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 Abstract: A computing system is one, where an input data needs to be compared with a stored data to locate the matching entry, e.g., 
translation look-aside buffer and cache tag array lookup matching. In this paper we propose a new architecture in to reduce complexity 
and latency for matching the data protected with an error-correcting code (ECC). It is based on the fact that the codeword of an ECC 
generated by encoding is usually represented in a systematic form, and it consists of the raw data and the parity information. The 
proposed architecture parallelizes the comparison of the data and that of the parity information. To further reduce the latency and 
complexity, in addition, a new butterfly-formed weight accumulator (BWA) is proposed for the efficient computation of the Hamming 
distance. The proposed architecture examines whether the incoming data matches the stored data if a certain number of erroneous bits 
are corrected.  
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1. Introduction  
 
Data comparison circuit is a logic that has many applications 
in a computing system. For example, to check whether a 
piece of information is in a cache, the address of the 
information in the memory is compared to all cache tags in 
the same set that might contain that address. Error correction 
codes (ECC) are the one, most commonly used to protect 
standard memories and circuits [6], while more sophisticated 
codes are used in critical applications such as space [6]. 
ECC are widely used to enhance the reliability and data 
integrity of memory structures in modern microprocessors. 
For example, caches on modern microprocessors are 
protected by ECC [3]. If a memory structure is protected 
with ECC, a piece of data is encoded first and the entire 
codeword including the ECC check bits are written into the 
memory array. When the input data is loaded into the 
system, it has to be encoded and compared with the data 
stored in the memory and corrected if errors are detected to 
obtain the original data. Data comparison circuit is usually 
in the critical path of a pipeline stage because the result of 
the comparison determines the flow of the succeeding 
operations. When the memory array is protected by ECC, it 
exacerbates the criticality because of the added latency due 
to ECC logic. In the cache tag matching example, the cache 
tag directory must be accessed first. After the tag 
information is retrieved, it must go through ECC decoding 
and correction before the comparison operation can be 
performed. At the mean time, the corresponding data array is 
waiting for the comparison result to decide which way in the 
set to load the data from. The most recent solution for the 
matching problem is the direct compare method [5], which 
encodes the incoming data and then compares it with the 
retrieved data that has been encoded as well. Therefore, the 
method eliminates the complex decoding from the critical 
path. In performing the comparison, the method does not 
examine whether the retrieved data is exactly the same as the 
incoming data. Instead, it checks if the retrieved data resides 

in the error correctable range of the codeword corresponding 
to the incoming data. As the checking necessitates an 
additional circuit to compute the Hamming distance, i.e., the 
number of different bits between the two code words, the 
saturate adder (SA) was presented [5] as a basic building 
block for calculating the Hamming distance. However, it 
does not consider an important fact that a practical ECC 
codeword is usually represented in a systematic form in 
which the data and parity bits are completely separated from 
each other. 
 
In addition, SA contributes to the increase of the entire 
circuit complexity as it always forces its output not to be 
greater than the number of detectable errors by more. In 
brief, we renovate the SA-based direct compare architecture 
to reduce the latency and hardware complexity by resolving 
the drawbacks. More specifically, we consider the 
characteristics of systematic codes in designing the proposed 
architecture and propose a low-complexity processing 
element that computes the Hamming distance faster. 
Therefore, the latency and the hardware complexity are 
decreased considerably compared with the SA based 
architecture. 
 
The rest of this brief is organized as follows. Section II 
reviews previous works. The proposed architecture is 
explained in Section III, and evaluated in Section IV. 
Finally, concluding remarks are made in Section V. 
 
2. Previous Works 
 
This section describes the conventional decode-and-compare 
architecture based on the direct compare method. For the 
sake of concreteness, only the tag matching performed in a 
cache memory is discussed in this brief, but it is said that the 
proposed architecture can be applied to similar applications 
without loss of generality. 
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A. Direct Compare Method 
 
The key idea behind direct compare scheme is to utilize the 
information carried by the incoming data (referred to as 
input) to circumvent the necessity of decoding and 
correction of the stored codeword which may or may not 
have errors. For input protected with ECC, in most 
scenarios, the corrupted codeword is the only copy of that 
contains the original information. Without redundancy 
provided by ECC there is no other way to retrieve it. 
However, for data comparison, the absolute values of the 
stored information are not that important, but rather the 
relative value to the incoming data is important for deriving 
a comparison result. Considering the number of input bits 
(N) to be 31, i.e., N=31 a circuit for direct compare method 
is proposed with full adders and saturate adders.  
 

 
Figure 1: Direct compare (DC) circuit for N=31 

 
 B. Decode-and-Compare Architecture 
 
Let us consider a cache memory where an n-bit codeword is 
stored after being encoded by a (n, k) code. In the decode-
and-compare architecture depicted in Fig. 2, the n-bit 
retrieved codeword should first be decoded to extract the 
original k-bit tag. The extracted k-bit tag is then compared 
with the k-bit tag field of an incoming address to determine 
whether the tags are matched or not. As the retrieved 
codeword should go through the decoder before being 
compared with the incoming tag, the critical path is too long 
to be employed in a practical cache system designed for 
high-speed access. Since the decoder is one of the most 
complicated processing elements, in addition, the 
complexity overhead is not negligible. Grounded on the fact 
of implementing the decoding architecture in hardware, it 
results in increase of hardware complexity, since the 
decoding technique includes large no of gates when 
implemented.  

 
Figure 2: Decode-and-Compare architecture 

3. Proposed Architecture 
 
This section presents a new architecture that can reduce the 
latency and complexity of the data comparison by using the 
characteristics of systematic codes.  
 
a. Block Diagram  
 
The Fig.3 describes the flow of the proposed architecture. 
The incoming data is encoded by appending the parity bits. 
 

 
Figure 3:.Block Diagram 

 
Then the encoded data is compared with the data in the 
memory which can be retrieved. The XOR bank and 
Butterfly formed weighted accumulator is used to find the 
number of bit changes and to calculate the number of ones 
which are fed into error correction and error deduction unit. 
Thus the output is obtained from the decision unit. 
 
B. Data Path Design  
In the SA-based architecture [5], the comparison of two 
codeword is performed after the incoming tag is encoded. 
Therefore, the critical path consists of a series of the 
encoding and the n-bit comparison. However, the fact that, 
in practice, the ECC codeword is of a systematic form in 
which the data and parity parts are completely separated is 
not taken into the account. As the data part of a systematic 
codeword is exactly the same as the incoming tag field, it is 
immediately available for comparison while the parity part 
becomes available only after the encoding is completed. 
Grounded on this fact, the comparison of the k-bit tags can 
be started before the remaining (n–k)-bit comparison of the 
parity bits. In the proposed architecture, therefore, the 
encoding process to generate the parity bits from the 
incoming tag is performed in parallel with the tag 
comparison, resulting in the reduction of the overall latency.  
 
C. Construction of Low Delay Single-Error Correction 
Codes 
The proposed method to construct SEC and SEC-DED 
codes tries to minimize the number of ones in each row and 
in each column of the parity check H matrix. Reducing the 
number of ones in the rows lowers the delay when 
computing the parity bits in the encoder. To minimize the 
number of ones the value w = 2 can be used to obtain SEC 
codes. It is also interesting to analyze the case w = 3 as in 
that case the code is SEC-DED. Since for the parity bits the 
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columns have only a one, the condition is not met as other 
columns have a one in that bit. Therefore, this modification 
cannot correct errors in the parity bits. This is not an issue 
for registers as the correction of parity bits is not normally 
needed. The method to construct the code starts by finding 
the smallest value of n − k for which the following is true: 

                     (1)  
For w = 2, this value can be found analytically by solving (1) 
that is a quadratic equation in n. As the value of n has to be 
larger than k, only one of the two possible solutions of the 
equation is valid in our case. The value of n − k obtained is 

                      (2) 
that shows a growth of the number of parity bits with square 
root of k that is larger than logarithmic growth of Hamming 
codes. This means that as k increases, the overhead of the 
proposed codes in terms of the number of additional parity 
bits compared to Hamming will also increase. Similarly, for 
w = 3, the solution to (1) is given by 

(3) 
. 
that, as k is larger than one, it can be approximated by 

 n − k ≥ (6k)1/3 + 1                             (4) 
 
The growth of the number of parity check bits with k is 
smaller than for w = 2, but is still larger than the logarithmic 
growth of traditional SEC-DED codes. In the second step to 
constructing the codes, a different combination of w of the 
n−k added bits is used for each of the first k columns of the 
H matrix. Equation (1) guarantees that there are sufficient 
different combinations. The remaining n − k columns form 
an  
identity matrix of size n − k. The reduction in the number of 
ones enables a lower encoding and decoding delay. In a 
general case, a Hamming code will have rows with a number 
of ones that is roughly k/2. This compares with the proposed 
SEC codes (w = 2) for which the number of ones in a row is 
by design at most n − k − 1. Similarly, to locate an error a 
traditional SEC code requires an n−k input AND gate 
compared with a simple two input AND gate in the proposed 
code. In practical implementations, this results in a 
significant reduction of the encoding and decoding delays. 
 
One distinct feature of the proposed codes is that they 
correct errors on the data bits only. This is similar to other 
codes such as Orthogonal Latin square (OLS) codes [10]. 
However, in OLS codes, each pair of data bits participates in 
at most one shared parity check bit to ensure that majority 
logic decoding can be used. This is different from the 
proposed scheme in which the goal is to ensure that no data 
bit participates in all the parity check bits, in which another 
data bit participates. This is then used to simplify the 
location and correction of an error, as described before. 
Another difference is that OLS codes are commonly used 
when multiple error correction capabilities are needed 
although SEC can also be implemented. The main issues 

with SEC OLS codes are that they are only implemented for 
a few block sizes and require a large number of parity check 
bits. Finally, it is worth mentioning that the parity check 
matrices of the proposed codes are similar to that of low 
density parity check (LDPC) codes commonly used in 
communication systems [11]. Nevertheless, since LDPC 
codes usually have large block size, and must provide 
multiple error correction, the encoding and decoding 
procedures are very different from our proposed codes and 
require complex logic circuitry [11]. 
 
D. Architecture for Hamming Distance Computation 
The proposed architecture grounded on the data path design 
is shown in Fig.4. It contains multiple butterfly-formed 
weight accumulators (BWAs) proposed for the Hamming 
distance computation. The basic function of the BWA is to 
count the number of 1’s among its input bits. It consists of 
multiple stages of HAs as shown in Fig.5(a), where each 
output bit of a HA is associated with a weight. The HAs in a 
stage are connected in a butterfly form so as to accumulate 
the carry bits and the sum bits of the upper stage separately. 
In other words, both inputs of a HA in a stage, except the 
first stage, are either carry bits or sum bits computed in the 
upper stage. This connection method leads to a property that 
if an output bit of a HA is set, the number of 1’s among the 
bits in paths reaching the HA is equal to the weight of the 
output bit. 
  

 
Figure 4:.Architecture of Hamming Distance Computation 
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Figure 5 (a):.General structure and (b) New revised 

structure 
 

In Fig. 5(a), for example, if the carry bit of the HA is set, the 
number of 1’s among the associated input bits, i.e., A, B, C, 
and D, is 2. At the last stage of Fig. 5(a), the number of 1’s 
among the input bits, d, can be calculated as 

 d = 8I + 4 (J + K + M) + 2 (L + N + O) + P (5) 
 
Since what we need is not the precise Hamming distance but 
the range it belongs to, it is possible to simplify the circuit. 
When rmax = 1, for example, two or more than two 1’s 
among the input bits can be regarded as the same case that 
falls in the fourth range. In that case, we can replace several 
HAs with a simple OR-gate tree as shown in Fig. 5(b). This 
is an advantage over the SA. Note that in Fig. 5 there is no 
overlap between any pair of two carry-bit lines or any pair of 
two sum-bit lines. As the overlaps exist only between carry-
bit lines and sum-bit lines, it is not hard to resolve overlaps 
in the contemporary technology that provides multiple 
routing layers no matter how many bits a BWA takes. We 
now explain the overall architecture in more detail. Each 

XOR stage generates the bitwise difference vector for either 
data bits or parity bits, 
 
E. General Expressions for the Complexity  
The complexity as well as the latency of combinational 
circuits heavily depends on the algorithm employed. It is 
unfortunately hard to derive an analytical and fully 
deterministic equation that shows the relationship between 
the number of gates and the latency for the proposed 
architecture The complexity of the proposed architecture, C, 
can be expressed as 

C=CXOR+CENC+CBWA(k)+CBWA(n-k)+C2nd+CDU≤n+CENC 
+2CBWA(n)+CDU (6) 

where CXOR, CENC, C2nd, CDU, and CBWA(n) are complexities 
of 
XOR banks, an encoder, the second level circuits, the 
decision unit, and a BWA for n inputs, respectively. Using 
the recurrence relation, CBWA(n) can be calculated as  

  (7) 
 
F. General Expressions for the Latency 
The latency of the proposed architecture, L, can be 
expressed as 
L ≤ max [LXOR + LBWA (k), LENC + LXOR + LBWA (n-k)] + L2nd 

+ LDU (8) 
 
where LXOR, LENC, L2nd, LDU, and LBWA (n) are the latencies of 
an XOR bank, an encoder, the second level circuits, the 
decision unit, and a BWA for n inputs, respectively. Note 
that the latencies of the OR-gate tree and BWAs for x ≤ n 
inputs at the second level are all bounded by log2n. As one 
of BWAs at the first level finishes earlier than the other, 
some components at the second level may start earlier. 
Similarly, some BWAs or the OR-gate tree at the second 
level may provide their output earlier to the decision unit so 
that the unit can begin its operation without waiting for all of 
its inputs. In such cases, L2nd and LDU can be partially hidden 
by the critical path of the preceding circuits, and L becomes 
shorter than the given expression. 
 
4. Results 

 
 

Table 2: Comparison For Latency And Complexity 

 
a The number of gates in the critical path. 
bThe count of all gates. 
cThe critical path delay(CPD)in nanoseconds. 
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dThe equivalent gate count(EGC). 
e The numbers in the parenthesis are normalized values. 
 
Table II shows the latencies and hardware complexities 
resulting from three architectures: 1) the conventional 
decode-and-compare; 2) The SA-based direct compare; and 
3) the proposed ones. In [5], the latency is measured from 
the time when the incoming address is completely encoded. 
As the critical path starts from the arrival of the incoming 
address to a cache memory, the encoding delay must be, 
however, included in the latency computation. The latency 
values in Table II are all measured in this way. Besides, 
critical-path delays in Table II are obtained by performing 
post layout simulations and equivalent gate counts are 
measured by counting a two-input NAND as one. As shown 
in Table II, the proposed architecture is effective in reducing 
the latency as well as the hardware complexity even with 
considering the practical factors. Note that the effectiveness 
of the proposed architecture over the SA-based one in 
shortening the latency gets larger as the size of a codeword 
increases. The reason is that, the latencies of the SA-based 
architecture and the proposed one is dominated by SAs and 
HAs, respectively. As the bit-width doubles, at least one 
more stage of SAs or HAs needs to be added. Since the 
critical path of a HA consists of only one gate while that of a 
SA has several gates, the proposed architecture achieves 
lower latency than its SA-based counterpart, especially for 
long code words. 
 
5. Conclusion 
 
To reduce the latency and hardware complexity, a new 
architecture has been presented for matching the data 
protected with an ECC. The proposed architecture examines 
whether the incoming data matches the stored data if a 
certain number of erroneous bits are corrected. To reduce the 
latency, the comparison of the data is parallelized with the 
encoding process that generates the parity information. It is 
based on the fact that the systematic codeword has separate 
fields for the data and parity. In addition, an efficient 
processing architecture has been presented to further 
minimize the latency and complexity. As the proposed 
architecture is effective in reducing the latency as well as the 
complexity considerably, it can be regarded as a promising 
solution for the comparison of ECC-protected data. Though 
this brief focuses only on the tag match of a cache memory, 
the proposed method is applicable to diverse applications 
that need such comparison. 
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