
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Defense against SQL Injection and Cross Site
Scripting Vulnerabilities

Kirti Randhe1, Vishal Mogal2

1Department of Computer Engineering, RMD Sinhgad School of Engineering, Pune, Maharashtra, India

Abstract: As dependence on web applications is increasing very rapidly in various fields like social networks, online services, banking,
etc. Access to web applications and ease of use make them more popular in offering online services instead of in person services. Due to
the presence of security weakness in web applications malicious user can easily exploit various security vulnerabilities and becomes
reason of their failure.SQL injection attacks and cross site scripting attacks are the two most common attacks in web application. Attack
prevention techniques protect the applications from attack during their execution in actual environment. Prevention and detection of
intrusion is made through a deployment of reverse proxy with the intrusion and prevention mechanism which are built in against web
attacks specially SQLIA. In reverse proxy user input is sanitized which may transform into a database attack. Here data cleaning
algorithm is used for sanitization application. Using this method SQL injection attack as well as cross site scripting attacks are detected.

Keywords: SQL attacks, SQL injection, Cross site scripting, Sanitization, Vulnerabilities

1. Introduction

Due to internet evolution and expansion most of the
applications have now migrated to web .Due to this effect
,the security risk associated with the web applications also
increases. As most of the web applications have vulnerability
in them due to which various attacks are feasible, and due to
these attacks malicious hackers intend to access sensitive
data in the databases.SQL injection attack is the most serious
and topmost attack found among the top ten vulnerability list
defined by OWASP.

SQL injection attack (SQLIA) is one of this techniques used
to attack databases through the website. This attack tries to
gain access to sensitive data directly by injecting malicious
SQL codes through web application. SQLIA is the type of
code injection attack in which an attacker uses specially
crafted inputs to trick the database into executing attacker
specified database commands. Cross site scripting is a type of
code injection vulnerability that enables malicious user to
send malicious script to web browsers. It occurs whenever a
web application uses user inputs in response pages without
properly validating them. When a user visits an exploited
web page, the browser executes the malicious scripts sent by
the application. This is called as XSS attack. Typical attack
include installing malware, hijacking a users session or
redirecting users to another site.
SQL injection classification:

SQL Injection
SQL Injection Attacks (SQLIA) refers to a class of code-
injection attacks in which data provided by user is included
in the SQL query in such a way that part of the user’s input is
treated as SQL code. These types of vulnerabilities come
among the most serious threats for web applications. Web
applications that are vulnerable to SQL injection allows an
attacker to manipulate SQL queries, which are input to the
database and provide them with complete access to the
underlying databases. SQL Injection vulnerabilities occur
because of nonexistent and/or incomplete validation of user
input. As a result, an attacker can inject input that potentially

alters the behavior of the script being executed [6, 8]. SQL
Injection Attacks can be done in various ways like using
UNION keyword, Tautology condition, Group by Having
Clause etc. There are also various ways of performing such
attacks which are discussed in [4], [5], and [7] by different
authors.

Tautologies: The main goal of tautology-based attack is to
inject code in conditional statements so that they are always
evaluated as true. Using tautologies, the attacker wishes to
either bypass user authentication or insert inject-able
parameters or extract data from the database. A typical SQL
tautology has the form, where the comparison expression
uses one or more relational operators to compare operands
and generate an always true condition. Bypassing
authentication page and fetching data is the most common
example of this kind of attack. In this type of injection, the
attacker exploits an inject-able field contained in the
WHERE clause of query. He transforms this conditional
query into a tautology and hence causes all the rows in the
database table targeted by the query to be returned. For
example, SELECT * FROM user WHERE id=’1’ or ‘1=1’-
‘AND password=’1234’; “or 1=1” is the most commonly
known tautology. In this type of attack the injected code will
always start with a string terminator (‘) followed by the
conditional OR operator. The OR operator will be followed
by a statement that always evaluates to true. The signature for
such attacks is the string terminator (‘) and OR.

Logically incorrect query attacks: The main goal of the
Illegal/Logically Incorrect Queries based SQL Attacks is to
gather the information about the back end database of the
Web Application. When a query is rejected, an error message
is returned from the database including useful debugging
information. This error messages help attacker to find
vulnerable parameters in the application and consequently
database of the application. In fact attacker injects junk input
or SQL tokens in query to produce syntax error, type
mismatches, or logical error by purpose. In this example
attacker makes a type mismatch error by injecting the
following text into the input field:

Paper ID: OCT141523 2198

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1)Original URL: http://www.toolsmarket-
al.com/veglat/?id_nav=2234
2)SQL Injection: http://www.toolsmarket-
al/veglat/?id_nav=2234’
3) Error message showed: SELECT name FROM Employee
WHERE id=2234\’. From the message error we can find out
name of table and fields: name; Employee; id. By the gained
information attacker can organize more strict attacks. The
Illegal/Logically Incorrect Queries based SQL attack is
considered as the basis step for all the other techniques. In
this type of attack there are several ways to perform illegal or
incorrect queries like incorrectly terminating the string (‘),
using AND operator to perform incorrect logics using order
by, etc.

Piggy-Backed Queries: The main goal of the Piggy- Backed
Query is to execute remote commands or add or modify data.
In this attack type, an attacker tries to inject additional
queries along with the original query, which are said to
“piggy-back” onto the original query. As a result, the
database receives multiple SQL queries for execution.
Vulnerability of this kind of attack is dependent of the kind
of database [5]. For example, if the attacker inputs [‘;drop
table users--] into the password field, the application
generates the query: SELECT Login_ID FROM users_ID
WHERE login_ID=’john’ and password=’’; DROP
TABLE users-‘ AND ID=2345 After executing the first
query, the database encounters the query delimiters (;) and
execute the second query. The result of executing second
query would result into dropping the table users, which
would likely destroy valuable information. The signature of
this attack is (;), the database line terminator.

Inference: The main goal of the inference is to change the
behavior of a database or application. There are two well-
known attack techniques that are based on inference: blind
injection and timing attacks.

Blind Injection: Sometimes developers hide the error details
which help attackers to compromise the database. In this
situation attacker face to a generic page provided by
developer, instead of an error message. So the SQLIA would
be more difficult but not impossible. An attacker can still
steal data by asking a series of True/False questions through
SQL statements. Consider two possible injections into the
login field: For example, SELECT accounts FROM users
WHERE id= '1111' and 1 =0 – AND pass = AND pin=0
SELECT accounts FROM users WHERE login= 'doe' and 1
= 1 -- AND pass = AND pin=0 If the application is secured,
both queries would be unsuccessful, because of input
validation. But if there is no input validation, the attacker can
try the chance. First the attacker submits the first query and
receives an error message because of "1=0 ". So the attacker
does not understand the error is for input validation or for
logical error in query. Then the attacker submits the second
query which always true. If there is no login error message,
then the attacker finds the login field vulnerable to injection.
The possible guessing start with the AND operator and some
time attacker also uses conditional operators.

Union Query: The main goal of the Union Query is to trick
the database to return the results from a table different to the

one intended. By this technique, attackers join injected query
to the safe query by the word UNION and then can get data
about other tables from the application. This technique is
mainly used to bypass authentication and extract data. For
example the query executed from the server is the following:
SELECT Name, Phone FROM Users WHERE Id=$id. By
injecting the following Id value: $id =1 UNION ALL
SELECT credit Card Number, 1 FROM Credit sys Table.
We will have the following query: SELECT Name, Phone
FROM Users WHERE Id=1 UNION ALL SELECT credit
card Number, 1 FROM Credit sys Table. This will join the
result of the original query with all the credit card users. The
signature of this attack is UNION character of SQL.

Cross Site Scripting
Cross-Site Scripting also known as XSS is another very
harmful attack type of code injection attack . This flaw
occurs mainly due to the lack of input validation and
encoding. XSS allows attackers to execute script in the
victim’s browser, which can hijack user sessions, deface web
sites, insert hostile content, and conduct phishing attacks .
Any scripting language supported by the victim’s browser
can also be a potential target for this attack. All web
application frameworks are vulnerable to XSS. Different
types of XSS Attacks are discussed in and it also shows how
such attacks are carried out.

2. Related Work

SQLrand [3] appends a random token to SQL keywords and
operators in the application code. This approach was created
randomize instances of the SQL query language, by
randomizing the template query inside the CGI script and the
database parser. The drawbacks of this approach are that the
secret token could be guessed, thus making the approach
ineffective, and that the approach requires the deployment of
a special proxy server.

In SQL Guard and SQL Check [8, 9] queries are checked at
runtime based on a model which is expressed as a grammar
that only accepts legal queries. SQLCheck identifies SQLIAs
by using an augmented grammar and distinguishing untrusted
inputs from the rest of the strings by means of a marking
mechanism. SQL Guard examines the structure of the query
before and after the addition of user-input based on the
model. In two approaches developer should to modify code
to use a special intermediate library or manually insert
special markers into the code where user input is added to a
dynamically generated query. CANDID[5] modifies web
applications written in Java through a program
transformation. This tool dynamically mines the programmer-
intended query structure on any input and detects attacks by
comparing it against the structure of the actual query issued.
CANDID's natural and simple approach turns out to be very
powerful for detection of SQL injection attacks.

AMNESIA[7] combines static analysis and runtime
monitoring. In static phase, it builds models of the different
types of queries which an application can legally generate at
each point of access to the database. Queries are intercepted
before they are sent to the database and are checked against

Paper ID: OCT141523 2199

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

the statically built models, in dynamic phase. Queries that
violate the model are prevented from accessing to the
database. The primary limitation of this tool is that its
success is dependent on the accuracy of its static analysis for
building query models.

SQLIDS [11] approach utilizes security specifications that
describe the intended syntactic structure of SQL statements
that are produced by the application. SQL statements that do
not conform to the specifications are considered as security
violations and their execution is blocked. The detection
technique is based on the assumption that injected SQL
commands have differences in their structure with regard to
the expected SQL commands that are built by the scripts of
the web application. Therefore, if the intended structure of
the expected SQL commands has been explicitly pre-
determined, it is possible to detect malicious modifications
that alter this structure.

An Approach to Detect and Prevent SQL Injection Attacks in
Database Using Web Service identifies the SQLIA by using
web services oriented XPATH authentication Technique [2].
To detect and prevent SQLIA with runtime monitoring,
without stopping the operation login page is redirected to
their checking page. Active Guard worked as susceptibility
detector to detect and prevent the susceptibility Character
and meta character. Service Detector filtration model use to
validate user input from XPATH_validator where the
sensitive data is stored. User input field compare with data
existed in XPATH_validator if it is identical then authorized
user is allowed for next processing. Web Service Oriented
XPATH Authentication Technique does not allow directly to
access database in database server.

SQLProb [6] approach is that the extracted user input data in
the context of the syntactic structure of the query can be
evaluated. This approach is fully modular and does not
require access to the source code of the web applications or
the database. Also the system is easily deployable to existing
enterprise environments and can protect multiple front-end
web applications without any modifications. Experimental
results indicated that high detection rate with reasonable
performance overhead can be achieved making the system
ideal for environments where software or architecture
changes is not an economically viable option.

3. Proposed Framework for Data Sanitization

Figure 3 illustrates the block diagram of Reverse Proxy
Model. In a client server model, a reverse proxy server is
placed, in between the client and the server. The presence of
the proxy server is not known to the user. The sanitizing
application is placed in the Reverse proxy server. A reverse
proxy is used to sanitize the request from the user. When the
request become high, more reverse proxy’s can be used to
handle the request. This enables the system to maintain a low
response time, even at high load.

Figure 1: Block Diagram of Reverse Proxy Model

3.1 Steps for Data Sanitization

The client sends the request to the server. The request is red-
irected to the reverse proxy. The sanitizing application in the
proxy server extracts the URL from the HTTP and the user
data from the SQL statement. First the URL is send to the
signature check and after that the user data (Using prototype
query model) is encrypted using the MD5 hash.. The
sanitizing application sends the validated URL and hashed
user data to the web application in the server. The filter in the
server denies the request if the sanitizing application had
marked the URL request malicious. If the URL is found to be
benign, then the hashed value is send to the database of the
web application. If the hashed user data matches the stored
hash value in the database, then the data is retrieved and the
user gains access to the account. Otherwise the user is denied
access. When the first request is over database response is
returned to client and fetch the next request.
The general work of Reverse proxy model is as follows:
• The client sends the request onto the server.
• The request is redirected onto the reverse proxy.
• Study the payload for next processes.
• The sanitizing application among the proxy server

extracts the URL direct from HTTP and naturally the user
data from the SQL statement.

• The URL is send onto the signature check. The reader
data (Using prototype query model) is encrypted making
use of the MD5 hash.

• Check is it a query, if yes send for signature check
otherwise send data to the client.

• The sanitizing application sends the validated URL and
hashed user data onto the web application in the whole
server.

• The filter within the server denies the request in case the
sanitizing application had marked the URL request
malicious.

• The sanitizing application among the proxy server
extracts the URL direct from HTTP and naturally the user
data from the SQL statement.

• The URL is send onto the signature check.
• The reader data (Using prototype query model) is

encrypted making use of the MD5 hash.
• Check is it a query, if yes send for signature check

otherwise send data to the client.

Paper ID: OCT141523 2200

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

• The sanitizing application sends the validated URL and
hashed user data onto the web application in the whole
server.

• The filter within the server denies the request in case the
sanitizing application had marked the URL request
malicious.

TABLE 1. PSEUDO CODE FOR SANITIZATION PROCESS

PROPOSED SANITIZATION PROCESS
INPUT: USER DATA AND EXTRACT THE URL FROM THE
HTTP;
OUTPUT: GAIN ACCESS TO VALID ACCOUNT
PARSE THE USER DATA INTO TOKEN-TOK;
 WHILE (TOK! = 0)
{
 IF (TOK = RESERVED SQL KEYWORD)
 THEN
 MOVE (TOK TO USER DATA ARRAY-UDA);
 FOR (EVERY DATA IN UDA)
 {
 CONVERT TO CORRESPONDING MD5 AND STORE IN MD5-
UDA;
 }
PARSE THE URL INTO TOKENS-TOKS;
 WHILE (TOKS! = 0)
 {
 IF (URL = BENIGN USING THE SIGNATURE CHECK)
 SET THE FLAG TO CONTINUE;
 ELSE
 SET THE FLAG TO DENY;
 }
 SEND THE MD5-UDA AND FLAG TO WEB APPLICATION
SERVER;
 }

3.2 Extraction of User Data

The SQL statement is extracted from the HTTP request and
the query is tokenized. The tokenized query is in comparison
to the prototype document. A prototype document consists of
all of the SQL queries from the Web application. The query
tokens are transformed into XML format. The XSL’s pattern
matching algorithm is designed to locate the prototype model
equivalent to the received Query. XSL’s Pattern Matching:
The query is first analyzed and tokenized as elements. The
prototype document maintains the query pertained to the next
particular application. By way of example the input query is,
SELECT * FROM members WHERE login=‘admin’ AND
password= ‘XYZ’ OR ‘1=1’.When this query is received this
is converted into XML format using a XML schema.

4. Conclusion and Future Work

In this paper we first identified various types of SQLIA’s.
Then we investigated on SQL injection detection and
prevention techniques. A good understanding of SQL
injection techniques can help developers to make their
applications and a network more secure against this
vulnerability. We have presented an efficient approach ie. A
reverse proxy framework which is based on sanitization
technique and it is mainly using Data cleaning and Message

Digest algorithm. In the future work the focus will be on
optimization of the system and detecting alternate techniques
that will increase effectiveness ,efficiency and performance
of the system.

References

[1] W. G. J. Halfond, et al., "A Classification of SQL-

Injection Attacks and Countermeasures," in
Proceedings of the IEEE International Symposium on
Secure Software Engineering, Arlington, VA, USA,
2006.

[2] Indrani Balasundaram 1 Dr. E. Ramaraj, “An Approach
to Detect and Prevent SQL Injection Attacks in
Database Using Web Service,” in IJCSNS International
Journal of Computer Science and Network Security,
VOL.11 No.1, January 2011.

[3] Stephen W. Boyd and Angelos D. Keromytis
Department of Computer Science Columbia University,
“SQLrand: Preventing SQL Injection Attacks”.

[4] Shaimaa Ezzat Salama, Mohamed I. Marie, Laila M. El-
Fangary & Yehia K. Helmy, “Web Anomaly Misuse
Intrusion Detection Framework for SQL Injection
Detection”, (IJACSA) International Journal of
Advanced Computer Science and Applications, Vol. 3,
No. 3, 2012

[5] Veera Venkateswaramma P, “An Effective Approach
for Protecting Web from SQL Injection Attacks”,
International Journal of Scientific & Engineering
Research Volume 3, Issue 3, March -2012

[6] Anyi Liu, Yi Yuan,Duminda Wijesekera,” SQLProb: A
Proxy-based Architecture towards Preventing SQL
Injection Attacks”, SAC’09 March 8-12, 2009,
Honolulu, Hawaii, U.S.A.

[7] William G.J. Halfond and Alessandro Orso “Preventing
SQL Injection Attacks Using AMNESIA” , ICSE’06,
May 20–28, 2006, Shanghai, China.

[8] Zhendong Su, Gary Wassermann,” The Essence of
Command Injection Attacks in Web Applications”,
January 11.13, 2006, Charleston, South Carolina, USA.

[9] Gregory T. Buehrer, Bruce W. Weide, and Paolo A. G.
Sivilotti, “Using Parse Tree Validation to Prevent SQL
Injection Attacks”, September 2005 Lisbon, Portugal.

[10] Anil Kumar Mandapati , Adi lakshmi.Yannam, “Web
Application Vulnerability Analysis Using Robust SQL
Injection Attacks”, International Journal of Engineering
Trends and Technology- Volume3Issue5- 2012

[11] Konstantinos Kemalis and Theodoros Tzouramanis,”
SQL-IDS: A Specification-based Approach for SQL-
Injection Detection”, SAC’08, March 16-20, 2008,
Fortaleza, Ceará, Brazil.

Paper ID: OCT141523 2201

http://creativecommons.org/licenses/by/4.0/�

	Introduction
	Related Work
	Proposed Framework for Data Sanitization
	Steps for Data Sanitization
	Extraction of User Data

	Conclusion and Future Work

