A Survey of Forensic Analysis on Document Clustering

Nikhil Nagnath Boriwale1,*, Satish R.Todmal1
1 Department of Computer Engineering, JSPM ICOER, Pune, Maharashtra, India
2 Department of Information Technology, JSPM ICOER, Pune, Maharashtra, India

Abstract: Substantial development in advanced world increases quickly. The method of analysing different criminal acts utilizing machine framework is known as Digital Forensic Analysis (DFA). In forensic analysis, large number of reports is overviewed. Information comprise of in unstructured format after processing we get structured framework. In the system, there are such a variety of records which will be utilized for research specific wrong doing by investigation officer. Document clustering is useful to grouped similar records together. There are numerous techniques and tools which are accessible for investigation to mechanize this sort of procedure. Clustering algorithm is currently generally utilized within forensic investigation. In this paper we give review on literature of forensic analysis. This paper gives organized perspective of different clustering methodologies, for example, K-means, K-medoids, Single Link, Complete Link and Average Link.

Keywords: Document clustering, forensic analysis, survey, structured, unstructured, investigation.

1. Introduction

The large growth of the digital universe means individual can faces the problem of handling large amount of data [1]. A very large amount of crime increases to Internet and computers has caused rising need for computer forensics. Computer forensics searches evidence when computers are used by the police investigations of crimes. It is possible by using the document clustering. Daily, thousands of files can be investigated per computer. This activity involves the analysis and understanding of such a large data by expert [2][3][4].

The analysis team uses separate database system to perform on a data and also analyse that data. The basic aim is to search and analyse patterns of fraudulent activity. Generally, computer forensic tools have been used for computer forensic analysis that is available in the form of computer software. So, to make computer investigation easy the tools have been developed to help computer forensic investigators. However, due to incredible large scale data investigators may have facing difficulty to locate useful points from huge data[1][2]. Data increases day by day so, the process of analyzing large volumes of data may consume a lot of time. Many times it may happen that data generated by computer forensic tools may be meaningless. It is just because huge data that can restored on a storage medium and the fact that existing computer forensic tools are not capable to present a visual overview of all the objects found on the storage medium [1].

From the Fig.1, it shows forensic analysis to collect evidence. By looking into the repairing systems, tracking illegal use of computers, spam etc. to tackle such problem solution is to authentic accurate thing so that such things could not happen.

Digital evidence has to be Authentic and reliability. Authenticate is most explicit link data to physical person. Must be self-sustained, strong access controls in place, logs and audit in good shape. Accurate means data process reliability determines content reliability and timings issues [5]. The remainder of this paper is organized as follows. Section 2 presents literature survey. Section 3 concludes the paper. Section 4 gives references.

2. Literature Survey

Clustering algorithm helps to identify the accurate data from the analysis without less knowledge or no prior knowledge of data. Initially, computer forensics has objects which are unlabelled [4]. Previous analysis defines data partition from the data and expert examiner only focus on reviewing representative documents from the obtained set of cluster. Firstly, examiner check for investigation, after finding relevant document then the examiner can pass the analysis of the other document for investigation. Text clustering in digital evidence is defined as the data of the investigate value. Digital investigation is much necessary for textual evidence[6]. Examples of investigations are like e-mails, internet browsing history, instant messaging, and word processing documents. Forensic intelligence is defined as the accurate, timely and meaningful products of logically processed forensic data. The further results of forensic...
intelligence have discipline specific process. The clustering has been used by computer forensics field very rarely[1][6].

2.1 Digital Forensic Investigation (DFI)

The present digital forensic tools are used for analyzing many documents, which provided the multiple levels of searching techniques to answer the questions and generate digital evidence related to the specific investigation. However, these techniques work improperly which allow the investigator to search for specific documents of certain subject of specified search and grouped the document set based on a given subject. There have been many different things to define a digital forensic model that inherits the forensic process from any particular technology, such as the Digital Forensics Research Workshop (DFRWS) model for digital forensic analysis [8], Lee’s model of scientific crime, scene investigation [9], Casey’s model for processing and examining digital evidence [10], and Reith’s model for digital forensic analysis[10]. DFRWS is a pioneer of the forensic process.

There are some problems which are occurred during forensic analysis which are mentioned below[11].

1) High-level Search: To identify evidence, either tool is used to search documents stored on suspect’s computer or by the operating system. Since, manual searching takes much of time investigator do in above mentioned way. The automatically searching techniques which are provided by current DFI tools includes, keyword search, regular expression search, approximate matching search, and last modification date search. Accordingly, such techniques are applied directly on all of the stored files without any high level knowledge about the topic mentioned in each document. So, the results of the search techniques generally suffer from the large amount of false positives and false negatives results[11].

2) Evidence-oriented Design: At present, DFI tools are designed for solving problem against crime. The evidence is stored in file format on computer which is not available for addressing particular offenses. Generally, DFI techniques are designed to find evidences to reduce crime scenes[12].

3) Limited Level of Integration: Moreover, existing forensic tools are designed as stand-alone applications and which provided limited capability for integrating with each other or other custom tools[11].

Following fig. 2 shows process of digital forensic investigation[11]. The first phase is Identification phase in which data is associated with particular event. Next is Preservation in this step, precautions have to be taken that data could not be lost from any malicious activities. In the collection step digital data is stored. In Examination step, investigator uses certain tool to examine in depth search for particular case. Next is Analysis step, investigator collect all the evidence together and analyse it with the suspect computer. After that, investigator summarizes the entire thesis, and with that event he presents it which he found out during investigation[11].

2.2 Text mining Methodology

Text mining involves certain methods from different areas like information retrieval, natural language processing, information extraction and data mining. The use of text mining method is to get useful and structured data from large amount of meaningless data.

2.3 Phases of Document Clustering Algorithm:

Following are the phases which are used in document clustering technique[11].

2.3.1 Document Clustering

Clustering means the grouping of similar data items together. Clustering methods involve the process of grouping retrieved documents into the same list of meaningful categories. Document clustering involves descriptors and its extraction process. Descriptors are nothing but the sets of words which describes the contents within the cluster. Document cluster is normally considered as a centralized process. Document clustering can be classify as online and offline.

2.3.2 Pre-processing

Pre-processing is necessary for document clustering. It should be done before clustering. Stemming reduces inflected word to their root word. Stemming algorithm is used to delete suffixes. Stop words are getting removed. Technique searches text by a predefined list so called stop words and delete them from text, stop words like prepositions, pronouns, articles and irrelevant document, Meta data. After that, TDM(Term Document Matrix) is calculated. A distance matrix is used for clustering and multidimensional scaling contains cosine coefficients computed on tf-idf of various words within the documents.

2.3.3 Clustering Algorithm

There are various algorithms which can used in clustering like K-means, K-medoids, Single Link, Complete Link, Average Link. K-means is one of the simplest unsupervised algorithms. In single link clustering, two groups have been merged such that their closest pair of documents have the highest similarity compared to any other pair of groups. In complete linkage clustering, many elements in the clusters are distant to each other. It produces more compact clusters and most useful hierarchies than any other clustering. In average linkage clustering, pairwise of clusters takes place with the highest cohesion. The main key point of K-medoids is to determine optimal value from the original set of values.
3. Conclusion

We have surveyed various forensic systems. For the forensic analysis we have introduced the different aspects of text mining and document clustering. The main key point of digital forensic analysis is the document clustering and text analysis. In this paper we have considered the review of process of digital forensic analysis with different phase’s also different phases of document clustering. This survey study is exhibited by considering our future examination work over the utilization of document clustering for digital forensic analysis. In this paper we have taken the survey of methodology of digital forensic analysis with phases included into it. For future work, first we like to recommend dealing with distinctive clustering algorithm for clustering in computerized criminological result with useful examination results. An alternate future bearing to this examination field is to examine Expectation Maximization (EM) algorithm. Future research could request on the possibility of enriching in the cluster technique semantic data. An alternate future direction could comprise in utilizing supervised learning tools to classify information on as of now defined category for investigative purposes.

References