
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Developing an Effective System for Keyword Based
Query Processing

Ashwini P. Kshirsagar, G.M.Bhandari

Abstract: Range search and nearest neighbor retrieval, involve only conditions on objects which come under conventional spatial
queries. Today, many modern applications call for novel forms of queries that aim to find objects satisfying both a spatial predicate, and
a predicate on their associated texts. The existing solutions to such queries either incur prohibitive space consumption or are unable to
give real time answers. In this paper, we have remedied the situation by developing an access method called the spatial inverted index
(SI-index). Not only that the SI-index is fairly space economical, but also it has the ability to perform keyword-augmented nearest
neighbor search in time that is at the order of dozens of milli-seconds. Furthermore, as the SI-index is based on the conventional
technology of inverted index, it is readily incorporable in a commercial search engine that applies massive parallelism, implying its
immediate industrial merits. So the results are more relevant and fast, For example, instead of considering all the restaurants, a nearest
neighbor query would instead ask for the restaurant that is the closest among those whose menus contain “steak, spaghetti, brandy” all
at the same time.

Keywords: Spatial Index, Ranking, Inverted Index

1. Introduction

On the one hand, to meet the effective data retrieval need,
the large amount of documents demand the cloud server to
perform result relevance ranking, instead of returning
undifferentiated results. Such ranked search system enables
data users to find the most relevant information quickly,
rather than burdensomely sorting through every match in the
content collection. Ranked search can also elegantly
eliminate unnecessary network traffic by sending back only
the most relevant data, which is highly desirable in the “pay-
as-you-use” cloud paradigm.

We are going to develop a new access method called the
spatial inverted index that extends the conventional inverted
index to cope with multidimensional data, and comes with
algorithms that can answer nearest neighbor queries with
keywords in real time. As verified by experiments, the
proposed techniques outperform the IR2-tree in query
response time, often by a factor of orders of magnitude.

Spatial web objects are gaining in prevalence, and numerous
works on geographical retrieval study the problem of
extracting geographic information from web pages (e.g., [1,
11, 13]), which yields spatial web objects that can
subsequently be queried. Commercial services such as
Google and Yahoo! offer local search functionality. Given a
spatial keyword query, they return spatial web objects, e.g.,
stores and restaurants, near the query location. The results
consist of single objects that each satisfy the query in
isolation.

In contrast, we aim to find groups of objects such that the
objects in a group collectively satisfy a query. Several
recently proposed hybrid indexes that tightly integrate
spatial indexing (e.g., the R-tree) and text indexing (e.g.,
inverted lists). In these indexes, each entry e in a tree node
stores a keyword summary field that concisely summarizes
the keywords in the subtree rooted at e. This enables
irrelevant entries to be pruned during query processing. The
IR2-tree and the bR*-tree [14] augment the R-tree with
signatures and bitmaps, respectively. We use the IR-tree [8],
covered in Section 3.1, as our index structure due to two

features of the IR-tree. First, the fanout of the tree is
independent of the number of words of objects in the
dataset. Second, during query processing, only (a few)
posting lists relevant to the query keywords need to be
fetched.

However, we note that our proposed algorithms are not tied
to the IR-tree, but can be used also with the other tightly
combined index. Most existing works on spatial keyword
queries retrieve single objects that are close to the query
point and are relevant to the query keywords. In contrast, we
retrieve groups of objects that are close to the query point
and collectively meet the keywords requirement. To the best
of our knowledge, the only work that retrieves groups of
spatial keyword objects relates to the mCK query [14, 15]
that takes a set of m keyword as argument.

It returns m objects of minimum diameter that match the m
keywords. It is assumed that each object in the result
corresponds to a unique query keyword. In contrast, our
query takes both a spatial location and a set of keywords as
arguments, and its semantics are quite different from those
of the mCK query.

2. Literature Survey

Literature survey is the most important step in software
development process. Before developing the tool it is
necessary to determine the time factor, economy n company
strength. Once these things are satisfied, ten next steps are to
determine which operating system and language can be used
for developing the tool. Once the programmers start building
the tool the programmers need lot of external support. This
support can be obtained from senior programmers, from
book or from websites. Before building the system the above
consideration are taken into account for developing the
proposed system.

Various spatial queries using R-tree [11] and R*-tree [5]
have been extensively studied. Besides the popular nearest
neighbor query [23] and range query [18], closest-pair
queries for spatial data using R-trees have also been
investigated [13], [9], [25]. Nonincremental recursive and

Paper ID: OCT141578 2578

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

iterative branchand- bound algorithms for k-closest pairs
queries have been discussed by Corral et al. [9]. An
incremental algorithm based on priority queues for the
distance join query has been discussed by Hjaltason and
Samet [13].

Moreover, their queries specify a set of spatial locations,
while our queries specify keywords with no specific spatial
location. Various studies have also been done on finding
association rules and co-location patterns in spatial
databases [16], [24], [29], the aim being to find objects that
frequently occur near to each other. Objects are judged to be
near to each other if they are within a specified threshold
distance of each other. Our study here is a useful alternative
which foregoes the distance threshold, but instead allows
users to verify their hypothesis through spatial discovery.

The objects returned are required to intersect with the query
MBR and contain all the user-specified keywords. A hybrid
index of R*-tree and inverted index, called the KR*-tree, is
used for query processing. Felipe et al. [10] proposed
another similar query combining k-NN query and keyword
search, and uses a hybrid index of R-tree and signature file,
called the IR2. Our mCK query differs from these two
queries. First, our query specifies keywords with no specific
location. Second, all the userspecified keywords do not
necessarily appear in one result tuple. They can appear in
multiple tuples as long as the tuples are closest in space.

3. Objective and Scope

Main contributions are summarized as follows:
1) This is the first work that addresses the keyword based

search. We also identify three crucial issues that an
effective spatial data based and desired keyword based
search engine should meet.

2) We have defined and used a method for combining
spatial data index and IR Trees.

3) We propose three important guidelines in identifying
the user desired keyword search for node type, and
design a formula to compute the confidence level of a
certain node type to be a desired search for node based
on the guidelines.

4) We design formulae to compute the confidence of each
candidate node type as the desired search via node to
model natural human intuitions, in which we take into
account the pattern of keywords co-occurrence in query.

5) We implement the proposed techniques in a keyword
search technique prototype called IR2Trees Extensive
experiments, show its effectiveness, efficiency and
scalability.

4. Methodology

4.1 Spatial Inverted List

The spatial inverted list (SI-index) is essentially a
compressed version of an I-index with embedded
coordinates as described in Section 5. Query processing with
an SI-index can be done either by merging, or together with
R-trees in a distance browsing manner. Furthermore, the
compression eliminates the defect of a conventional I-index
such that an SI-index consumes much less space. 6.1 The

Compression Scheme Compression is already widely used to
reduce the size of an inverted index in the conventional
context where each inverted list contains only ids. In that
case, an effective approach is to record the gaps between
consecutive ids, as opposed to the precise ids. For example,
given a set S of integers f2; 3; 6; 8g, the gap-keeping
approach will store f2; 1; 3; 2g instead, where the ith value (i
_ 2) is the difference between the ith and ði _ 1Þth values in
the original S. As the original S can be precisely
reconstructed, no information is lost. The only overhead is
that decompression incurs extra computation cost, but such
cost is negligible compared to the overhead of I/Os. Note
that gap-keeping will be much less beneficial if the integers
of S are not in a sorted order. This is because the space
saving comes from the hope that gaps would be much
smaller (than the original values) and hence could be
represented with fewer bits. This would not be true had S not
been sorted.

Compressing an SI-index is less straightforward. The
difference here is that each element of a list, a.k.a. a point p,
is a triplet (idp,Xp,Yp), including both the id and
coordinates of p. As gap-keeping requires a sorted order, it
can be applied on only one attribute of the triplet. For
example, if we decide to sort the list by ids, gap-keeping on
ids may lead to good space saving, but its application on the
x- and y-coordinates would not have much effect. To attack
this problem, let us first leave out the ids and focus on the
coordinates.

Even though each point has two coordinates, we can convert
them into only one so that gap-keeping can be applied
effectively. The tool needed is a space filling curve (SFC)
such as Hilbert- or Z-curve.

Figure 5: Converted values of the points in Fig. 1a based on

Z-curve

SFC converts a multidimensional point to a 1D value such
that if two points are close in the original space, their 1D
values also tend to be similar. As dimensionality has been
brought to 1, gap-keeping works nicely after sorting the
(converted) 1D values.

For example, based on the Z-curve,2 the resulting values,
called Z-values, of the points in Fig. 1a are demonstrated in
Fig. 5 in ascending order. With gap-keeping, we will store
these 8 points as the sequence 12; 3; 8; 1; 7; 9; 2; 7. Note
that as the Z-values of all points can be accurately restored,
the exact coordinates can be restored as well.

4.2 Building R-Tree

Remember that an SI-index is no more than a compressed
version of an ordinary inverted index with coordinates
embedded, and hence, can be queried in the same way as
described in Section 3.2, i.e., by merging several inverted
lists. In the sequel, we will explore the option of indexing

Paper ID: OCT141578 2579

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

each inverted list with an R-tree. As explained in Section
3.2, these trees allow us to process a query by distance
browsing, which is efficient when the query keyword set Wq
is small.

Our goal is to let each block of an inverted list be directly a
leaf node in the R-tree. This is in contrast to the alternative
approach of building an R-tree that shares nothing with the
inverted list, which wastes space by duplicating each point
in the inverted list. Furthermore, our goal is to offer two
search strategies simultaneously: merging (Section 3.2) and
distance browsing (Section 5).

Creating an R-tree from a space filling curve has been
considered by Kamel and Faloutsos [16]. Different from
their work, we will look at the problem in a more rigorous
manner, and attempt to obtain the optimal solution.
Formally, the underlying problem is as follows. There is an
inverted list L with, say, r points p1, p2; . . . ; pr, sorted in
ascending order of Z-values. We want to divide L into a
number of disjoint blocks such that (i) the number of points
in each block is between B and 2B _ 1, where B is the block
size, and (ii) the points of a block must be consecutive in the
original ordering of L. The goal is to make the resulting
MBRs of the blocks as small as possible.

We have finished explaining how to build the leaf nodes of
an R-tree on an inverted list. As each leaf is a block, all the
leaves can be stored in a blocked SI-index as described in
Section 6.1. Building the nonleaf levels is trivial, because
they are invisible to the merging-based query algorithms,
and hence, do not need to preserve any common ordering.
We are free to apply any of the existing R-tree construction
algorithms. It is noteworthy that the nonleaf levels add only
a small amount to the overall space overhead because, in an
R-tree, the number of nonleaf nodes is by far lower than that
of leaf nodes.

5. Conclusion

The SI-index, accompanied by the proposed query
algorithms, has presented itself as an excellent tradeoff
between space and query efficiency. Compared to IFR, it
consumes significantly less space, and yet, answers queries
much faster. Compared to IR2-tree, its superiority is
overwhelming since its query time is typically lower by a
factor of orders of magnitude. We have seen plenty of
applications calling for a search engine that is able to
efficiently support novel forms of spatial queries that are
integrated with keyword search.

The existing solutions to such queries either incur
prohibitive space consumption or are unable to give real
time answers. In this paper, we have remedied the situation
by developing an access method called the spatial inverted
index (SI-index). Not only that the SI-index is fairly space
economical, but also it has the ability to perform keyword-
augmented nearest neighbor search in time that is at the
order of dozens of milli-seconds.

References

[1] X. Cao, L. Chen, G. Cong, C.S. Jensen, Q. Qu, A.
Skovsgaard, D.Wu, and M.L. Yiu, “Spatial Keyword
Querying,” Proc. 31st Int’l Conf. Conceptual Modeling
(ER), pp. 16-29, 2012.

[2] X. Cao, G. Cong, and C.S. Jensen, “Retrieving Top-k
Prestige- Based Relevant Spatial Web Objects,” Proc.
VLDB Endowment, vol. 3, no. 1, pp. 373-384, 2010.

[3] X. Cao, G. Cong, C.S. Jensen, and B.C. Ooi, “Collective
Spatial Keyword Querying,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 373-384, 2011.

[4] I.D. Felipe, V. Hristidis, and N. Rishe, “Keyword Search
on Spatial Databases,” Proc. Int’l Conf. Data Eng.
(ICDE), pp. 656-665, 2008.

[5] R. Hariharan, B. Hore, C. Li, and S. Mehrotra,
“Processing Spatial- Keyword (SK) Queries in
Geographic Information Retrieval (GIR) Systems,” Proc.

[6] D. Zhang, Y.M. Chee, A. Mondal, A.K.H. Tung, and M.
Kitsuregawa, “Keyword Search in Spatial Databases:
Towards Searching by Document,” Proc. Int’l Conf. Data
Eng. (ICDE), pp. 688-699, 2009.

Paper ID: OCT141578 2580

http://creativecommons.org/licenses/by/4.0/�

