Ferroelectric Relaxation Behavior of Lead free BCZT Ceramics

S. D. Chavan¹, D. J. Salunkhe²

¹Department of Physics, D.B.F. Dayanand College of Arts and Science Solapur, 413002, India.
²Nano-composite laboratory, Karmaveer Bhaurao Patil Mahavidyalaya, Pandharpur, Solapur, 413304, India

Abstract - The paper reports the synthesis of \((Ba(1-x)Ca(x))(Zr(y)Ti(1-y))O_3\) (BCZT) compositions by solid state reaction route with \(x = 0.05, 0.075\) and \(y = 0.075, 0.1\). The temperature dependent dielectric properties indicate a diffuse phase transition. A broad dielectric maximum, which shifts to higher temperature with increasing frequency, signifies the relaxor behavior of these compositions and maximum dielectric constant \(\varepsilon_{\text{max}}\) was found at the Curie temperature \(T_c\). The value of the relaxation parameter \(\gamma\) ranges from 2.09 to 1.66 for frequency 100Hz to 1MHz estimated from the linear fit of the modified Curie – Weiss law, indicates the relaxor nature of BCZT compositions. The dielectric relaxation rate follows the Vogel – Fulcher relation to supports relaxor nature. The slim \(P-E\) hysteresis loop with nonzero remnant polarization indicates the relaxor nature of BCZT compositions.

Key words: Solid State Reaction, dielectric properties, relaxor nature

1. Introduction

Ferroelectric materials with perovskite structures are useful for microelectronic devices. Lead-based piezoelectric ceramics have been an industry standard for many decades and are widely used in actuators, sensors, and transducers because of their excellent electrical properties [1]. The lead based ceramics are facing global restrictions due to their toxicity [2]. The most widely used ferroelectric material is \(BaTiO_3\) (BT), which belongs to the family of ABO3 perovskite structure. However, the structure of unit cell is temperature dependent. There are three phase transition in order of decreasing temperature (120 °C, 5 °C, -90°C) [3]. The substitution of Sr ,Pb ,Ca and Zr into BT shows interesting ferroelectric properties. Zhuang et al. reported that addition of even a small quantity of Ca ions at Ti-sites leads to a diffused phase transition curve and lowers the phase transition temperatures [4]. Tiwari et al. reported that calcium doping increases the phase transition temperatures of BCT ceramics and Ba²⁺ substitution by Ca²⁺ leads to diffused transition curve. Earlier it was believed that Ca substitution decreases the Curie temperature [5]. But recently, it has been reported that Ca doping can also increase the Curie temperature depending on the powder preparation method & the site occupancy of calcium [6]. Ca-doped BaTiO₃ has been used as a ceramic capacitor. It is a promising photorefractive material [7]. The another important ferroelectric material is Ba(Zr₁₋ₓ,Tiₓ)O₃ (BZT), which is lead free ferroelectric material with high value of dielectric constant [8,9]. In the BaTiO₃– BaZrO₃ system, it has been reported that at ~15 atom % Zr substitution the three transition temperatures of BaTiO₃, rhombohedral to orthorhombic, orthorhombic to tetragonal and tetragonal to cubic, merge near room temperature and the doped material exhibits enhanced dielectric constant [10]. With further increase in Zr contents beyond 15 atomic %, a diffuse dielectric anomaly in ceramic has been observed with the decrease in the transition temperature and the material showed typical relaxor behavior in the range 25-42 atomic % Zr substitution [11,12]. Liu et al. reported that the composition 0.5Ba (Zr₂Ti₃)O₃-0.5(Ba₀.₇Ca₀.₃)TiO₃ lies close to the tricritical point of rhombohedral, tetragonal and cubic phases. They had investigated the composition-piezoelectric constant relationship and they found that 0.5Ba(Zr₀.₂Ti₀.₈)O₃-0.5(Ba₀.₇Ca₀.₃)TiO₃ showed a large piezoelectric constant d₃₃~620 pC/N. They showed that this composition was very close to morphtric phase boundary (MPB) [13].Relaxor behavior has been found in many lead-free materials, such as KNbO₃–BaTiO₃ [14], KNbO₃–BaTiO₃–CaTiO₃ [15] and BaTiO₃– BaZrO₃–BaLiF₃ [16].

We reported a typical relaxor behavior of a new composition having a general formula \((Ba(1-x)Ca(x))(Zr(y)Ti(1-y))O_3\) (BCZT), for \(x = 0.05\) and 0.075 & \(y = 0.075\) and 0.1.

2. Experimental

The BCZT solid solutions have been synthesized using ceramic route of synthesis using the precursors BaCO₃, SrCO₃, ZrO₂ and TiO₂ of AR grade. The stoichiometric amounts of the precursors were well mixed together and ground for 2 hours in an agate mortar with pestle. Considering the earlier reports, the calcination was carried out at 1150 °C. The calcined powder was mixed with a polyvinyl acetate (PVA) binder solution and compacted into disk shaped samples with a diameter of 1.0 cm and a thickness of nearly 1.0 mm. The final sintering process was carried out at 1200 °C for 24 h in two steps. The silver paint thickness of nearly 1.0 mm. The final sintering process was carried out at 1200 °C for 24 h in two steps. The silver paint was used for electroding the samples. The Bruker D8 advance X-ray diffractometer was used for the determination of X-ray diffractograms. The HP4284A LCR-Q meter was used for the measurements of dielectric constant \(\varepsilon\), loss tangent \(\tan\delta\) and P-E hysteresis loops were determined using P-E loop tracer, Marine India Pvt. Limited.
3. Result and Discussion

3.1 Structural Analysis

Fig. 1 shows X-ray diffractograms of (Ba0.95Ca0.05)(Ti0.90Zr0.10)O3 (BCZT1), (Ba0.95Ca0.05)(Ti0.925Zr0.075)O3 (BCZT2) and (Ba0.925Ca0.075)(Ti0.925Zr0.075)O3 (BCZT3) respectively. It could be seen from that the compositions under investigations are polycrystalline in nature and all the peaks in the spectra could be accurately indexed using standard JCPDS data. Further, no peak corresponding to any impurity phase is observed in the X-ray diffractograms. The lattice parameter ‘a’ and ‘c’ corresponding to tetragonal crystal structure are determined from X-ray diffractograms. The parameter a, c and c/a for BCZT1, BCZT2 and BCZT3 are shown in Table 1. The crystallite size is also determined using Scherer’s formula and is shown in Table 1.

Table 1: Particle size D, lattice parameters a, c and c/a for various BCZT composition

<table>
<thead>
<tr>
<th>Composition</th>
<th>D (nm)</th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>c/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCZT1</td>
<td>33.49</td>
<td>3.972</td>
<td>4.0186</td>
<td>1.0117</td>
</tr>
<tr>
<td>BCZT2</td>
<td>42.13</td>
<td>3.7893</td>
<td>4.001</td>
<td>1.0558</td>
</tr>
<tr>
<td>BCZT3</td>
<td>38.03</td>
<td>3.966</td>
<td>4.4267</td>
<td>1.1161</td>
</tr>
</tbody>
</table>

From the table, it is observed that the crystallite size increases with an increase with Ca concentration.

3.2 Dielectric Properties

Fig. 2 shows variation of dielectric constant (ε) as a function of temperature (T) at frequencies 100Hz, 1kHz, 10kHz, 100kHz and 1MHz for BCZT1 composition. Here ε is measured relative to the dielectric constant of free space i.e. ε0. From Fig. 2, it is seen that the value of ε increases gradually to a maximum value εmax with increases in temperature up to the transition temperature Tc and then decreases smoothly, where Tc shifts to higher temperature side as the frequency increases. This behavior is typical of a relaxor ferroelectric.

Table 2 shows the magnitude of ε at room temperature (εRT), loss tangent Tanδ at room temperature (TanδRT), maximum value of ε (εmax), loss tangent Tanδ at Tc (TanδTc) and Tc for various frequencies of measurement for the BCZT1 composition. In case of BCZT1 composition Ca is substituted at A site, while Zr is substituted at B site of ABO3 type ferroelectric system, more than one cation at A and B site may lead to various local region of different relaxation time. These polar micro domains are responsible for the observed relaxor behavior. To parameterize this observe variation of ε versus T behavior, the ε in the paraelectric region is fitted to an equation [18][19]

\[
\frac{1}{\varepsilon} = \frac{1}{\varepsilon_{\text{max}}} + \left(\frac{T-T_c}{2\varepsilon_{\text{max}}\delta^2}\right)^\gamma
\]

(1)

Here γ is diffusivity and δ is diffusion parameter. The diffusivity γ gives information on the character of the phase transition; for γ=1, a normal Curie Weiss law is obtained, for γ=2, it describes a complete diffuse phase transition. From the observed log (1/ε-1/εmax) verses log (T-Tc), values of γ and δ are determined and are also shown in Table 2. It is seen that γ is nearly equal to 2 at lower frequencies (100Hz & 1 KHz), while it decreases as frequency of measurement increases. This observation suggests that the BCZT1 composition possesses a diffuse phase transition characteristics of a relaxor material [20]. To confirm the existence of relaxor contribution, variation of Tc as a function of frequency has been fitted to an equation [21][22].

\[
f = f_0 \exp \left[-\frac{E_a}{k_B(T_m-T_F)}\right]
\]

(2)

Where f0 is the attempt frequency, Ea is the measure of average activation energy, k_B is the Boltzmann constant and T_F is the freezing temperature.

\[\text{Figure 1: XRDs of BCZT Compositions.}\]

\[\text{Figure 2: Variation of } \varepsilon \text{ Vs } T \text{ for BCZT1}\]

\[\text{Figure 3(a): variation of log (1/\varepsilon-1/\varepsilon_{\text{max}}) verses log (T-T_c) for BCZT1}\]
The variation of $\log \left(\frac{1}{\varepsilon - \varepsilon_{\text{max}}} \right)$ versus $\log (T-T_c)$ for BCZT2 and BCZT3 also shows a behavior similar to BCZT1. Fig. 3 (a), (b), (c) shows variation of $\log \left(\frac{1}{\varepsilon - \varepsilon_{\text{max}}} \right)$ versus $\log (T-T_c)$ for BCZT1, BCZT2 and BCZT3. Table 3 and 4 shows variation of ε, ε_{RT}, Tan δ_{RT}, ε_{max}, T_c, γ and β at various frequencies for BCZT2 and BCZT3 respectively. From Table 3 and 4, it is seen that in case of BCZT2 and BCZT3 that the γ lies in between 1 and 2 indicating a partial relaxor behavior. In this case also γ is higher at lower frequency (100Hz) and decreases as frequency increases to 1 MHz. To confirm the existence of relaxor contribution, variation of T_c with frequency is fitted to Vogel–Fulcher relation as given in Eqn.2.

Fig. 4 (a), (b), (c) shows the variation of $\log f$ versus $1000/T_c$ for BCZT1, BCZT2 and BCZT3. The nonlinear behavior for BCZT1, BCZT2 and BCZT3 confirms the existence of relaxor contribution. Here it could be seen that relaxor contribution increases with increasing Zr content, which occupy B site. This qualitative relationship is expected as the shift of ion from the center of charge symmetry causes polarization in case of ABO3 ferroelectric.

Fig. 5 shows variation of Tan δ as a function of T at frequencies 1 kHz, 10 kHz and 100kHz for BCZT1 composition.
composition. It is observed that the Tan δ versus T possesses a peak at a temperature in the vicinity of T_c. Further, it is also observed that the temperature of peak in $\text{Tan} \delta$ also shifts towards higher temperature as frequency of measurement increases. This behavior may occur because of presence of grain–grain boundary interface, reported for certain titanate systems. It is also reported that the $\text{Tan} \delta$ become maximum, where the time require for foreign electron to cross the of grain–grain boundary interface become equal to the reciprocal of the frequency of the measurement. Additionally the nature of peak in the $\text{Tan} \delta$ behavior is similar to a diffuse phase transition, which may occur because relaxor nature of BCZT1. Thus BCZT1 appear to be a relaxor ferroelectric having separate grain–grain boundary regions possessing different dielectric relaxation frequency.

In case of BCZT2 and BCZT3 the variation of $\text{Tan} \delta$ verses T is also similar to the variation for BCZT1. Thus BCZT2 and BCZT3 are also relaxor material having grain–grain boundary regions possessing different dielectric relaxation frequency.

Ferroelectric Properties

<table>
<thead>
<tr>
<th>Composition</th>
<th>P–E Hysteresis Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>a: BCZT3</td>
<td></td>
</tr>
<tr>
<td>b: BCZT2</td>
<td>b</td>
</tr>
<tr>
<td>c: BCZT1</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 6: P–E Hysteresis loops of BCZT Compositions](image)

Fig.6 shows P–E hysteresis loop for BCZT1, BCZT2 and BCZT3 compositions. It is observed that for BCZT1 & BCZT2, the P–E hysteresis loops are slim, which are characteristic of relaxor ferroelectric. In case of BCZT3, P–E loop shows a remarkable polarization. However the P_r/p_{max} is still very small. Thus all the BCZT compositions being studied possesses a relaxor contribution, may be partial in case of BCZT2 and BCZT3. It is already reported that substitution of Zr leads to the reduction of hysteresis loss and lead to slim hysteresis loop [23] [24] [25]. Table 5 shows P_{max}, P_r, E_c and P_r/p_{max} for BCZT1, BCZT2 and BCZT3 composition.

4. Conclusion

The ferroelectric compositions $(\text{Ba}_{(1-x)}\text{Ca}_x)(\text{Zr}_{(1-y)}\text{Ti}_{(1-y)})\text{O}_3$ for $x=0.05$, 0.075 and $y=0.075$, 0.1 are synthesized using ceramic route of synthesis. The room temperature XRD study suggests that the compositions are polycrystalline in nature. The behavior of relaxor ferroelectric BCZT compositions is studied in the temperature range from 30°C to 150°C in the frequency range from 100Hz to 1MHz. All compositions show a diffuse phase transition. The value of the relaxation parameter γ ranges from 2.09 to 1.66 indicates the relaxor nature of BCTZ compositions. The variation of Curie temperature T_c with frequency obeys Vogel –Fulcher relation, strongly suggest the relaxor nature of the BCTZ ceramics. The investigations on hysteresis loop with non zero remnant polarization (P_r) and slim hysteresis loops shows that all BCZT compositions are of relaxor ferroelectric.

5. Acknowledgement

All Authors are thankful to DRDO-NRB, New Delhi for Financial Support.

References

Table 2: T_c, ε_{max}, $\tan \delta_{T_c}$, γ and δ for BCZT1 composition

<table>
<thead>
<tr>
<th>Frequency</th>
<th>T_c</th>
<th>ε_{max}</th>
<th>$\tan \delta_{T_c}$</th>
<th>γ</th>
<th>$\delta \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>101.38</td>
<td>767.75</td>
<td>0.04149</td>
<td>2.098</td>
<td>0.08029</td>
</tr>
<tr>
<td>1K</td>
<td>105.18</td>
<td>728.32</td>
<td>0.02325</td>
<td>1.9238</td>
<td>1.8449</td>
</tr>
<tr>
<td>10K</td>
<td>110.96</td>
<td>706.32</td>
<td>0.02314</td>
<td>1.8441</td>
<td>0.2729</td>
</tr>
<tr>
<td>100K</td>
<td>114.26</td>
<td>688.06</td>
<td>0.03125</td>
<td>1.7911</td>
<td>2.1660</td>
</tr>
<tr>
<td>1M</td>
<td>116.50</td>
<td>453.33</td>
<td>0.2057</td>
<td>1.6632</td>
<td>0.5299</td>
</tr>
</tbody>
</table>

Table 3: T_c, ε_{max}, $\tan \delta_{T_c}$, γ and δ for BCZT2 composition

<table>
<thead>
<tr>
<th>Frequency</th>
<th>T_c</th>
<th>ε_{max}</th>
<th>$\tan \delta_{T_c}$</th>
<th>γ</th>
<th>$\delta \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>121.17</td>
<td>1260.24</td>
<td>0.05278</td>
<td>1.9486</td>
<td>1.636</td>
</tr>
<tr>
<td>1K</td>
<td>122.23</td>
<td>1239.48</td>
<td>0.01763</td>
<td>1.9259</td>
<td>0.03811</td>
</tr>
<tr>
<td>10K</td>
<td>123.10</td>
<td>1211.98</td>
<td>0.01792</td>
<td>1.5952</td>
<td>0.7053</td>
</tr>
<tr>
<td>100K</td>
<td>123.35</td>
<td>1181.89</td>
<td>0.03194</td>
<td>1.5576</td>
<td>1.2827</td>
</tr>
<tr>
<td>1M</td>
<td>126.08</td>
<td>716.49</td>
<td>0.2369</td>
<td>1.4188</td>
<td>0.8652</td>
</tr>
</tbody>
</table>

Table 4: T_c, ε_{max}, $\tan \delta_{T_c}$, γ and δ for BCZT3 composition

<table>
<thead>
<tr>
<th>Frequency</th>
<th>T_c</th>
<th>ε_{max}</th>
<th>$\tan \delta_{T_c}$</th>
<th>γ</th>
<th>$\delta \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>119.80</td>
<td>1293.52</td>
<td>0.0448</td>
<td>1.9521</td>
<td>0.05675</td>
</tr>
<tr>
<td>1K</td>
<td>120.05</td>
<td>972.11</td>
<td>0.02327</td>
<td>1.8065</td>
<td>1.0818</td>
</tr>
<tr>
<td>10K</td>
<td>121.47</td>
<td>820.72</td>
<td>0.097081</td>
<td>1.207</td>
<td>0.06956</td>
</tr>
<tr>
<td>100K</td>
<td>122.79</td>
<td>752.23</td>
<td>0.06711</td>
<td>1.7025</td>
<td>0.9469</td>
</tr>
<tr>
<td>1M</td>
<td>124.72</td>
<td>438.64</td>
<td>0.2557</td>
<td>1.6901</td>
<td>2.3029</td>
</tr>
</tbody>
</table>