An Overall Survey of Extractive Based Automatic Text Summarization Methods

Pallavi D. Patil1, Mane P. M2

1,2Pune University, ZEAL Education’s “Dnyanganaga College of Engineering and Research, Narhe, Pune, Maharashtra, India

Abstract: The increasing availability of on line information has required exhaustive research in the area of automatic text summarization within the Natural Language Processing (NLP) area. Over the past half a century, the problem has been addressed from many different perspective in varying domains and using various paradigms. This survey intends to investigate some of the most relevant approaches both in the areas of single-document and multiple document summarizations, giving special prominence to experimental methods and extractive techniques. Some hopeful approaches that focus on exact details of the summarization problem are also discussed. Special attention is devoted to automatic evaluation of summarization systems, as future research on summarization is strongly dependent on progress in this area.

Keywords: Text Summarization, Extractive based Summary, Abstractive based summary, Topic Identification, Interpretation, Summary Generation.

1. Introduction

The subfield of summarization has been investigated by the NLP area for nearly the last half century. Radev et al. (2002) define a summary as “a text that is produced from one or more texts, that convey important information in the original text, and that is no longer than half of the original text and usually significantly less than that”. This simple definition captures three important aspects that differentiate research on automatic summarization:

- Summaries may be produced from a single document or multiple documents;
- Summaries should be working in an indicative way or informative way- In Indicative summarization systems only present the main idea of the text to the user. The informative summarization systems give concise information of the main text and it can be considered as a substitution for the main document.
- Summaries should be short.

There are two main approaches to the task of summarization—Extractive and Abstraction. Extraction involves concatenating extracts taken from the corpus into a summary, whereas abstraction involves generating novel sentences from information extracted from the corpus. It has been observed that in the context of multi-document summarization of news articles, extraction may be inappropriate because it may produce summaries which are overly verbose or biased towards some sources.

In abstraction involves summary, the summarized text is an interpretation of an original text. The process of producing involves rewriting the original text in a shorter version by replacing wordy concept with shorter ones. At first, the system analyses the main text and then it presents its comprehension from the text in a human understandable form.

2. Abstractive Based Summarization Methods

Abstractive summarization techniques are broadly classified into two categories: Structured based approach and Semantic based approach.

2.1 Structured Based Approach

Structured based approach encodes most important information from the document(s) through cognitive schemas. Different methods that use structured based approach are as
Follows: tree base method, template based method, ontology based method, lead and body phrase method and rule based method.[6]

2.2 Semantic Based Approach

In Semantic based method, semantic representation of document(s) is used to feed into natural language generation (NLG) system. This method focus on identifying noun phrases and verb phrases by doling out linguistic data. Different methods that use semantic based Approach are as follows: Multimodal Semantic model, Information item based method, and semantic graph based method [6]

Figure 2: Abstractive Based Summarization Methods

3. Features for Extractive Text Summarization

Some features to be considered for including a sentence in final summary are:

A. Content Word (Keyword) Feature
Content words or Keywords are usually nouns and determined using tf × idf measure. Sentences having keywords are of greater chances to be included in summary. Another keyword extraction method is given below, having three modules:

1) Morphological Analysis
2) Noun Phrase (NP) Extraction and Scoring
3) Noun Phrase (NP) Clustering and Scoring

Figure 3.1 shows a pictorial representation of the keyword Extraction method, [7]

B. Title Word Feature:
Sentences containing words that appear in the title are also indicative of the theme of the document. These sentences are having greater chances for including in summary.[7]

C. Sentence Location Feature:
Usually first and last sentence of first and last paragraph of a text document are more important and are having greater chances to be included in summary.[7]

D. Sentence Length Feature:
Very large and very short sentences are usually not included in summary.[7]

E. Proper Noun Feature
Proper noun is name of a person, place and concept etc. Sentences containing proper nouns are having greater chances for including in summary[7].

F. Upper-Case Word Feature
Sentences containing acronyms or proper names are included.[7]

G. Cue-Phrase Feature
Sentences containing any cue phrase (e.g. “in conclusion”, “this letter”, “this report”, “summary”, “argue”, “purpose”, “develop”, “attempt” etc.) are most likely to be in summaries.[7]

H. Biased Word Feature:
If a word appearing in a sentence is from biased word list, then that sentence is important. Biased word list is previously defined and may contain domain specific words.[7]

I. Font Based Feature:
Sentences containing words appearing in upper case, bold, italics or Underlined fonts are usually more important.[7]

J. Pronouns:
Pronouns such as “she, they, it” cannot be included in summary unless they are expanded into corresponding nouns.[7]

K. Sentence-to-Sentence Cohesion:
For each sentence s compute the similarity between each other sentence s' of the document, then add up those
similarity values, obtaining the raw value of this feature for s. The process is repeated for all sentences.[7]

L. Sentence-to-Centroid Cohesion:
For each sentence s as compute the vector representing the centroid of the document, which is the arithmetic average over the corresponding coordinate values of all the sentences of the document; then compute the similarity between the centroid and each sentence, obtaining the raw value of this feature for each sentence.[7]

M. Occurrence of non-essential information:
Some words are indicators of non-essential information. These words are speech markers such as “because”, “furthermore”, and “additionally”, and typically occur in the beginning of a sentence. This is also a binary feature, taking on the value “true” if the sentence contains at least one of these discourse markers, and “false” otherwise.[7]

N. Discourse Analysis
Discourse level information, in a text is one of good feature for text summarization. In order to produce a overall discourse structure of the text and then removing sentences peripheral to the main message of the text. These features are important as, a number of methods of text summarization are using them. These features are covering statistical and linguistic characteristics of a language.[7]

4. Extractive Based Summarization Methods
This process can be divided into two steps: Pre-Processing step and Processing step. Pre-Processing is structured representation of the original text. It usually includes:

1) Sentences boundary identification. In English, sentence boundary is identified with presence of dot at the end of sentence.
2) Stop Word Elimination-Common words with no semantics.
3) Stemming-The purpose of stemming is to obtain the stem or radix of each word, which emphasize its semantics.

In Processing step, features influencing the relevance of sentences are decided and calculated and then weights are assigned to these features using weight learning method. Final score of each sentence is determined using Feature-weight equation. Top ranked sentences are selected for final summary. Most of the current automated text summarization systems use extraction method to produce a summary. Sentence extraction techniques are commonly used to produce extraction summaries. One of the methods to obtain suitable sentences is to assign some numerical measure of a sentence for the summary called sentence scoring and then select the best sentences to form document summary based on the compression rate. In the extraction method, compression rate is an important factor used to define the ratio between the length of the summary and the source text. As the compression rate increases, the summary will be larger, and more insignificant content is contained. While the compression rate decreases the summary to be short, more information is lost. In fact, when the compression rate is 5-30 %, the quality of summary is acceptable.

4.1 Term Frequency-Inverse Document Frequency
It is a numerical statistic which reflects how important a word is in a given document. The TF-IDF value increases proportionally to the number of times a word appears in the document. This method mainly works in the weighted term-frequency and inverse sentence frequency paradigm, where sentence-frequency is the number of sentences in the document that contain that term. These sentence vectors are then scored by similarity to the query and the highest scoring sentences are picked to be part of the summary. Summarization is query-specific. The hypothesis assumed by this approach is that if there are “more specific words” in a given sentence, then the sentence is relatively more important. The target words are usually nouns. This method performs a comparison between the term frequencies (tf) in a document –in this case each sentence is treated as a document and the document frequency (df), which means the number of times that the word occurs along all documents. The TF/IDF score is calculated as,

\[\text{TF/IDF}(w)=DN(\log(1 + tf)/\log(df)) \]

where DN is the number of documents.

4.2 Cluster Based Method
In this method, the semantic nature of a given document is captured and expressed in natural language by a set of triplets (subjects, verbs, objects related to each sentence). Cluster these triplets using similar information. The triplets’ statements are considered as the basic unit in the process of summarization. More similar the triplets are, the more the information is useless repeated; thus, a summary may be constructed using a sequence of sentences related the computed clusters [7].

4.3 Graph Theoretic Approach
In this technique, there is a node for every sentence. Two sentences are connected with an edge if the two sentences share some common words, in other words, their similarity is above some threshold. This representation gives two results: The partitions contained in the graph (that is those subgraphs that are unconnected to the other sub graphs), form distinct topics covered in the documents. The second result by the graph- theoretic method is the identification of the important sentences in the document. The nodes with high cardinality (number of edges connected to that node), are the important sentences in the partition, and hence carry higher preference to be included in the summary.
Figure (3.3) shows an example graph for a document. It can be seen that there are about 3-4 topics in the document; the nodes that are encircled can be seen to be informative sentences in the document, since they share information with many other sentences in the document. The graph theoretic method may also be adapted easily for visualization of inter and intra document similarity[7].

4.4 Machine Learning approach

In this method, the training data set is used for reference and the summarization process is modeled as a classification problem: sentences are classified as summary sentences and non-summary sentences based on the features that they possess. The classification probabilities are learnt statistically from the training data, using Bayes’ rule.[7]

4.5 Text summarization with neural networks

In this method, each document is converted into a list of sentences. Each sentence is represented as a vector \([f_1,f_2,...,f_7]\), composed of 7 features. Seven Features of a Document 1) \(f_1\) Paragraph follows title2) \(f_2\) Paragraph location in document 3) \(f_3\) Sentence location in paragraph 4) \(f_4\) First sentence in paragraph 5) \(f_5\) Sentence length 6) \(f_6\) Number of thematic words in the sentence 7) \(f_7\) Number of title words in the sentence. The first phase of the process involves training the neural networks to learn the types of sentences that should be included in the summary. Once the network has learned the features that must exist in summary sentences, we need to discover the trends and relationships among the features that are inherent in the majority of sentences. This is accomplished by the feature fusion phase, which consists of two steps: 1) eliminating uncommon features; and 2) collapsing the effects of common features[7].

4.6 Automatic text summarization based on fuzzy

This method considers each characteristic of a text such as sentence length, similarity to little, similarity to key word and etc. as the input of fuzzy system. Then, it enters all the rules needed for summarization, in the knowledge base of system. Afterward, a value from zero to one is obtained for each sentence in the output based on sentence characteristics and the available rules in the knowledge base.

The obtained value in the output determines the degree of the importance of the sentence in the final summary. The input membership function for each feature is divided into three membership functions which are composed of insignificant values (low L), very low (VL), medium (M), significant values (High) and very high (VH). The important sentences are extracted using IF-THEN rules according to the feature criteria. The fuzzy logic system consists of four components: Fuzzifier, Inference engine, Defuzzifier, and the Fuzzy knowledge base. In the fuzzifier, crisp inputs are translated into linguistic values using a membership function to be used to the input linguistic variables. After fuzzification, the inference engine refers to the rule base containing fuzzy IF-THEN rules to derive the linguistic values. In the last step, the output linguistic variables from the inference are converted to the final crisp values by the defuzzifier using membership function for representing the final sentence score. Fig 3.6 shows the fuzzy logic based method [7].

4.7 LSA

Singular Value Decomposition (SVD) is a very powerful mathematical tool that can find principal orthogonal dimensions of multidimensional data. It has Applications in many areas and is known by different names: Karhunen-Loeve Transform in image processing, Principal Component Analysis (PCA) in signal processes and Latent Semantic Analysis (LSA) in text processing. It gets this name LSA because SVD applied to document word matrices, groups’ documents that are semantically related to each other, even when they do not share common words. Words that usually occur in related contexts are also related in the same singular space. This method can be applied to extract the topic-words and content-sentences from documents.
The advantage of using LSA vectors for summarization rather than the word vectors is that conceptual (or semantic) relations as represented in human brain are automatically captured in the LSA, while using word vectors without the LSA transformation requires design of explicit methods to derive conceptual relations. Since SVD finds principal and mutually orthogonal dimensions of the sentence vectors, picking out a representative sentence from each of the dimensions ensures relevance to the document, and orthogonality ensures non-redundancy. It is to be noted that this property applies only to data that has principal dimensions inherently—however, LSA would probably work since most of the text data has such principal dimensions owing to the variety of topics it addresses.[7]

5. Evaluating the Summarization Systems

Evaluation methods are useful in evaluating the usefulness and trustfulness of the summary. In summary, evaluating the qualities like comprehensibility, coherence, and readability is really difficult. System evaluation might be performed manually by experts who compare different summaries and choose the best one. A problem with this approach is that the individuals who perform the evaluation task normally have very different ideas on what a good summary should contain. In a test, Hassel (2003) found that at best there was a 70% agreement between summaries created by two individuals. A further problem with manually performed evaluation is that it is an extremely time consuming task. Automatic system evaluation is another way for evaluating summarization precision not a base standard for evaluating systems, different criteria are used for specifying the similarity between the summary which is generated by a system versus the one generated by human. These terms are defined by following equations:

\[
\text{Precision} = \frac{\text{Correct}}{(\text{Correct} + \text{Wrong})} \quad \text{(1)}
\]

\[
\text{Recall} = \frac{\text{Correct}}{(\text{Correct} + \text{Missed})} \quad \text{(2)}
\]

Where, Correct is the number of sentences that are the same in both summary which are produced by human and system.; Wrong is the number of sentences presented in summary and produced by system but is not included in human generated summary; Missed is the number of sentences which are not appeared in system generated summary but presented in the summary produced by human. Therefore, Precision specifies the number of suitable sentences which are extracted by system and Recall specify the number of suitable sentences that the summarization system missed. There are also two other criteria for evaluating system which are compression ratio and retention ratio And defined as follows:

\[
\text{Compression Ratio: } CR = \frac{\text{Length}_s}{\text{Length}_T}
\]

\[
\text{Retention Ratio: } RR = \frac{\text{Information in } s}{\text{Information in } T}
\]

Where S is the summarized text and T is the main text. So we can conclude that a good summary is the one with low CR & high PR.[8]

6. Applications of Automatic Text Summarization

The very first application area for automatic text summarization was to create abstracts/extracts from articles without abstracts to be stored in library systems together with the title and author name, (Luhn 1959). At that time one could not store the whole article digitally in the library system due to storage constraints. Today there is a wide range of application areas for automatic text summarization, the most common and obvious one is in information retrieval. We can already observe it in the result list of search engines where a summarized part of each retrieved document is presented interweaved together with the search terms of the user, the so-called snippets. We can consider these snippets to be a crude form of user adapted text summaries. Another possible application is in the mass media area. Today a news article is written by a journalist, but when typesetting the newspaper the article is shorten manually to the appropriate size so that it can fit in the layout, in between the advertisement. In parallel the same article is also typeset for the web, WAP or SMS text messages. An experiment is described in Dalianis et al. (2004) where both manual editors and the SweSum text summarizer (Dalianis 2000) where given the task to summarize 334 news texts written in Swedish to the appropriate format for the newspaper Sydsvenska Dagbladet. The manually cut down texts were compared with the automatically summarized texts and it was found that the texts where almost identical. Both the editors and the SweSum text summarizer cut down and summarized the texts mainly from the end. The same experiment was carried out for SMS format (maximum 160 characters) and the results from SweSum were considered suitable to be used directly in news paper production. Business Intelligence systems or news monitoring systems are today very common where one surveys a large flow of
news media, this news flow can be summarized so the user can obtain an overview of the stream before deciding if she should click on the news summary and read the complete news article. One nice live application is the Columbia News Blaster, which takes several news articles describing the same topic and summarizes it to one single news flash (McKeon & Radev 1999, McKeown et al. 2003). Further one might need a multilingual multi-document automatic text summarizer, in which case one could use MEAD (Radev et al., 2004). If we go to the area of medicine and biomedicine we find several attempts to use automatic text summarization and also the closely related area natural language generation to adapt both text and data to different user groups such as patients, physicians, nurses and scientists. In Hirst et al. (1997) a system is presented that from medical digital patients, physicians, nurses and scientists. In Hirst et al. to adapt both text and data to different user groups such as generation of text from source data Portet et al. (2009 diabetes but also general health education. If we look at and also the closely related area natural language generation we find several attempts to use automatic text summarization al., 2004). If we go to the area of medicine and biomedicine summarizer, in which case one could use MEAD (Radev et al. 1999, McKeown et al. 2003). Further one might need a multilingual multi-document automatic text summarizer, in which case one could use MEAD (Radev et al., 2004). If we go to the area of medicine and biomedicine we find several attempts to use automatic text summarization and also the closely related area natural language generation to adapt both text and data to different user groups such as patients, physicians, nurses and scientists. In Hirst et al. (1997) a system is presented that from medical digital

7. Conclusion

Now days, Automatic Text Summarization is one of the hot areas of research and attracts lots of attentions from different field. It consists of automatically creating a summary from one or more texts. There are three main steps for producing a summary from an input text (Topic Identification, Interpretation and summary generation). Most of summarization systems follow these steps in order to create summary. In this paper we discuss types of summarization methods which might be used in a system for generating a summary. First is abstractive based summarization and second is Extractive based summarization method. Abstractive summary method produces highly coherent, cohesive, information rich and less redundant summary. Abstractive text summarization is a challenging area because of the complexity of natural language processing. We only mention the Abstractive based text summarization methods. This paper is focussing on extractive summarization methods. An extractive summary is selection of important sentences from the original text. The importance of sentences is decided based on statistical and linguistic features sentences have to an extent, succeeded in making an effective summary of a document.

References

Author Profile

Patil Pallavi D. Received the B.E degree in Information Technology From D.A.C.O.E. Karad from Shivaji University and Now,M.E. Scholar at Pune University , ZEAL education’s “Dnyangangan College of Engineering And Research “, Narhe, Pune.

Mr. Mane Prashant M. (Assistant Professor) at Pune University, ZEAL education’s “Dnyangangan College of Engineering And Research “, Narhe, Pune. Qualification: M.E. (IT), Teaching Experience: 6 Years