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Abstract: In this paper, we present a batch arrival non- mMrkovian queuing model with m-optional service, subject to random break 
downs and multiple vacations. Batches arrive in Poisson stream with mean arrival rate λ, such that all customers demand the first 
essential service, whereas only some of them demand the second ‘optional’ service from m kinds of different service. The service times of 
the both first essential service and the second optional m kind of service are assumed to follow general (arbitrary) distribution with 
distribution function 𝑩𝑩𝟎𝟎(𝒗𝒗) and  𝑩𝑩𝒌𝒌(𝒗𝒗) (k=1,2,…m) respectively. After the completion of second service, customer may feedback to the 
tail of original queen to repeat the service until it is successful or may depart forever from the system. The server may undergo 
breakdowns which occur according to Poisson process with breakdown rate β. Once the system encounter break downs it enters the 
repair process and the repair time is followed by exponential distribution with repair rate 𝜶𝜶.. The server takes vacation each time the 
system becomes empty and the vacation period is assumed to be exponential distribution. On returning from vacation if the server finds 
no customer waiting in the system, then the server again goes for vacation until he finds at least one customer in the system. The time-
dependent probability generating functions have been obtained in terms of their Laplace transforms and the corresponding steady state 
results have been derived explicitly. Also the mean queue length and the mean waiting time have been found explicitly.  
 
Keywords: M[X] /G/1 feedback queue first essential service, second multi optional service, multiple vacations, random breakdown 
 
1. Introduction 
 
Queuing systems with server vacation has become an 
extensive and interesting area in queuing theory literature. 
Server vacations are used for utilization of idle time for 
other purposes. Vacation queuing models with feedback has 
been modeled effectively in various situations such as 
production, banking service, communication systems, and 
computer networks etc. Numerous authors are interested in 
studying queuing models with various vacation policies 
including single and multiple vacation policies. Batch arrival 
queue with server vacations was investigated by Yechiali 
(1975). An excellent comprehensive studies on vacation 
models can be found in Takagi (1991) and Doshi (1986) 
research papers. One of the classical vacation model in 
queuing literature is Bernoulli scheduled server vacation. 
Keilson and Servi(1987) introduced and studied vacation 
scheme with Bernoulli schedule discipline.  
 
Queuing systems with random break downs and vacation 
have also been keenly analyzed by many authors including 
Grey (2000) studied vacation queuing model with service 
breakdowns. Madan and Maraghi (2009) have obtained 
steady state solution of batch arrival queuing system with 
random breakdowns and Bernoulli schedule server vacations 
having general vacation time. Thangaraj(2010) studied the 
transient behaviour of single server with compulsory 
vacation and random break downs. Thangaraj and Vanitha 
have studied a two phase M/G/1 feedback with multiple 
vacation.  
 
Queuing models with Second optional service plays a 
prominent role in the research study of queuing theory. In 
this type of queuing model, the server performs first 
essential service to all arriving customers and after 
completing the first essential service, second optional 

service will be provided to some customers those who 
demand a second optional service. Madan(2000) has first 
introduced the concept of second optional service of an 
M/G/1 queuing system in which he has analyzed the time-
dependent as well as the steady state behaviour of the model 
by using supplementary variable technique. In this paper we 
consider queuing system such that the customers are arriving 
in batches according to Poisson stream. The server provides 
a first essential service to all incoming customers and a 
second m optional service will be provided to only some of 
them those who demand it. Both the essential and m optional 
service times are assumed to follow general distribution. 
After the completion of second service, customer may 
feedback to the tail of original queen to repeat the service 
until it is successful or may depart forever from the system. 
The vacation times and the repair time are exponentially 
distributed. Whenever the system meets a break down, it 
enters in to a repair process and the customer whose service 
is interrupted goes back to the head of the queue. Customers 
arrive in batches to the system and are served on a first 
come-first served basis. 
  
2. Mathematical Description of the Model 
 
The following assumptions are to be used describe the 
mathematical model of our study:  
• Customers arrive at the system in batches of variable size 

in a compound Poisson process and they are provided 
service one by one on a ‘first come first served’ basis. Let 
∑ 𝐶𝐶𝑘𝑘∞
𝑘𝑘=1  𝑑𝑑𝑑𝑑 be the first order probability that a batch of k 

customers arrives at the system during a short interval of 
time (t, t + dt], 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 0 ≤  𝐶𝐶𝑘𝑘 ≤  1 𝑎𝑎𝑎𝑎𝑑𝑑 ∑ 𝐶𝐶𝑘𝑘∞

𝑘𝑘=1 =
 1 𝑎𝑎𝑎𝑎𝑑𝑑 𝜆𝜆 >  0 is the mean arrival rate of batches. 

• There is a single server which provides the first essential 
service to all arriving customers. Let 𝐵𝐵0(𝑣𝑣) 𝑎𝑎𝑎𝑎𝑑𝑑 𝑏𝑏0(𝑣𝑣) 
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respectively be the distribution function and the density 
function of the first service times respectively.  

• As soon as the first service of a customer is completed, 
then he may demand for a certain second optional service 
from m kind of different service with probability 𝑒𝑒𝑘𝑘  (1 ≤
𝑘𝑘≤𝑚𝑚, or else he may decide to leave the system with 
probability 𝑒𝑒0 = 1 − ∑ 𝑒𝑒𝑘𝑘𝑚𝑚

𝑘𝑘=1  , he may opt to leave the 
system. 

• The second service times as assumed to be general with 
the distribution function 𝐵𝐵𝑘𝑘(𝑣𝑣) and the density 
function 𝑏𝑏𝑘𝑘(𝑣𝑣). Further, Let 𝜇𝜇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥 be the conditional 
probability density function of 𝑘𝑘𝑑𝑑ℎ  service completion 
during the interval ( x, x+dx] given that the elapsed 
service time is 𝑥𝑥, so that 

µ𝑖𝑖(𝑥𝑥) =
𝑏𝑏𝑖𝑖(𝑥𝑥)

1 − 𝐵𝐵𝑖𝑖(𝑥𝑥) , 𝑖𝑖 = 0,1, … ,𝑚𝑚 

 and therefore, 
𝑏𝑏𝑖𝑖(𝑠𝑠) =  µ𝑖𝑖(𝑠𝑠)𝑒𝑒−∫ µ𝑖𝑖(𝑥𝑥)𝑑𝑑𝑥𝑥𝑠𝑠

0 , 𝑖𝑖 = 0,1, … ,𝑚𝑚 
 

• As soon as the second service completed and if the 
customer is dissatisfied with his service for certain reason 
or if he received unsuccessful service, the customer may 
immediately join the tail of the original queue with 
probability p (0 ≤ p < 1). Otherwise the customer may 
depart forever from the system with probability q (= 1 −
 p. The customers are served according to First come First 
service rule. 

• If there is no customer waiting in the queue, then the 
server goes for a vacation. The vacation periods are 
exponentially distributed with mean vacation time  1

𝛾𝛾
 . On 

returning from vacation if the server again founds no 
customer in the queue, then it goes for another vacation. 
So the server takes multiple vacations 

• The system may break down at random and breakdowns 
are assumed to occur according to a Poisson stream with 
mean breakdown rate α > 0 

• Once the system breaks down, it enters a repair process 
immediately. The repair times are exponentially 
distributed with mean repair rate β > 0.  

• Various stochastic processes involved in the system are 
independent of each others.  

 
3. Definitions and Equations Governing the 

System 
  
• 𝑃𝑃𝑎𝑎0 (𝑥𝑥, 𝑑𝑑) = Probability that at time ‘t’, there are ‘n’ 

customers in the queue including the one being provided 
the first essential service, with the elapsed service time for 
this customer is x. Consequently 𝑃𝑃𝑎𝑎0 (𝑑𝑑) = denotes the 
probability that at time ‘t’ there are ‘n’ customers in the 
queue excluding the one being provided the first essential 
service irrespective of the value of 𝑥𝑥,  

• 𝑃𝑃𝑎𝑎𝑘𝑘  (𝑥𝑥, 𝑑𝑑) = Probability that at time‘t’, there are ‘n’ 
customers in the queue including the one being provided 
the 𝑘𝑘𝑑𝑑ℎ  optional service, with the elapsed service time for 
this customer is x. Consequently 𝑃𝑃𝑎𝑎𝑘𝑘  (𝑑𝑑) = denotes the 
probability that at time ‘t’ there are ‘n’ customers in the 
queue excluding the one being provided the 𝑘𝑘𝑑𝑑ℎ  optional 
service irrespective of the value of 𝑥𝑥. 

• 𝑉𝑉𝑎𝑎(𝑑𝑑) = the probability that at time ‘t’ there are ‘n’ 
customers in the queue and the server is on vacation 
irrespective of the value of 𝑥𝑥.  

• 𝑅𝑅𝑎𝑎(𝑑𝑑) = Probability that at time t, the server is inactive 
due to break down and the system is under repair while 
there are ‘n’ customers in the queue. 

 
In steady state condition, we have 
𝑃𝑃𝑎𝑎𝑖𝑖(𝑥𝑥) 𝑑𝑑𝑥𝑥 =  lim𝑑𝑑→∞ 𝑃𝑃𝑎𝑎𝑖𝑖  (x, t), i=1, 2 ; x > 0 ; n ≥ 0 
 
𝑉𝑉𝑎𝑎 = lim

𝑑𝑑→∞
𝑉𝑉𝑎𝑎(𝑑𝑑) ;  𝑎𝑎 ≥ 0 

 
𝑅𝑅𝑎𝑎  = lim

𝑑𝑑→∞
𝑅𝑅𝑎𝑎(𝑑𝑑) ;  𝑎𝑎 ≥ 0 

 
Assume that 
 
𝑉𝑉0(0) = 1,𝑉𝑉𝑎𝑎(0) = 0 and 𝑃𝑃𝑎𝑎𝑖𝑖(0) = 0 for n ≥ 0 and 
i=1,2,…,m  
and for i=0,1,…,m 
 
𝐵𝐵𝑖𝑖(0),𝐵𝐵𝑖𝑖(∞) = 1 
Also V(𝑥𝑥) and 𝐵𝐵𝑖𝑖(𝑥𝑥) are continuous at 𝑥𝑥 = 0. 
 
The model is then, governed by the following set of 
differential-difference equations: 
 
𝜕𝜕
𝜕𝜕𝑥𝑥
𝑃𝑃𝑎𝑎

(0)(𝑥𝑥, 𝑑𝑑) + 𝜕𝜕
𝜕𝜕𝑑𝑑
𝑃𝑃𝑎𝑎

(0)(𝑥𝑥, 𝑑𝑑) + (𝜆𝜆 + µ1(𝑥𝑥) + 𝛼𝛼)𝑃𝑃𝑎𝑎
(0)(𝑥𝑥, 𝑑𝑑)  =

𝜆𝜆∑ 𝐶𝐶𝑘𝑘𝑃𝑃𝑎𝑎−𝑘𝑘
(0) (𝑥𝑥, 𝑑𝑑) ,𝑎𝑎 ≥ 1∞

𝑘𝑘=1  (3.1) 
 
𝜕𝜕
𝜕𝜕𝑥𝑥
𝑃𝑃0

(0)(𝑥𝑥, 𝑑𝑑) + 𝜕𝜕
𝜕𝜕𝑑𝑑
𝑃𝑃𝑎𝑎

(0)(𝑥𝑥, 𝑑𝑑) + �𝜆𝜆 + µ1(𝑥𝑥) + 𝛼𝛼�𝑃𝑃0
(0)(𝑥𝑥, 𝑑𝑑) =

0 (3.2) 
 
𝜕𝜕
𝜕𝜕𝑥𝑥

𝑃𝑃𝑎𝑎
(𝑘𝑘)(𝑥𝑥, 𝑑𝑑) +  

𝜕𝜕
𝜕𝜕𝑑𝑑
𝑃𝑃𝑎𝑎

(𝑘𝑘)(𝑥𝑥, 𝑑𝑑) + �𝜆𝜆 + µ2(𝑥𝑥) + 𝛼𝛼�𝑃𝑃𝑎𝑎
(𝑘𝑘)(𝑥𝑥, 𝑑𝑑)

= 𝜆𝜆�𝐶𝐶𝑘𝑘𝑃𝑃𝑎𝑎−𝑘𝑘
(𝑘𝑘) (𝑥𝑥, 𝑑𝑑) ;

∞

𝑘𝑘=1

 

 𝑎𝑎 ≥ 1, 𝑘𝑘 = 1,2, … ,𝑚𝑚 (3.3) 
 
𝜕𝜕
𝜕𝜕𝑥𝑥
𝑃𝑃0

(𝑘𝑘)(𝑥𝑥, 𝑑𝑑) +  𝜕𝜕
𝜕𝜕𝑑𝑑
𝑃𝑃𝑎𝑎

(𝑘𝑘)(𝑥𝑥, 𝑑𝑑) + �𝜆𝜆 + µ2(𝑥𝑥) + 𝛼𝛼�𝑃𝑃0
(𝑘𝑘)(𝑥𝑥, 𝑑𝑑) =

0; 𝑘𝑘 = 1,2, … ,𝑚𝑚 (3.4) 
 
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑉𝑉𝑎𝑎(𝑑𝑑) + (𝜆𝜆 + 𝛾𝛾)𝑉𝑉𝑎𝑎(𝑑𝑑) = 𝜆𝜆∑ 𝐶𝐶𝑘𝑘𝑉𝑉𝑎𝑎−𝑘𝑘∞

𝑘𝑘=1 (𝑑𝑑) ,𝑎𝑎 ≥ 1 (3.5) 
 
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑉𝑉0(𝑑𝑑) +  (𝜆𝜆 + 𝛾𝛾)𝑉𝑉0(𝑑𝑑) =

𝛾𝛾𝑉𝑉0(𝑑𝑑) + 𝑒𝑒0 ∫ 𝑃𝑃0
0∞

0 (𝑥𝑥, 𝑑𝑑)µ1(𝑥𝑥)𝑑𝑑 +
𝑞𝑞 ∑ ∫ 𝑃𝑃0 

(𝑘𝑘)(𝑥𝑥, 𝑑𝑑)µ𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥∞
0

𝑚𝑚
𝑘𝑘=1  (3.6) 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑅𝑅0(𝑑𝑑) + (𝜆𝜆 +  𝛽𝛽) 𝑅𝑅0(𝑑𝑑) =  0 (3.7) 

 
𝑑𝑑
𝑑𝑑𝑑𝑑
𝑅𝑅𝑎𝑎(𝑑𝑑) +  (𝜆𝜆 +  𝛽𝛽)𝑅𝑅𝑎𝑎(𝑑𝑑)  = 𝜆𝜆∑ 𝐶𝐶𝑘𝑘𝑅𝑅𝑎𝑎−𝑘𝑘∞

𝑘𝑘=1 (𝑑𝑑) +

𝛼𝛼 ∫ 𝑃𝑃𝑎𝑎−1
(0) (𝑥𝑥, 𝑑𝑑)𝑑𝑑𝑥𝑥∞

0  + 𝛼𝛼 ∑ ∫ 𝑃𝑃𝑎𝑎−1 
(𝑘𝑘) (𝑥𝑥, 𝑑𝑑)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1 ;  𝑎𝑎 ≥ 1 (3.8) 

 
Equations are to be solved subject to the following boundary 
conditions: 
 
𝑃𝑃𝑎𝑎

(0)(0) =
𝛾𝛾𝑉𝑉𝑎𝑎+1(𝑑𝑑) + 𝛽𝛽𝑅𝑅𝑎𝑎+1(𝑑𝑑) + 𝑒𝑒0 ∫ 𝑃𝑃𝑎𝑎+1

(0) (𝑥𝑥, 𝑑𝑑)𝜇𝜇0(𝑥𝑥)𝑑𝑑𝑥𝑥 +∞
0

Paper ID: OCT141335 1878

http://creativecommons.org/licenses/by/4.0/�


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

𝑞𝑞 ∑ ∫ 𝑃𝑃𝑎𝑎+1 
(𝑘𝑘) (𝑥𝑥, 𝑑𝑑)µ𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1  +

(1 − 𝑞𝑞)∑ ∫ 𝑃𝑃𝑎𝑎  
(𝑘𝑘)(𝑥𝑥, 𝑑𝑑)µ𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1 ;  𝑎𝑎 ≥ 1 (3.9) 

 
𝑃𝑃𝑎𝑎

(𝑘𝑘)(0) = 𝑒𝑒𝑘𝑘 ∫ 𝑃𝑃𝑎𝑎
(0)(𝑥𝑥) 𝜇𝜇0(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0  , 𝑎𝑎 ≥ 0 (3.10) 
 
4. Time Dependent Solution  
 
Generating functions of the queue length  
 
Now we define the probability generating function as 
follows 
𝑃𝑃(0)(𝑥𝑥, 𝑧𝑧, 𝑑𝑑) = ∑ 𝑃𝑃𝑎𝑎

(0)(𝑥𝑥, 𝑑𝑑)𝑧𝑧𝑎𝑎∞
0 ; 𝑃𝑃(0)(𝑧𝑧, 𝑑𝑑) =

∑ 𝑃𝑃𝑎𝑎
(0)(𝑑𝑑)𝑧𝑧𝑎𝑎∞

0 , |𝑧𝑧| ≤ 1 , 𝑥𝑥 > 0 
 
𝑃𝑃(𝑘𝑘)(𝑥𝑥, 𝑧𝑧, 𝑑𝑑) = ∑ 𝑃𝑃𝑎𝑎

(𝑘𝑘)(𝑥𝑥, 𝑑𝑑)𝑧𝑧𝑎𝑎∞
0 ; 

 𝑃𝑃(𝑘𝑘)(𝑧𝑧, 𝑑𝑑) = ∑ 𝑃𝑃𝑎𝑎
(𝑘𝑘)(𝑑𝑑)𝑧𝑧𝑎𝑎∞

0 , |𝑧𝑧| ≤ 1 , 𝑥𝑥 > 0 
  
𝑉𝑉(𝑧𝑧, 𝑑𝑑) =  ∑ 𝑧𝑧𝑎𝑎𝑉𝑉𝑎𝑎(𝑑𝑑) ;  𝑅𝑅(𝑧𝑧, 𝑑𝑑) = ∑ 𝑧𝑧𝑎𝑎𝑅𝑅𝑎𝑎(𝑑𝑑) ∞

0 ;  𝐶𝐶(𝑧𝑧) =∞
0

0∞𝐶𝐶𝑎𝑎𝑧𝑧𝑎𝑎, |𝑧𝑧|≤1  (4.1) 
 
Taking Laplace transforms of equations (3.1) to (3.11) 
 
𝜕𝜕
𝜕𝜕𝑥𝑥

 𝑃𝑃�𝑎𝑎
(0)(𝑥𝑥, 𝑠𝑠) +  (𝑠𝑠 + 𝜆𝜆 + µ1 (x) +  α)𝑃𝑃�𝑎𝑎

(0)(𝑥𝑥, 𝑠𝑠) =

𝜆𝜆∑ 𝐶𝐶𝑘𝑘𝑃𝑃�𝑎𝑎−𝑘𝑘
(0) (𝑥𝑥, 𝑠𝑠)∞

𝑘𝑘=1 ,𝑎𝑎 ≥ 1 (4.2) 
 
𝜕𝜕
𝜕𝜕𝑥𝑥

 𝑃𝑃�0
(0)(𝑥𝑥, 𝑠𝑠) +  (𝑠𝑠 + 𝜆𝜆 + µ1 (x) +  α)𝑃𝑃�0

(0)(𝑥𝑥, 𝑠𝑠) = 0 (4.3) 
 
𝜕𝜕
𝜕𝜕𝑥𝑥

 𝑃𝑃�𝑎𝑎
(𝑘𝑘)(𝑥𝑥, 𝑠𝑠) + �𝑠𝑠 + 𝜆𝜆 + µ1 (x) +  α�𝑃𝑃�𝑎𝑎

(𝑘𝑘)(𝑥𝑥, 𝑠𝑠) =

𝜆𝜆∑ 𝐶𝐶𝑘𝑘𝑃𝑃�𝑎𝑎−𝑘𝑘
(2) (𝑥𝑥, 𝑠𝑠)∞

𝑘𝑘=1 ;  𝑎𝑎 ≥ 1, 𝑘𝑘 = 1,2, … ,𝑚𝑚 (4.4) 
 
𝜕𝜕
𝜕𝜕𝑥𝑥

 𝑃𝑃�0
(𝑘𝑘)(𝑥𝑥, 𝑠𝑠) + �𝑠𝑠 + 𝜆𝜆 + µ1 (x) +  α�𝑃𝑃�0

(𝑘𝑘)(𝑥𝑥, 𝑠𝑠) = 0;𝑘𝑘 =
1,2, … ,𝑚𝑚 (4.5) 
 
(s + λ +  γ)V�0(s) = 1 + 𝑒𝑒0 ∫ 𝑃𝑃�0

(0)(𝑥𝑥, 𝑠𝑠)𝜇𝜇0(𝑥𝑥)𝑑𝑑𝑥𝑥∞
0 +

𝑞𝑞 ∑ ∫ 𝑃𝑃�0
(𝑘𝑘)(𝑥𝑥, 𝑠𝑠)µ𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1  + γV�0(s) (4.6) 

(s + λ + γ)V�𝑎𝑎(s) = 𝜆𝜆∑ 𝐶𝐶𝑘𝑘V�𝑎𝑎−1 
∞
𝑘𝑘=1 (𝑠𝑠);  𝑎𝑎 ≥ 1 (4.7) 

 
(s + λ +  β)R�0(s) = 0 (4.8) 
 
(s + λ + β)R�𝑎𝑎(s) = λ R�𝑎𝑎−1  (s) + α∫ 𝑃𝑃�𝑎𝑎−1

(1) (𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑥𝑥∞
0 +

𝛼𝛼∑ ∫ 𝑃𝑃�n−1
(𝑘𝑘) (𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1 ;  𝑎𝑎 ≥ 1  

 (4.9) 
𝑃𝑃�𝑎𝑎  

(0)(𝑜𝑜, 𝑠𝑠) =
 𝑒𝑒0 ∫ 𝑃𝑃�𝑎𝑎+1

(0) (𝑥𝑥, 𝑠𝑠)𝜇𝜇0(𝑥𝑥)𝑑𝑑𝑥𝑥 + 𝑞𝑞 ∑ ∫ 𝑃𝑃�𝑎𝑎+1
(𝑘𝑘) (𝑥𝑥, 𝑠𝑠)𝜇𝜇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1

∞
0   

 +(1 − 𝑞𝑞)∑ ∫ 𝑃𝑃�𝑎𝑎
(𝑘𝑘)(𝑥𝑥, 𝑠𝑠)𝜇𝜇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1 + γ V�𝑎𝑎+1(𝑠𝑠) +

 𝛽𝛽 R�𝑎𝑎+1(𝑠𝑠);  𝑎𝑎 ≥ 1 (4.10) 
𝑃𝑃�0 

(0)(𝑜𝑜, 𝑠𝑠) =
 𝑒𝑒0 ∫ 𝑃𝑃�1

(0)(𝑥𝑥, 𝑠𝑠)𝜇𝜇0(𝑥𝑥)𝑑𝑑𝑥𝑥 + 𝑞𝑞 ∑ ∫ 𝑃𝑃�1
(𝑘𝑘)(𝑥𝑥, 𝑠𝑠)𝜇𝜇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1

∞
0   

 +(1 − 𝑞𝑞)∑ ∫ 𝑃𝑃�0
(𝑘𝑘)(𝑥𝑥, 𝑠𝑠)𝜇𝜇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1 + γ V�1(𝑠𝑠) +  𝛽𝛽 R�1(𝑠𝑠) 

(4.11) 
𝑃𝑃�𝑎𝑎  

(𝑘𝑘)(𝑜𝑜, 𝑠𝑠) = 𝑒𝑒𝑘𝑘 ∫ 𝑃𝑃�𝑎𝑎
(0)(𝑥𝑥, 𝑠𝑠)𝜇𝜇0(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0  , 𝑎𝑎 ≥ 0 (4.12) 
We multiply both sides of equations (4.2) and (4.3) by 
suitable powers of z, sum over n and use (4.1) and simplify. 
We thus have after algebraic simplifications 

𝜕𝜕
𝜕𝜕𝑥𝑥
𝑃𝑃�(0)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠) + [𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + µ0(𝑥𝑥) +

𝛼𝛼]𝑃𝑃�(0)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)  = 0 (4.13) 
Performing similar operations on equations (4.4) and (4.5) 
and using (4.1), we have 
𝜕𝜕
𝜕𝜕𝑥𝑥
𝑃𝑃�(𝑘𝑘)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠) +

�𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + µ𝑘𝑘(𝑥𝑥) + 𝛼𝛼�𝑃𝑃�(𝑘𝑘)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠) = 0 (4.14) 
Similar operations on equations (4.6),(4.7),(4.8) and (4.9) 
yields 
 [𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + 𝛾𝛾]𝑉𝑉�(𝑧𝑧, 𝑠𝑠) =
1 + 𝑒𝑒0 ∫ 𝑃𝑃�0

(0)(𝑥𝑥, 𝑠𝑠)𝜇𝜇0(𝑥𝑥)𝑑𝑑𝑥𝑥∞
0 +

𝑞𝑞 ∑ ∫ 𝑃𝑃�𝑎𝑎+1
(𝑘𝑘) (𝑥𝑥, 𝑠𝑠)𝜇𝜇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥 + γV�0(s)∞

0
𝑚𝑚
𝑘𝑘=1  (4.15) 

[𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + 𝛽𝛽]𝑅𝑅�(𝑧𝑧, 𝑠𝑠) = 𝛼𝛼𝑧𝑧 ∫ 𝑃𝑃�(0)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)𝑑𝑑𝑥𝑥 +∞
0

𝛼𝛼𝑧𝑧𝑘𝑘=1𝑚𝑚0∞𝑃𝑃𝑘𝑘𝑥𝑥,𝑧𝑧,𝑠𝑠𝑑𝑑𝑥𝑥 (4.16) 
Now, We multiply both sides of equation (4.11) by z, 
multiply both sides of equation (4.10) by 𝑧𝑧𝑎𝑎+1, sum over n 
from 1 to ∞ , add the two results and use (4.1)&(4.6).Thus 
we obtain after mathematical adjustments 
𝑧𝑧 𝑃𝑃�(1)(0, 𝑧𝑧, 𝑠𝑠) = (𝑞𝑞 + 𝑝𝑝𝑧𝑧)∑ ∫ 𝑃𝑃�(𝑘𝑘)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)𝜇𝜇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1 −

𝑞𝑞∑ ∫ 𝑃𝑃�0
(𝑘𝑘)(𝑥𝑥, 𝑠𝑠)𝜇𝜇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1   

 +∫ 𝑃𝑃�(0)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)𝜇𝜇0(𝑥𝑥)𝑑𝑑𝑥𝑥 − ∫ 𝑃𝑃�0
(0)(𝑥𝑥, 𝑠𝑠)𝜇𝜇0(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0 +∞
0

𝛾𝛾Vz,s+β𝑅𝑅𝑧𝑧,𝑠𝑠 (4.17) 
 
𝑃𝑃�(𝑘𝑘)(0, 𝑧𝑧, 𝑠𝑠) = 𝑒𝑒𝑘𝑘 ∫ 𝑃𝑃�(0)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)𝜇𝜇0(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0  (4.18) 
Using (4.15) in (4.17), we get 
𝑧𝑧 𝑃𝑃�(1)(0, 𝑧𝑧, 𝑠𝑠) = (𝑞𝑞 + 𝑝𝑝𝑧𝑧)∑ ∫ 𝑃𝑃�(𝑘𝑘)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)𝜇𝜇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥∞

0
𝑚𝑚
𝑘𝑘=1 +

∫ 𝑃𝑃�(0)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)𝜇𝜇0(𝑥𝑥)𝑑𝑑𝑥𝑥∞
0 + 1  

 −[𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧)]𝑉𝑉�(𝑧𝑧, 𝑠𝑠) + β𝑅𝑅�(𝑧𝑧, 𝑠𝑠) (4.19) 
Integrating equations (4.2), (4.3) and (4.4) between 0 and 𝑥𝑥, 
we get 
𝑃𝑃�(0)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠) = 𝑃𝑃�(0)(0, 𝑧𝑧, 𝑠𝑠) 𝑒𝑒−(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)𝑥𝑥−∫ 𝜇𝜇0(𝑑𝑑)𝑑𝑑𝑑𝑑  

∞
0  (4.20) 

𝑃𝑃�(𝑘𝑘)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠) = 𝑃𝑃�(𝑘𝑘)(0, 𝑧𝑧, 𝑠𝑠) 𝑒𝑒−(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)𝑥𝑥−∫ 𝜇𝜇𝑘𝑘(𝑑𝑑)𝑑𝑑𝑑𝑑
∞

0  (4.21) 
Again integrating equation (4.10) w.r.to 𝑥𝑥, we have 
𝑃𝑃�(0)(𝑧𝑧, 𝑠𝑠) = 𝑃𝑃�(0)(0, 𝑧𝑧, 𝑠𝑠) �1−𝐵𝐵�0(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)

(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)
� (4.22) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐵𝐵�0(𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + 𝛼𝛼) =
 ∫ 𝑒𝑒−(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)𝑥𝑥𝑑𝑑𝐵𝐵�0(𝑥𝑥)∞

0  (4.23) 
is the Laplace transform of first essential service time. 
Now from equation (4.10) after some simplification and 
using equation (1.1 ) , we obtain 
∫ 𝑃𝑃�(𝑘𝑘)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)𝜇𝜇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑃𝑃�(𝑘𝑘)(0, 𝑧𝑧, 𝑠𝑠)𝐵𝐵�𝑘𝑘
∞

0 (𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) +
𝛼𝛼;𝑘𝑘=1,2,…𝑚𝑚 (4.24) 
Again integrating equation (4.11) w.r.to x, we have 
𝑃𝑃�(𝑘𝑘)(𝑧𝑧, 𝑠𝑠) = 𝑃𝑃�(𝑘𝑘)(0, 𝑧𝑧, 𝑠𝑠) �1−𝐵𝐵�𝑘𝑘 (𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)

(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)
� ; 𝑘𝑘 =

1,2, …𝑚𝑚 (4.25) 
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐵𝐵�𝑘𝑘(𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + 𝛼𝛼) =
 ∫ 𝑒𝑒−(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)𝑥𝑥𝑑𝑑𝐵𝐵�𝑘𝑘(𝑥𝑥)∞

0 ; 𝑘𝑘 = 1,2, …𝑚𝑚 (4.26) 
is the Laplace transform of second optional service time. 
Now from equation (4.11) after some simplification and 
using equation (1.1 ) , we obtain 
∫ 𝑃𝑃�(𝑘𝑘)(𝑥𝑥, 𝑧𝑧, 𝑠𝑠)𝜇𝜇𝑘𝑘(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑃𝑃�(𝑘𝑘)(0, 𝑧𝑧, 𝑠𝑠)𝐵𝐵�𝑘𝑘
∞

0 (𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) +
𝛼𝛼;𝑘𝑘=1,2,…𝑚𝑚 (4.27) 
Using (4.24)& (4.27) in (4.16) we get, 

𝑅𝑅�(𝑧𝑧, 𝑠𝑠) =
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𝛼𝛼𝑧𝑧𝑃𝑃�(0)(0, 𝑧𝑧, 𝑠𝑠) [1−∑ 𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘 (𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)𝐵𝐵�0(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)𝑚𝑚
𝑘𝑘=1 −𝑒𝑒0𝐵𝐵�0(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)]

(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛽𝛽)
 (4.28)  

 
Now using equations (4.18) (4.21), (4.23),(4.24),(4.26) and (4.27) in equation (4.19) and solving for 𝑃𝑃�(1)(0, 𝑧𝑧 ) we get 
𝑃𝑃�(0)(0, 𝑧𝑧, 𝑠𝑠) = 𝑓𝑓1(𝑧𝑧)𝑓𝑓2(𝑧𝑧)[1−�𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)�𝑉𝑉�(𝑧𝑧 ,𝑠𝑠)] 

𝐷𝐷𝑅𝑅
 (4.29) 

 
Where 
 𝐷𝐷𝑅𝑅 = 𝑓𝑓1(𝑧𝑧)𝑓𝑓2(𝑧𝑧){𝑧𝑧 − (𝑞𝑞 + 𝑝𝑝𝑧𝑧)∑ 𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘(𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + 𝛼𝛼)𝐵𝐵�0(𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + 𝛼𝛼) −𝑒𝑒0𝐵𝐵�0(𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + 𝛼𝛼)𝑚𝑚

𝑘𝑘=1 } −
𝛼𝛼𝛽𝛽𝑧𝑧[1 − ∑ 𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘(𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + 𝛼𝛼)𝐵𝐵�0(𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + 𝛼𝛼)𝑚𝑚

𝑘𝑘=1 −𝑒𝑒0𝐵𝐵�0(𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) + 𝛼𝛼)] (4.30) 
𝑓𝑓1(z) = s + λ –  λC(z) +  α and 𝑓𝑓2(z) = s + λ –  λC(z)  +  β 
Substituting the value of 𝑃𝑃(1)(0, 𝑧𝑧) from equation (4.22) into equations (4.13), (4.16) & (4.18) we get 
𝑃𝑃�(0)(𝑧𝑧, 𝑠𝑠) = 𝑓𝑓2(𝑧𝑧)[1−𝐵𝐵�0(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶(𝑧𝑧)+𝛼𝛼)]

𝐷𝐷𝑅𝑅
[1 − �𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧)�𝑉𝑉�(𝑧𝑧, 𝑠𝑠)] (4.31) 

𝑃𝑃�(𝑘𝑘)(𝑧𝑧, 𝑠𝑠) = 𝑓𝑓2(𝑧𝑧)𝑒𝑒0𝐵𝐵�0(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶(𝑧𝑧)+𝛼𝛼)[1−𝐵𝐵�𝑘𝑘 (𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)]
𝐷𝐷𝑅𝑅

�1 − �𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧)�𝑉𝑉�(𝑧𝑧, 𝑠𝑠)�;  
 𝑘𝑘 = 1,2, … ,𝑚𝑚 (4.32) 

 
𝑅𝑅(𝑧𝑧, 𝑠𝑠) = [1 − �𝑠𝑠 + 𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧)�𝑉𝑉�(𝑧𝑧, 𝑠𝑠)] 

 𝛼𝛼𝑧𝑧 �1−∑ 𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘 (𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶(𝑧𝑧)+𝛼𝛼)𝐵𝐵�0(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)𝑚𝑚
𝑘𝑘=1 −𝑒𝑒0𝐵𝐵�0(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)�

𝐷𝐷𝑅𝑅
  

 (4.33) 
 

In this section we shall derive the steady state probability distribution for our Queuing model. To define the steady state 
probabilities, suppress the arguments where ever it appears in the time dependent analysis. By using well known Tauberian 
property, 

lim
𝑠𝑠→0

𝑠𝑠𝑓𝑓(̅𝑠𝑠) = lim
𝑑𝑑→∞

𝑓𝑓(𝑑𝑑) 

𝑃𝑃(0)(𝑧𝑧) =  𝑓𝑓2(𝑧𝑧)[1−𝐵𝐵0(𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)]
𝐷𝐷𝑅𝑅

𝜆𝜆(𝐶𝐶(𝑧𝑧) − 1)𝑉𝑉(𝑧𝑧) (4.34) 
 
𝑃𝑃(𝑘𝑘)(𝑧𝑧) =  𝑓𝑓2(𝑧𝑧)𝑒𝑒𝑘𝑘𝐵𝐵0(𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)[1−𝐵𝐵𝑘𝑘 (𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)]

𝐷𝐷𝑅𝑅
𝜆𝜆(𝐶𝐶(𝑧𝑧) − 1)𝑉𝑉(𝑧𝑧); 𝑘𝑘 = 1,2, … ,𝑚𝑚 (4.35) 

 
𝑅𝑅(𝑧𝑧) = 𝛼𝛼𝑧𝑧 �1−∑ 𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘 (𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)𝐵𝐵�0(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)𝑚𝑚

𝑘𝑘=1 −𝑒𝑒0𝐵𝐵�0(𝑠𝑠+𝜆𝜆−𝜆𝜆𝐶𝐶 (𝑧𝑧)+𝛼𝛼)�
𝐷𝐷𝑅𝑅

𝜆𝜆(𝐶𝐶(𝑧𝑧) − 1)𝑉𝑉(𝑧𝑧) (4.36) 
In order to determine 𝑃𝑃(1)(𝑧𝑧),𝑃𝑃(2)(𝑧𝑧), R(z) completely, we have yet to determine the unknown 𝑉𝑉(𝑧𝑧) which appears in the 
numerator of the right sides of equations (4.34), (4.35) and (4.36). For that purpose, we shall use the normalizing condition. 
𝑃𝑃(1)(1) + 𝑃𝑃(2)(1) + 𝑉𝑉(1) + 𝑅𝑅(1) = 1 (4.37) 

𝑃𝑃(0)(1) = 𝜆𝜆𝛽𝛽 𝐶𝐶 ′(1)�1−𝐵𝐵0(𝛼𝛼)�
𝑑𝑑𝑒𝑒

𝑉𝑉(1) (4.38) 

𝑃𝑃(𝑘𝑘)(1) = 𝜆𝜆𝛽𝛽 𝐶𝐶 ′(1)𝑒𝑒𝑘𝑘𝐵𝐵0(𝛼𝛼)�1−𝐵𝐵𝑘𝑘 (𝛼𝛼)�
𝑑𝑑𝑒𝑒

𝑉𝑉(1); 𝑘𝑘 = 1,2, … ,𝑚𝑚 (4.39) 

𝑅𝑅(1) = 𝜆𝜆𝛼𝛼 𝐶𝐶 ′(1)�1−∑ 𝑒𝑒𝑘𝑘𝐵𝐵𝑘𝑘 (𝛼𝛼)𝐵𝐵0(𝛼𝛼)𝑚𝑚
𝑘𝑘=1 −𝑒𝑒0𝐵𝐵0(𝛼𝛼)�

𝑑𝑑𝑒𝑒
𝑉𝑉(1) (4.40) 

where 

 𝑑𝑑𝑒𝑒 = 𝛼𝛼𝛽𝛽 �(1 − 𝑝𝑝)�𝑒𝑒𝑘𝑘𝐵𝐵𝑘𝑘(𝛼𝛼)𝐵𝐵0(𝛼𝛼)
𝑚𝑚

𝑘𝑘=1

+𝑒𝑒0𝐵𝐵0(𝛼𝛼)� − �1 −�𝑒𝑒𝑘𝑘𝐵𝐵𝑘𝑘(𝛼𝛼)𝐵𝐵0(𝛼𝛼)
𝑚𝑚

𝑘𝑘=1

−𝑒𝑒0𝐵𝐵0(𝛼𝛼)� 𝜆𝜆𝐶𝐶 ′(1)(𝛼𝛼 + 𝛽𝛽) 

𝑃𝑃(0)(1),𝑃𝑃(𝑘𝑘)(1) 𝑎𝑎𝑎𝑎𝑑𝑑 𝑅𝑅(1) denote the steady state probabilities that the server is providing first essential service, second 
optional service and server under repair without regard to the number of customers in the queue. Now using equations (4.38), 
(4.39), (4.40) into the normalizing condition (4.37) and simplifying, we obtain 

𝑉𝑉(1) = 1 − �1−∑ 𝑒𝑒𝑘𝑘𝐵𝐵𝑘𝑘 (𝛼𝛼)𝐵𝐵0(𝛼𝛼)𝑚𝑚
𝑘𝑘=1 −𝑒𝑒0𝐵𝐵0(𝛼𝛼)�𝜆𝜆𝐶𝐶 ′(1)(𝛼𝛼+𝛽𝛽)

𝛼𝛼𝛽𝛽 �(1−𝑝𝑝)∑ 𝑒𝑒𝑘𝑘𝐵𝐵𝑘𝑘 (𝛼𝛼)𝐵𝐵0(𝛼𝛼)𝑚𝑚
𝑘𝑘=1 +𝑒𝑒0𝐵𝐵0(𝛼𝛼)�

 (4.41) 

and hence, the utilization factor ρ of the system is given by 

𝜌𝜌 = 𝜆𝜆𝐶𝐶 ′(1)(𝛼𝛼+𝛽𝛽)�1−∑ 𝑒𝑒𝑘𝑘𝐵𝐵𝑘𝑘 (𝛼𝛼)𝐵𝐵0(𝛼𝛼)𝑚𝑚
𝑘𝑘=1 −𝑒𝑒0𝐵𝐵0(𝛼𝛼)�

𝛼𝛼𝛽𝛽 �(1−𝑝𝑝)∑ 𝑒𝑒𝑘𝑘𝐵𝐵𝑘𝑘 (𝛼𝛼)𝐵𝐵0(𝛼𝛼)𝑚𝑚
𝑘𝑘=1 +𝑒𝑒0𝐵𝐵0(𝛼𝛼)�

 (4.42) 

  
where ρ < 1 is the stability condition under which the steady states exits. 
 
5. The Mean queue size and the mean system 

size 
  
Let  𝑃𝑃𝑞𝑞(z) denote the probability generating function of the 
queue size irrespective of the server state. Then adding 
equation (4.27), (4.28) and (4.29) we obtain 

 𝑃𝑃𝑞𝑞(z) =  𝑃𝑃(0)(𝑧𝑧) + �𝑃𝑃(𝑘𝑘)(𝑧𝑧)
𝑚𝑚

𝑘𝑘=1

 +  𝑅𝑅(𝑧𝑧) 

 
 𝑃𝑃𝑞𝑞(z) =  N(z)

D(z)
 (5.1) 
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𝑘𝑘=1
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𝑘𝑘=1 −𝑒𝑒0𝐵𝐵�0(𝜆𝜆 −

𝜆𝜆𝐶𝐶(𝑧𝑧) + 𝛼𝛼)]  
𝑁𝑁(𝑧𝑧) =  (𝜆𝜆 𝐶𝐶(𝑧𝑧) − 1)[1 − ∑ 𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘(𝜆𝜆 − 𝜆𝜆𝐶𝐶(𝑧𝑧) +𝑚𝑚

𝑘𝑘=1
𝛼𝛼𝐵𝐵0𝜆𝜆−𝜆𝜆𝐶𝐶𝑧𝑧+𝛼𝛼−𝑒𝑒0𝐵𝐵0𝜆𝜆−𝜆𝜆𝐶𝐶𝑧𝑧+𝛼𝛼  

�𝛼𝛼𝑧𝑧 + 𝑓𝑓2(𝑧𝑧)�𝑉𝑉(𝑧𝑧)  
 
Let 𝐿𝐿𝑞𝑞  denote the mean number of customers in the queue 
under the steady state. Then we have 

𝐿𝐿𝑞𝑞 =  
𝑑𝑑
𝑑𝑑𝑧𝑧

 [𝑃𝑃𝑞𝑞(z)] at z = 1 
 
 

𝐿𝐿𝑞𝑞 = lim𝑧𝑧→1
𝐷𝐷′(1)𝑁𝑁′′(1)−𝑁𝑁′(1)𝐷𝐷′′(1)

2𝐷𝐷′(1)2  (5.2) 
where primes and double primes in (4.36) denote first and 
second derivative at z = 1, respectively. Carrying out the 
derivative at z = 1 we have 
𝑁𝑁 ′(1) =
𝜆𝜆 𝐶𝐶 ′(1)(𝛼𝛼 + 𝛽𝛽)𝑉𝑉(1)[1 − ∑ 𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘(𝛼𝛼)𝐵𝐵�0(𝛼𝛼)𝑚𝑚

𝑘𝑘=1 −𝑒𝑒0𝐵𝐵�0(𝛼𝛼)] 
(5.3) 

𝑁𝑁 ′′(1) = �1 −�𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘(𝛼𝛼)𝐵𝐵�0(𝛼𝛼)
𝑚𝑚

𝑘𝑘=1

−𝑒𝑒0𝐵𝐵�0(𝛼𝛼)� {𝜆𝜆𝐶𝐶 ′′(1)(𝛼𝛼

+ 𝛽𝛽)𝑉𝑉(1) − 2�𝜆𝜆𝐶𝐶 ′(1)�
2
𝑉𝑉(1)

+ 2𝜆𝜆𝐶𝐶 ′(1)𝛼𝛼𝑉𝑉(1)  

 +2𝜆𝜆𝐶𝐶 ′(1)(𝛼𝛼 + 𝛽𝛽)𝑉𝑉 ′(1)} −  2𝜆𝜆2�𝐶𝐶 ′(1)�
2

(𝛼𝛼 +
𝛽𝛽𝑉𝑉(1)[𝑘𝑘=1𝑚𝑚𝑒𝑒𝑘𝑘𝐵𝐵0𝛼𝛼𝐵𝐵𝑘𝑘′𝛼𝛼+𝐵𝐵𝑘𝑘𝛼𝛼𝐵𝐵0′𝛼𝛼+𝑒𝑒0𝐵𝐵0′𝛼𝛼]  

 (5.4) 

𝐷𝐷′(1) = 𝛼𝛼𝛽𝛽 �(1 − 𝑝𝑝)�𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘(𝛼𝛼)𝐵𝐵�0(𝛼𝛼)
𝑚𝑚

𝑘𝑘=1

+𝑒𝑒0𝐵𝐵�0(𝛼𝛼)�

− �1 −�𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘(𝛼𝛼)𝐵𝐵�0(𝛼𝛼)
𝑚𝑚

𝑘𝑘=1

−𝑒𝑒0𝐵𝐵�0(𝛼𝛼)�  

 [(𝛼𝛼 + 𝛽𝛽)𝜆𝜆𝐶𝐶 ′(1)] (5.5) 
 
 
𝐷𝐷′′(1) = 2𝛼𝛼𝛽𝛽(𝑝𝑝 − 1) �∑ 𝑒𝑒𝑘𝑘 �𝐵𝐵�0(𝛼𝛼)𝐵𝐵�𝑘𝑘′ (𝛼𝛼) +𝑚𝑚

𝑘𝑘=1

𝐵𝐵𝑘𝑘𝛼𝛼𝐵𝐵0′𝛼𝛼−𝑒𝑒0𝐵𝐵0′𝛼𝛼  

 −(𝛼𝛼 + 𝛽𝛽)𝜆𝜆𝐶𝐶 ′′(1)�1 −  �𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘(𝛼𝛼)𝐵𝐵�0(𝛼𝛼)
𝑚𝑚

𝑘𝑘=1

−𝑒𝑒0𝐵𝐵�0(𝛼𝛼)�  

 −2(𝛼𝛼 + 𝛽𝛽)𝜆𝜆𝐶𝐶 ′(1) �1 − 𝑝𝑝∑ 𝑒𝑒𝑘𝑘𝐵𝐵�𝑘𝑘(𝛼𝛼)𝐵𝐵�0(𝛼𝛼)𝑚𝑚
𝑘𝑘=1 +

𝜆𝜆𝐶𝐶′1𝑘𝑘=1𝑚𝑚𝑒𝑒𝑘𝑘𝐵𝐵0𝛼𝛼𝐵𝐵𝑘𝑘′𝛼𝛼+𝐵𝐵𝑘𝑘𝛼𝛼𝐵𝐵0′𝛼𝛼+𝜆𝜆𝐶𝐶′1𝑒𝑒0𝐵𝐵0′𝛼𝛼 (5.6) 

 
Then if we substitute the values from (5.3), (5.4), (5.5) and 
(5.6) into (5.2) we obtain 𝐿𝐿𝑞𝑞  in the closed form. Further we 
find the mean system size L using Little’s formula. Thus we 
have 

𝐿𝐿 =  𝐿𝐿𝑞𝑞 +  𝜌𝜌 
 
where 𝐿𝐿𝑞𝑞  has been found by equation (5.2) and ρ is obtained 
from equation (4.35). 
 

6. Conclusion 
 
In this paper we have studied a batch arrival feedback queue 
with Second m-optional Service, multiple vacation, 
breakdown and repair. The probability generating function 
of the number of customers in the queue is found using the 
supplementary variable technique. This model can be 
utilized in large scale manufacturing industries and 
communication networks. 
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