
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Performance Monitoring and Improvement by
VMM in Cloud System

Shafali Gupta1, Payal Kulkarni2

1Professor, Department of Computer Engineering, RMD Sinhgad School of Engineering, University of Pune, India

2Department of Computer Engineering, RMD Sinhgad School of Engineering, University of Pune, India

Abstract: Cloud computing is a promising paradigm able to rationalize the use of hardware resources by means of virtualization.
Virtualization allows to instantiate one or more virtual machines (VMs) on top of a single physical machine managed by a virtual
machine monitor (VMM). Similarly to any other software, a VMM experiences aging and failures. It was always possible that, because
of overload, non-responsive applications, bulky applications, system get slowed down or get hanged. In this case, every user who was
using physical machine in virtual mode gets affected by system crash. Might be, he loses his important data, work. Also, task given to
printer, scanner, CD-ROM or writer get affected resulting in loss. The paper focuses on solution of above mentioned problem. Virtual
machine monitor (VMM) monitors every virtual machine. It monitors, running applications, memory usage, resources used, etc. If it
comes to found any problem with any application, then VMM stops the executions such that terminate the corresponding applications.
In emergency, to recall system from harmful crashes, it restarts the application. Priority is given to application termination and to save
user work in limited problems and priority is given to system in case of dangerous problems.

Keywords: Time –based rejuvenation, cloud computing, dynamic availability, phase type distribution

1. Introduction

Cloud computing a form of ubiquitous computing deals with
providing everything as a service. Cloud computing is
mainly used in business and IT industry which offers heavy
outsourcing model computational resource, where service
availability, security and quality are essential features. In
cloud computing High service availability is the most
important requirement increasingly being demanded in
commercial computer, and communication systems. In recent
years many research efforts have been going to find the
optimal infrastructure size and configuration that guarantee
the desired availability level. Software fault tolerance is
often found to be the bottleneck. That is increase of failure
rate in computer system is more due to software failures than
hardware failures. Software often shows degradation in
performance level after using it for long time [1] Most of the
techniques for modeling and assessing software aging
phenomena and rejuvenation policies implement analytical
approaches, specifying the problem in terms of stochastic
processes. The characterization of such processes is driven
by the need to incorporate the software age into the model.
This prevents the use of Markov models and similar
techniques that assume “memory-less” behaviors [2].
Nevertheless, Markov models are used to model software
aging whenever software age is approximated by discretizing
aging in phases or epochs. Regardless the accuracy that can
be reached, Markovian models do not allow to represent
some aspects and behaviors related to specific software aging
and rejuvenation processes. A contribution of this work is a
non-Markovian analytical technique that allows investigating
time-based rejuvenation strategies. Such technique is able to
manage the intrinsic non-Markovian nature of the software
aging process as well as the influence of the workload on the
software behaviors. More specifically, we assume the VMM
aging phenomenon is characterized by an increasing failure
rate (IFR) distribution and depends on the number of VMs it
is managing. Then, we characterize the VMM time to failure
through continuous phase type (CPH) distributions [3]. The

system availability is, thus, modeled by an expanded process
that allows to keep memory of the age reached by the VMM
when the number of hosted VMs changes according to the
conservation of reliability principle. The expanded process is
symbolically represented in terms of Kronecker algebra. This
allows to formally representing the workload-dependent
system behavior in a way that is intuitive and easily
implementable in a software tool [4]. We also address the
state-space explosion problem affecting state-space models,
especially when phase type (PH) expansion techniques are
used. The main goal of time-based rejuvenation models is to
find an optimal rejuvenation timer that allows minimizing
some objective functions.

Figure 1: A rejuvenation enabled cloud node

2. Related Works

2.1Classification of Software Faults

Faults, in both hardware and software, can be classified
according to their phase of creation or occurrence, system
boundaries (internal or external), domain (hardware or
software). Most modern studies on failure data have reported
that a large percentage of software failures are transient in
nature caused by phenomena such as overloads or timing and

Paper ID: SUB14100 3092

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

exception errors. The revise of failure data indicate that 70%
of the failures were transient failures, caused by faults
similar to race conditions and timing problems. Aging
related faults fall under Bohrbugs or Heisenbugs depending
on whether the failure is deterministic (repeatable) or
transient

Figure 2: Chain of threats‖ for an (AR) aging-related failure

2.2 Software aging and rejuvenation

Many works have been reported on software aging and
rejuvenation. Software aging is not a new topic still it lacks
proper research background. Due to which recent safety
critical applications also suffer from software aging. But,
only few works have been reported on software aging in
virtualized environment. In this chapter, we discuss the work
done by previous researchers on many more other categories
of memory related software aging both in physical machines
and virtual machines. RivalinoMatias et al. [15] on 2012 has
done research work on memory related software aging issues
which causes aging related failures. They have mainly
focused on memory leak problems. They have discussed
important drawbacks of using well known system-wide and
application-specific aging indicators, as well as propose
effectual solutions for both cases. Memory-related aging
effects are caused by memory leak and memory
fragmentation problems. Memory leak is a software defect
that is mainly caused by incorrect use of memory
management routines. A memory leak occurs when an
application process dynamically allocates memory blocks
and, for some reason, does not release them back to the OS
during its runtime. Here the authors have tried to find out
memory leaks in a system both in user level and kernel level
by the use of aging indicators. Aging indicators will detect
the error in a system in running condition. System-wide
aging indicators provide information related to subsystems
components. With the help of system-wide aging indicators
free/used physical memory and swap space they have
conducted their experiment. But sometimes these indicators
give false indication about memory consumption. So they
have used aging free baseline to compare all the memory
consumption with it for better result. Application-specific
aging indicators provide specific information about an
individual application process.

2.3. Software aging and rejuvenation in server virtualized
System

Software aging in the virtual machine monitor (VMMs) as
critical as server consolidation using virtual machines (VMs)
is widely being carried out. A hypervisor or VMM is the
piece of computer software that multiplexes physical
resources such as CPU and memory to the VMs running on

top of it. We review the three VMM rejuvenation techniques.
When VMM rejuvenation needs to be performed on a host,
the hosted VMs also need to be controlled because the
execution environments of VMs are cleared by the VMM
rejuvenation. VMM rejuvenation, we can perform VM
shutdown (i.e., Cold-VM rejuvenation), Suspend (i.e.,
Warm-Rejuvenation), or VM migration (i.e., Migrate-VM
rejuvenation). These approaches are presented in the next
three subsections

2.3.1 Cold-VM rejuvenation
The easiest way to deal with the hosted VMs before
triggering rejuvenation of VMM is to shut down all the
hosted VMs regardless of the execution states of the VMs.
The VMs are then restarted in clean states after the VMM
rejuvenation. This approach is called Cold-VM rejuvenation.
All the transactions running on VMs are vanished by the
Cold-VM rejuvenation [6]. An advantage of the Cold-VM
rejuvenation, however, is that the rejuvenation action cleans
all the aging states of the VMs in addition to the aging states
of the VMM.

2.3.2 Warm-VM rejuvenation
Instead of shutting down the hosted VMs, the hosted VMs
are suspended prior to VMM rejuvenation is triggered and
the executions of the VMs are resumed at the completion of
the VMM rejuvenation. We call this technique Warm-VM
rejuvenation [5]. Since the execution states of the hosted
VMs are saved prior to VMM rejuvenation, the transactions
running on the VMs are not lost due to the VMM
rejuvenation. However, Warm-VM rejuvenation retains the
aging states of VMs by VM suspend. The aging states in the
hosted VMs are not cleared by VMM rejuvenation and hence
we need to rely on rejuvenation for VM to clear the aging
states of VMs.

2.3.3 Migrate-VM rejuvenation
Live VM migration is a technique to move a running VM to
another host incur a short service interruption and is
supported in most modern VMM implementations such as
Xen and VMware. Although a shared storage system is
required to store a VM image, the downtime overhead
caused by a VM migration is less. Using live VM migration,
hosted VMs are moved to another host prior to VMM
rejuvenation and returned back to the original hosting server
after the completion of the rejuvenation of the VMM, by a
reverse live VM migration. We call this combined method as
Migrate-VM rejuvenation [6]. The VM continues the
execution even while the VMM on the original host is being
rejuvenated. However, the aging states in the hosted VMs are
not cleared by the VMM rejuvenation as in the case of
Warm-VM rejuvenation. Live VM migration works only
when the migration target server is running and it has a
capacity to accept the migrated VM.

3. Proposed Work

The proposed statement of the system is to propose a new
innovative approach to model software aging in cloud system
and also in LAN network. Hence, we propose a technique to
model and evaluate the VMM aging process and to
investigate the optimal rejuvenation policy that maximizes
the VMM availability under variable workload conditions.

Paper ID: SUB14100 3093

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Starting from dynamic reliability theory and adopting
symbolic algebraic techniques, we investigate and compare
existing time-based VMM rejuvenation policies. We also
propose a time-based policy that adapts the rejuvenation
timer to the VMM workload condition improving the system
availability.

3.1 Module

These main two main modules are,

1. VMM
VMM is a virtual machine monitor, having higher level of
physical machine. But in actual implementation, VMM is a
virtual machine residing on a physical machine. Hence our
application can consist of a VMM application located on
physical machine, for which, here after, we are called as
VMM Manager or only as Manager.

2. Node
The Node is nothing but a machine which is under
monitoring by VMM Manager. Paper stated that it might be
workstation or any other device connected in network. But as
paper deals with only software failures, it must be
workstation such that a physical machine connected in
network. Hence, nodes are physical machines, might be
slaves or clients connected in network, either internet or
intranet (LAN), and Manager becomes their server.

4. Conclusion

The work can be carried out in two forms On the one hand
an analytic technique that allows to represent any generic
failure and repair distributions, adequately modeling changes
in the workload through the conservation of reliability
principle; on the other hand, a variable timer rejuvenation
policy aiming at optimizing the software (VMM) availability
in case of workload changes. The obtained results show that
the proposed variable timer policy outperforms the fixed
timer one, also considering different impact of the workload
on the aging process

5. Acknowledgement

We would like to thank the principal and staff members of
RMD Sinhgad School of Engineering, University of Pune,
friends and family members for their support their valuable
reviews and support to bring this article.

References

[1] L. Bittencourt, C. Senna, and E. Madeira, “Scheduling

Service Workflows for Cost Optimization in Hybrid
Clouds,” Proc. Int’l Conf. Network and Service
Management, pp. 394-397, 2010.

[2] S. Pearson and A. Benameur, “Privacy, Security and
Trust Issues Arising from Cloud Computing,” Proc.
IEEE second Int’l Conf. Cloud Computing Technology
and Science, pp. 693-702, 2010.

[3] R. Ghosh, K. Trivedi, V. Naik, and D.S. Kim, “End-to-
End Performability Analysis for Infrastructure-as-a-
Service Cloud:An Interacting Stochastic Models

Approach,” Proc. IEEE 16th Pacific Rim Int’l Symp.
Dependable Computing, pp. 125-132, 2010.

[4] S. Distefano, F. Longo, and M. Scarpa, “Availability
Assessment ofHA Standby Redundant Clusters,” Proc.
IEEE 29th Symp.Reliable Distributed Systems, pp. 265-
274, 2010.

[5] M. Grottke and K.S. Trivedi, “Fighting Bugs: Remove,
Retry, Replicate, and Rejuvenate,” Computer, vol. 40,
no. 2, pp. 107-109, Feb. 2007.

[6] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton,
“SoftwareRejuvenation: Analysis, Module and
Applications,” Proc. 25th Int’l Symp. Fault-Tolerant
Computing (FTCS), pp. 381-390, 1995.

[7] K. Vaidyanathan and K.S. Trivedi, “A Comprehensive
Model for Software Rejuvenation,” IEEE Trans.
Dependable and Secure Computing, vol. 2, no. 2, pp.
124-137, Apr.-June 2005.

[8] S. Garg, A. Puliafito, M. Telek, and K. Trivedi,
“Analysis of Software Rejuvenation Using Markov
Regenerative Stochastic Petri Net,” Proc. Sixth Int’l
Symp.Software Reliability Eng., pp. 180- 187, 1995.

[9] K. Vaidyanathan and K. Trivedi, “A Measurement-
Based Model for Estimation of Resource Exhaustion in
Operational Software Systems,” Proc. 10th Int’l
Symp.Software Reliability Eng., pp. 84-93, 1999.

[10] S. Garg, A. van Moorsel, K. Vaidyanathan, and K.
Trivedi, “A Methodology for Detection and Estimation
of Software Aging,” Proc. Ninth Int’l Symp. Software
Reliability Eng., pp. 283-292, 1998.

Author Profile

Shafali Gupta,Professor, Department of Computer Engineering,
RMD Sinhgad School of Engineering, University of Pune, India

Payal Kulkarni, Research Scholar RMD Sinhgad School of
Engineering Warje, Pune, University of Pune.

Paper ID: SUB14100 3094

http://creativecommons.org/licenses/by/4.0/�

	Performance Monitoring and Improvement by VMM in Cloud System
	Shafali Gupta1, Payal Kulkarni2

