

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

After materializing the cube (i.e., computing measures for all

cube groups satisfying the pruning conditions) we can

identify interesting cube groups for that cube mining

algorithm is used which takes the partially materialized cube.

By using the parent group label as the primary key and the

group label as the secondary key, measures are clustered

based on the parent group level, while ensuring sort endless

on the group label. This allows a one-pass discovery of the

most interesting group for each parent

Group-dimension combination, Using above mentioned

approach now it is now feasible to perform both large scale

cube materialization and mining in the same distributed

framework.

10. Conclusion

Efficient Cube computation is important problem in data

cube technology. So many techniques are used for computing

cube like Multiway array aggregation, BUC, Star Cubing, the

computation of shell fragments and parallel algorithms. BUC

is sensitive to skew in the data; the performance of BUC

degrades as skew increases. However, unlike MultiWay, the

result of a parent cuboid does not help compute that of its

children in BUC. For the full cube computation, if the dataset

is dense, Star Cubing performance is comparable with

MultiWay, and is much faster than BUC. If the data set is

sparse, Star-Cubing is significantly faster than MultiWay and

BUC, in most cases. Parallel algorithm like BPP and PT are

designed for small PC clusters and therefore cannot take

advantage of the MapReduce infrastructure. Proposed

approach effectively distributes data and computation

workload .Using important subset of holistic measures we are

doing cube materialization and identifying interesting cube

groups.

MR-Cube algorithm efficiently distributes the computation

workload across the machines and is able to complete cubing

tasks at a scale where a previous algorithm fails.

References

[1] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D.

Reichart, M.Venkatrao, F.Pellow, and H. Pirahesh, "Data

Cube: A Relational Operator Generalizing Group-By,

Cross-Tab and Sub-Totals," Proc. 12th Int’l Conf. Data

Eng. (ICDE), 1996.

[2] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J.

Naughton, R. Ramakrishnan, and S. Sarawagi, "On the

Computation of Multidimensional Aggregates,"

Proc.22nd Int’l Conf. Very Large Data Bases (VLDB),

1996.

[3] Y. Zhao, P. M. Deshpande, and J. F. Naughton.”An

array-based algorithm for simultaneous

multidimensional aggregates”. In SIGMOD'97.

[4] K. Ross and D. Srivastava, "Fast Computation of Sparse

Datacubes," Proc. 23rd Int'l Conf. Very Large Data

Bases (VLDB), 1997.

[5] K. Beyer and R. Ramakrishnan, "Bottom-Up

Computation of Sparse and Iceberg CUBEs," Proc. ACM

SIGMOD Int’l Conf. Management of Data, 1999.

[6] J. Hah, J. Pei, G. Dong, and K. Wang, "Efficient

Computation of Iceberg Cubes with Complex Measures,"

Proc. ACM SIGMOD Int’l Conf. Management of Data,

2001.

[7] R.T. Ng, A.S.Wagner, and Y. Yin, "Iceberg-Cube

Computation with PC Clusters," Proc. ACM SIGMOD

Int’l Conf. Management of Data, 2001.

[8] D. Xin, J. Han, X. Li, and B. W. Wah. Starcubing:

Computing iceberg cubes by top-down and bottom-up

integration. In VLDB'03.

[9] Xiaolei Li, Jiawei Han,Hector Gonzalez “High-

Dimensional OLAP: A Minimal Cubing Approach“

University of Illinois at Urbana- Champaign, Urbana, IL

61801, USA.

[10] R. Jin, K. Vaidyanathan, G. Yang, and G. Agrawal,

"Communication & Memory Optimal Parallel Datacube

Construction," IEEE Trans. Parallel and Distributed

Systems, vol. 16, no. 12, pp. 1105-1119, Dec. 2005.

[11] Y. Chen, F.K.H.A. Dehne, T. Eavis, and A. Rau-

Chaplin, "PnP:Sequential, External Memory and Parallel

Iceberg Cube Computation,”J. Distributed and Parallel

Databases, vol. 23, pp. 99- 126, 2008.

[12] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan,

“Distributed Cube Materialization on Holistic

Measures,” Proc. IEEE 27th Int’lConf. Data Eng.

(ICDE), 2011.

[13] Arnab Nandi, Cong Yu, Philip Bohannon, and Raghu

Ramakrishnan “Data Cube Materialization and Mining

over MapReduce “ IEEE transaction on Knowledge and

Data Engineering, vol. 24, no. 10, Oct 2012.

[14] G. Cormode and S. Muthukrishnan, “The CM Sketch

and Its Applications,” J. Algorithms, vol. 55, pp. 58-75,

2005.

[15] D. Talbot, “Succinct Approximate Counting of Skewed

Data,”Proc. 21st Int’l Joint Conf. Artificial Intelligence

(IJCAI), 2009.

[16] K. Sergey and K. Yury, “Applying Map-Reduce

Paradigm for Parallel Closed Cube Computation,” Proc.

First Int’l Conf. Advances in Databases, Knowledge, and

Data Applications (DBKDA), 2009.

[17] J. Walker, “Mathematics: Zipf’s Law and the AOL

Query Database,” Fourmilog, 2006.

[18] K.V. Shvachko and A.C. Murthy, “Scaling Hadoop to

4000 Nodes at Yahoo!,” Yahoo! Developer Network

Blog, 2008.

[19] A. Abouzeid et al., “HadoopDB: An Architectural

Hybrid of MapReduce and DBMS Technologies for

Analytical Workloads,” Proc. VLDB Endowment, vol. 2,

pp. 922-933, 2009.

Author Profile

Madhuri S. Magar received the B.E degree in

Computer Science & Engineering Information

Technology from Bharati Vidyapeeth’s Collage

of Engineering, Kolhapur in 2013.She is

currently pursuing her master’s degree in

computer engineering from Bhivrabai Sawant Institute of

Technology and Research, Wagholi, Pune, Maharashtra,

India

Paper ID: SUB14206 3001

