
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

An Efficient Low Latency Low Complexity
Architecture for Matching of Information Coded

with Error–Correcting Codes

Sankareswari .M1, Udhayakumar .S2

1, 2United Institute of Technology, Coimbatore, India

 Abstract: A computing system is one, where an input data needs to be compared with a stored data to locate the matching entry, e.g.,
translation look-aside buffer and cache tag array lookup matching. In this paper we propose a new architecture in to reduce complexity
and latency for matching the data protected with an error-correcting code (ECC). It is based on the fact that the codeword of an ECC
generated by encoding is usually represented in a systematic form, and it consists of the raw data and the parity information. The
proposed architecture parallelizes the comparison of the data and that of the parity information. To further reduce the latency and
complexity, in addition, a new butterfly-formed weight accumulator (BWA) is proposed for the efficient computation of the Hamming
distance. The proposed architecture examines whether the incoming data matches the stored data if a certain number of erroneous bits
are corrected.

Keywords: Data comparison, error-correcting codes (ECCs), Hamming distance, tag matching, butterfly-formed weight accumulator
(BWA), Orthogonal Latin square (OLS), Low density parity check (LDPC).

1. Introduction

Data comparison circuit is a logic that has many applications
in a computing system. For example, to check whether a
piece of information is in a cache, the address of the
information in the memory is compared to all cache tags in
the same set that might contain that address. Error correction
codes (ECC) are the one, most commonly used to protect
standard memories and circuits [6], while more sophisticated
codes are used in critical applications such as space [6].
ECC are widely used to enhance the reliability and data
integrity of memory structures in modern microprocessors.
For example, caches on modern microprocessors are
protected by ECC [3]. If a memory structure is protected
with ECC, a piece of data is encoded first and the entire
codeword including the ECC check bits are written into the
memory array. When the input data is loaded into the
system, it has to be encoded and compared with the data
stored in the memory and corrected if errors are detected to
obtain the original data. Data comparison circuit is usually
in the critical path of a pipeline stage because the result of
the comparison determines the flow of the succeeding
operations. When the memory array is protected by ECC, it
exacerbates the criticality because of the added latency due
to ECC logic. In the cache tag matching example, the cache
tag directory must be accessed first. After the tag
information is retrieved, it must go through ECC decoding
and correction before the comparison operation can be
performed. At the mean time, the corresponding data array is
waiting for the comparison result to decide which way in the
set to load the data from. The most recent solution for the
matching problem is the direct compare method [5], which
encodes the incoming data and then compares it with the
retrieved data that has been encoded as well. Therefore, the
method eliminates the complex decoding from the critical
path. In performing the comparison, the method does not
examine whether the retrieved data is exactly the same as the
incoming data. Instead, it checks if the retrieved data resides

in the error correctable range of the codeword corresponding
to the incoming data. As the checking necessitates an
additional circuit to compute the Hamming distance, i.e., the
number of different bits between the two code words, the
saturate adder (SA) was presented [5] as a basic building
block for calculating the Hamming distance. However, it
does not consider an important fact that a practical ECC
codeword is usually represented in a systematic form in
which the data and parity bits are completely separated from
each other.

In addition, SA contributes to the increase of the entire
circuit complexity as it always forces its output not to be
greater than the number of detectable errors by more. In
brief, we renovate the SA-based direct compare architecture
to reduce the latency and hardware complexity by resolving
the drawbacks. More specifically, we consider the
characteristics of systematic codes in designing the proposed
architecture and propose a low-complexity processing
element that computes the Hamming distance faster.
Therefore, the latency and the hardware complexity are
decreased considerably compared with the SA based
architecture.

The rest of this brief is organized as follows. Section II
reviews previous works. The proposed architecture is
explained in Section III, and evaluated in Section IV.
Finally, concluding remarks are made in Section V.

2. Previous Works

This section describes the conventional decode-and-compare
architecture based on the direct compare method. For the
sake of concreteness, only the tag matching performed in a
cache memory is discussed in this brief, but it is said that the
proposed architecture can be applied to similar applications
without loss of generality.

Paper ID: OCT141617 2745

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A. Direct Compare Method

The key idea behind direct compare scheme is to utilize the
information carried by the incoming data (referred to as
input) to circumvent the necessity of decoding and
correction of the stored codeword which may or may not
have errors. For input protected with ECC, in most
scenarios, the corrupted codeword is the only copy of that
contains the original information. Without redundancy
provided by ECC there is no other way to retrieve it.
However, for data comparison, the absolute values of the
stored information are not that important, but rather the
relative value to the incoming data is important for deriving
a comparison result. Considering the number of input bits
(N) to be 31, i.e., N=31 a circuit for direct compare method
is proposed with full adders and saturate adders.

Figure 1: Direct compare (DC) circuit for N=31

 B. Decode-and-Compare Architecture

Let us consider a cache memory where an n-bit codeword is
stored after being encoded by a (n, k) code. In the decode-
and-compare architecture depicted in Fig. 2, the n-bit
retrieved codeword should first be decoded to extract the
original k-bit tag. The extracted k-bit tag is then compared
with the k-bit tag field of an incoming address to determine
whether the tags are matched or not. As the retrieved
codeword should go through the decoder before being
compared with the incoming tag, the critical path is too long
to be employed in a practical cache system designed for
high-speed access. Since the decoder is one of the most
complicated processing elements, in addition, the
complexity overhead is not negligible. Grounded on the fact
of implementing the decoding architecture in hardware, it
results in increase of hardware complexity, since the
decoding technique includes large no of gates when
implemented.

Figure 2: Decode-and-Compare architecture

3. Proposed Architecture

This section presents a new architecture that can reduce the
latency and complexity of the data comparison by using the
characteristics of systematic codes.

a. Block Diagram

The Fig.3 describes the flow of the proposed architecture.
The incoming data is encoded by appending the parity bits.

Figure 3:.Block Diagram

Then the encoded data is compared with the data in the
memory which can be retrieved. The XOR bank and
Butterfly formed weighted accumulator is used to find the
number of bit changes and to calculate the number of ones
which are fed into error correction and error deduction unit.
Thus the output is obtained from the decision unit.

B. Data Path Design
In the SA-based architecture [5], the comparison of two
codeword is performed after the incoming tag is encoded.
Therefore, the critical path consists of a series of the
encoding and the n-bit comparison. However, the fact that,
in practice, the ECC codeword is of a systematic form in
which the data and parity parts are completely separated is
not taken into the account. As the data part of a systematic
codeword is exactly the same as the incoming tag field, it is
immediately available for comparison while the parity part
becomes available only after the encoding is completed.
Grounded on this fact, the comparison of the k-bit tags can
be started before the remaining (n–k)-bit comparison of the
parity bits. In the proposed architecture, therefore, the
encoding process to generate the parity bits from the
incoming tag is performed in parallel with the tag
comparison, resulting in the reduction of the overall latency.

C. Construction of Low Delay Single-Error Correction
Codes
The proposed method to construct SEC and SEC-DED
codes tries to minimize the number of ones in each row and
in each column of the parity check H matrix. Reducing the
number of ones in the rows lowers the delay when
computing the parity bits in the encoder. To minimize the
number of ones the value w = 2 can be used to obtain SEC
codes. It is also interesting to analyze the case w = 3 as in
that case the code is SEC-DED. Since for the parity bits the

Paper ID: OCT141617 2746

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

columns have only a one, the condition is not met as other
columns have a one in that bit. Therefore, this modification
cannot correct errors in the parity bits. This is not an issue
for registers as the correction of parity bits is not normally
needed. The method to construct the code starts by finding
the smallest value of n − k for which the following is true:

 (1)
For w = 2, this value can be found analytically by solving (1)
that is a quadratic equation in n. As the value of n has to be
larger than k, only one of the two possible solutions of the
equation is valid in our case. The value of n − k obtained is

 (2)
that shows a growth of the number of parity bits with square
root of k that is larger than logarithmic growth of Hamming
codes. This means that as k increases, the overhead of the
proposed codes in terms of the number of additional parity
bits compared to Hamming will also increase. Similarly, for
w = 3, the solution to (1) is given by

(3)
.
that, as k is larger than one, it can be approximated by

 n − k ≥ (6k)1/3 + 1 (4)

The growth of the number of parity check bits with k is
smaller than for w = 2, but is still larger than the logarithmic
growth of traditional SEC-DED codes. In the second step to
constructing the codes, a different combination of w of the
n−k added bits is used for each of the first k columns of the
H matrix. Equation (1) guarantees that there are sufficient
different combinations. The remaining n − k columns form
an
identity matrix of size n − k. The reduction in the number of
ones enables a lower encoding and decoding delay. In a
general case, a Hamming code will have rows with a number
of ones that is roughly k/2. This compares with the proposed
SEC codes (w = 2) for which the number of ones in a row is
by design at most n − k − 1. Similarly, to locate an error a
traditional SEC code requires an n−k input AND gate
compared with a simple two input AND gate in the proposed
code. In practical implementations, this results in a
significant reduction of the encoding and decoding delays.

One distinct feature of the proposed codes is that they
correct errors on the data bits only. This is similar to other
codes such as Orthogonal Latin square (OLS) codes [10].
However, in OLS codes, each pair of data bits participates in
at most one shared parity check bit to ensure that majority
logic decoding can be used. This is different from the
proposed scheme in which the goal is to ensure that no data
bit participates in all the parity check bits, in which another
data bit participates. This is then used to simplify the
location and correction of an error, as described before.
Another difference is that OLS codes are commonly used
when multiple error correction capabilities are needed
although SEC can also be implemented. The main issues

with SEC OLS codes are that they are only implemented for
a few block sizes and require a large number of parity check
bits. Finally, it is worth mentioning that the parity check
matrices of the proposed codes are similar to that of low
density parity check (LDPC) codes commonly used in
communication systems [11]. Nevertheless, since LDPC
codes usually have large block size, and must provide
multiple error correction, the encoding and decoding
procedures are very different from our proposed codes and
require complex logic circuitry [11].

D. Architecture for Hamming Distance Computation
The proposed architecture grounded on the data path design
is shown in Fig.4. It contains multiple butterfly-formed
weight accumulators (BWAs) proposed for the Hamming
distance computation. The basic function of the BWA is to
count the number of 1’s among its input bits. It consists of
multiple stages of HAs as shown in Fig.5(a), where each
output bit of a HA is associated with a weight. The HAs in a
stage are connected in a butterfly form so as to accumulate
the carry bits and the sum bits of the upper stage separately.
In other words, both inputs of a HA in a stage, except the
first stage, are either carry bits or sum bits computed in the
upper stage. This connection method leads to a property that
if an output bit of a HA is set, the number of 1’s among the
bits in paths reaching the HA is equal to the weight of the
output bit.

Figure 4:.Architecture of Hamming Distance Computation

Paper ID: OCT141617 2747

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 5 (a):.General structure and (b) New revised

structure

In Fig. 5(a), for example, if the carry bit of the HA is set, the
number of 1’s among the associated input bits, i.e., A, B, C,
and D, is 2. At the last stage of Fig. 5(a), the number of 1’s
among the input bits, d, can be calculated as

 d = 8I + 4 (J + K + M) + 2 (L + N + O) + P (5)

Since what we need is not the precise Hamming distance but
the range it belongs to, it is possible to simplify the circuit.
When rmax = 1, for example, two or more than two 1’s
among the input bits can be regarded as the same case that
falls in the fourth range. In that case, we can replace several
HAs with a simple OR-gate tree as shown in Fig. 5(b). This
is an advantage over the SA. Note that in Fig. 5 there is no
overlap between any pair of two carry-bit lines or any pair of
two sum-bit lines. As the overlaps exist only between carry-
bit lines and sum-bit lines, it is not hard to resolve overlaps
in the contemporary technology that provides multiple
routing layers no matter how many bits a BWA takes. We
now explain the overall architecture in more detail. Each

XOR stage generates the bitwise difference vector for either
data bits or parity bits,

E. General Expressions for the Complexity
The complexity as well as the latency of combinational
circuits heavily depends on the algorithm employed. It is
unfortunately hard to derive an analytical and fully
deterministic equation that shows the relationship between
the number of gates and the latency for the proposed
architecture The complexity of the proposed architecture, C,
can be expressed as

C=CXOR+CENC+CBWA(k)+CBWA(n-k)+C2nd+CDU≤n+CENC
+2CBWA(n)+CDU (6)

where CXOR, CENC, C2nd, CDU, and CBWA(n) are complexities
of
XOR banks, an encoder, the second level circuits, the
decision unit, and a BWA for n inputs, respectively. Using
the recurrence relation, CBWA(n) can be calculated as

 (7)

F. General Expressions for the Latency
The latency of the proposed architecture, L, can be
expressed as
L ≤ max [LXOR + LBWA (k), LENC + LXOR + LBWA (n-k)] + L2nd

+ LDU (8)

where LXOR, LENC, L2nd, LDU, and LBWA (n) are the latencies of
an XOR bank, an encoder, the second level circuits, the
decision unit, and a BWA for n inputs, respectively. Note
that the latencies of the OR-gate tree and BWAs for x ≤ n
inputs at the second level are all bounded by log2n. As one
of BWAs at the first level finishes earlier than the other,
some components at the second level may start earlier.
Similarly, some BWAs or the OR-gate tree at the second
level may provide their output earlier to the decision unit so
that the unit can begin its operation without waiting for all of
its inputs. In such cases, L2nd and LDU can be partially hidden
by the critical path of the preceding circuits, and L becomes
shorter than the given expression.

4. Results

Table 2: Comparison For Latency And Complexity

a The number of gates in the critical path.
bThe count of all gates.
cThe critical path delay(CPD)in nanoseconds.

Paper ID: OCT141617 2748

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

dThe equivalent gate count(EGC).
e The numbers in the parenthesis are normalized values.

Table II shows the latencies and hardware complexities
resulting from three architectures: 1) the conventional
decode-and-compare; 2) The SA-based direct compare; and
3) the proposed ones. In [5], the latency is measured from
the time when the incoming address is completely encoded.
As the critical path starts from the arrival of the incoming
address to a cache memory, the encoding delay must be,
however, included in the latency computation. The latency
values in Table II are all measured in this way. Besides,
critical-path delays in Table II are obtained by performing
post layout simulations and equivalent gate counts are
measured by counting a two-input NAND as one. As shown
in Table II, the proposed architecture is effective in reducing
the latency as well as the hardware complexity even with
considering the practical factors. Note that the effectiveness
of the proposed architecture over the SA-based one in
shortening the latency gets larger as the size of a codeword
increases. The reason is that, the latencies of the SA-based
architecture and the proposed one is dominated by SAs and
HAs, respectively. As the bit-width doubles, at least one
more stage of SAs or HAs needs to be added. Since the
critical path of a HA consists of only one gate while that of a
SA has several gates, the proposed architecture achieves
lower latency than its SA-based counterpart, especially for
long code words.

5. Conclusion

To reduce the latency and hardware complexity, a new
architecture has been presented for matching the data
protected with an ECC. The proposed architecture examines
whether the incoming data matches the stored data if a
certain number of erroneous bits are corrected. To reduce the
latency, the comparison of the data is parallelized with the
encoding process that generates the parity information. It is
based on the fact that the systematic codeword has separate
fields for the data and parity. In addition, an efficient
processing architecture has been presented to further
minimize the latency and complexity. As the proposed
architecture is effective in reducing the latency as well as the
complexity considerably, it can be regarded as a promising
solution for the comparison of ECC-protected data. Though
this brief focuses only on the tag match of a cache memory,
the proposed method is applicable to diverse applications
that need such comparison.

References

[1] J.D. Warnock, Y.H. Chan, S. M.Carey, H.Wen, P. J.

Meaney, G.Gerwig, H.H.Smith, Y.H.Chan, J. Davis, P.
Bunce, A.Pelella, D.Rodko, P.Patel, T.Strach,
D.Malone, F. Malgioglio, J. Neves, D. L. Rude, and W.
V. Huott “Circuit and physical design implementation
of the microprocessor chip for the zEnterprise system,”
IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 151–
163, Jan. 2012.

[2] B.Y Kong, Jihyuck Jo, Hyewon Jeong, Mina Hwang,
Soyoung Cha, Bongjin Kim, and In-Cheol Park, “Low-
Complexity Low-Latency Architecture for Matching of
Data Encoded With Hard Systematic Error-Correcting

Codes,” IEEE Trans. Very Large Scale Integr.(VLSI)
Syst., vol. 22, no. 7, pp. 1648 - 1652, July. 2014.

[3] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T.
Asakawa, T. Muta, K.Morita, T. Motokurumada, S.
Okada, H. Yamashita, Y. Satsukawa, A. Konmoto, R.
Yamashita, and H. Sugiyama, “A 1.3 GHz fifth
generation SPARC64 microprocessor,” in ISSCC. Dig.
Tech. Papers, 2003, pp. 246–247.

[4] AMD Inc., Sunnyvale, CA, “Family 10h AMD
Opteron™ Processor Product Data Sheet,” PID: 40036
Rev: 3.04, 2010.
Available:http://support.amd.com/us/Processor_TechDo
cs/40036.pdf [Online]

[5] W.Wu, D. Somasekhar, and S.-L. Lu, “Direct compare
of information coded with error-correcting codes,”
IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol.
20, no. 11, pp. 2147–2151, Nov. 2012.

[6] Pedro Reviriego, Salvatore Pontarelli, Juan Antonio
Maestro, and Marco Ottavi, “A Method to Construct
Low Delay Single Error Correction Codes for
Protecting Data Bits Only,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems., vol.
32, no. 3, pp. 479 - 483, March 2013.

[7] M. Nicolaidis, “Design for soft error mitigation,” IEEE
Trans. Device Mater. Reliab., vol. 5, no. 3, pp. 405–
418, Sep. 2005.

[8] C. L. Chen and M. Y. Hsiao, “Error-correcting codes
for semiconductor memory applications: A state-of-the-
art review,” IBM J. Res. Develop., vol. 28, no. 2, pp.
124–134, 1984.

[9] G. C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, and A.
Salsano, “Fault tolerant solid state mass memory for
space applications,” IEEE Trans. Aerospace Electron.
Syst., vol. 41, no. 4, pp. 1353–1372, Oct. 2005.

[10] M. Y. Hsiao, D. C. Bossen, and R. T. Chien,
“Orthogonal latin square codes,” IBM J. Res. Develop.,
vol. 14, no. 4, pp. 390–394, Jul. 1970.

[11] G. Li, I. J. Fair, and W. A. Krzymien, “Low-density
parity-check codes for space-time wireless
transmission,” IEEE Trans. Wirel. Commun., vol.5, no.
2, pp. 312–322, Feb. 2006.

[12] M. Y. Hsiao “A class of optimal minimum odd-weight
column SECDED codes,” IBM J. Res. Develop., vol. 14,
pp. 395–301, Jul. 1970.

[13] R. W. Hamming, “Error detecting and error correcting
codes,” Bell Syst. Tech. J., vol. 29, pp. 147–160, Apr.
1950.

[14] V. Gherman, S. Evain, N. Seymour, and Y. Bonhomme,
“Generalized parity-check matrices for SEC-DED codes
with fixed parity,” in Proc. IEEE On-Line Testing
Symp., Jul. 2011, pp. 198–20.

Paper ID: OCT141617 2749

http://creativecommons.org/licenses/by/4.0/�

