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Abstract: Unsteady MHD free convection boundary layer flow of an incompressible, dissipative and radiative fluid with constant 
viscosity past an infinite vertical plate placed in a porous medium under the effect of inclined magnetic field with Joule effect and 
constant heat flux is investigated. A parametric study is performed to illustrate the influence of radiation parameter, magnetic 
parameter, Grashof number, Prandtl number, Eckert number and heat source parameter on the velocity and temperature profiles. Also, 
the skin-friction at the plate is derived, discussed numerically and shown through table. 
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1. Introduction 
 
In our everyday life, it can be seen that atmospheric flow is 
driven by temperature differences. The hydromagnetic free 
convection flow and heat transfer problems have become 
important scientifically and industrially. The study of 
hydromagnetic free convection flow finds applications in 
science and engineering, in areas such as geophysical 
exploration, solar physics, and astrophysical studies. The 
electro-magneto-dynamics of fluids was studied by Huges 
and Yong (1966). Cogley (1968) developed differential 
approximations for radiative heat transfer in a nonlinear 
equations-grey gas near equilibrium. The effects of radiation 
and variable viscosity on a MHD free convection flow past a 
semi-infinite flat plate with magnetic field in the case of 
unsteady flow have been reported by Seddeek (2002). Chen 
(2004) considered the combined heat and mass transfer in 
MHD free convection from a vertical surface with Ohmic 
heating and viscous dissipation. Analytical solutions for 
unsteady free convection flow through a porous media were 
presented by Magyari (2004). Sharma and Chaturvedi (2005) 
studied unsteady flow and heat transfer along a plane wall 
with variable suction and free stream. Unsteady flow and 
heat transfer along a hot vertical porous plate in the presence 
of periodic suction and heat source have been analyzed by 
Sharma and Gupta (2006). Sharma and Singh (2008) 
investigated unsteady MHD free convective flow and heat 
transfer along a vertical porous plate with variable suction 
and internal heat generation. Radiation effects on unsteady 
MHD free convective flow with hall current and mass 
transfer through viscous incompressible fluid past a vertical 
porous plate immersed in porous medium with heat 
source/sink have been discussed by Sharma et al. (2009). 
Singh and Gorla (2009) studied free convective heat and 
mass transfer with Hall current, Joule heating and thermal 
diffusion. Effects of variable thermal conductivity and 
viscous dissipation on steady MHD natural convection flow 
of low Prandtl fluid on an inclined porous plate with Ohmic 
heating were presented by Sharma and Singh (2010). 
Sandeep and Sugunamma (2013) analyzed the effect of 

inclined magnetic field on unsteady free convective flow of 
dissipative fluid past a vertical plate. Unsteady MHD free 
convective visco-elastic fluid flow bounded by an infinite 
inclined porous plate in the presence of heat source, viscous 
dissipation and Ohmic heating was considered by 
Umamaheswar et al. (2013). Alizadeh and Rahmdel (2014) 
studied the MHD free convection flow of a dissipative fluid 
over a vertical porous plate placed in porous media. 
 
The objective of the present paper is to investigate unsteady 
MHD free convection boundary layer flow of a Newtonian 
fluid with constant viscosity past an infinite vertical plate 
placed in a porous medium under the effect of inclined 
magnetic field with joule heating, viscous dissipation, 
radiation and constant heat flux. The governing coupled 
partial differential equations are transformed in non 
dimensional form and solved by perturbation method. The 
effects of various physical parameters on velocity profiles, 
temperature profiles and skin friction are discussed and 
shown through graphs and numerical values are presented 
through table. 
 
2. Mathematical Formulation of the Problem 
 
Unsteady MHD free convective flow of a viscous, 
incompressible and electrically conducting fluid in an 
optically thin environment past an infinite vertical plate 
placed in a porous medium, in the presence of joule effect 
and heat source is considered. The �∗- axis is taken parallel 
to the infinite vertical plate and the �∗- axis is perpendicular 
to the plate. An inclined magnetic field is applied in the 
presence of thermal radiation. Hence, following Cogley et al. 
(1968) equilibrium model, the expression of the radiative 
heat flux is taken as given below 
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where wKλ  is the radiation absorption coefficient at the wall 
and be λ is the Plank function. 
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All the flow variables are independent of �∗ since the plate is 
infinite in extent and so their derivatives with respect to �∗ 
vanish. Only non-zero velocity component is in the �∗ - 
direction. The non-zero velocity component and temperature 
are functions of �∗  and �∗  only. The radiative heat flux is 
considered negligible in the �∗- direction in comparison to 
the �∗ - direction. Hence, the equation of continuity is 
automatically satisfied. The unsteady flow and temperature 
fields within the frame work of the above assumptions are 
governed by the following equations 
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where � is the density, �∗ is the velocity component in �∗- 
direction, �∗  is the time, �  is the viscosity, g  is the 
acceleration due to gravity, �  is the thermal expansion 
coefficient, �∗ is the temperature of the fluid in the boundary 
layer, �∞ is the temperature of the fluid far away from the 
plate, � is the electrical conductivity, �� is the magnetic field 
intensity, � is the kinematic viscosity, �∗ is the permeability 
of porous medium, � is the thermal conductivity, ��  is the 
specific heat at constant pressure, �∗  is the heat source 
parameter. 
 
The initial and boundary conditions are: 

For * * *0, 0 ,t u T T∞≤ = =  for all �∗ 
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where U  is the mean velocity of plate and 1ε << . 
 
3. Method of Solution 
 
Introducing the following non-dimensional quantities 
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into the equations (2) and (3), we get 
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where �  is the non-dimensional velocity along �-axis, �  is 
the non-dimensional temperature, �  is the time, ��  is the 
Grashof number for heat transfer, �  is the Hartmann 
number, �  is the permeability parameter, ��  is the Prandtl 
number, �  is the radiation parameter, ��  is the Eckert 
number, � is the heat source parameter. 
 
The corresponding boundary conditions are reduced to 

for 0, 0 , 0t u θ≤ = =  for all � 
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 at : 0, 0.y u θ→∞ = =                                    (8) 
In view of boundary conditions, the velocity and temperature 
distributions are separated into steady and unsteady parts as 
given below 
 

0 1( , ) ( ) ( ),i tu y t u y e u yωε= +  

0 1( , ) ( ) ( ).i ty t y e yωθ θ ε θ= +                                                 (9) 
 
Substituting (9) into the equations (6) and (7), and equating 
the harmonic and non-harmonic terms, we obtain 
 
Zeroth order equations 
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First order equations 
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Here, prime denotes the differentiation with respect to �. 

Now, the corresponding boundary conditions are reduced to 
' '

0 1 0 10 : 1, 1, 1, 0;y u u θ θ= = = = − =  

0 1 0 1: 0 , 0, 0, 0.y u u θ θ→ ∞ → → → →                      (14) 
The equations (10) to (13) are still coupled ordinary second 
order differential equations. Since the Eckert number �� is 
very small for incompressible fluid flows, therefore 

0 1 0 1, , ,u u θ θ can be expanded in the powers of �� as given 
below 
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where � stands for any ��, ��, �� or ��. Substituting (16) into 
the equations (11) to (14), equating the coefficients of like 
powers of �� and neglecting terms of ������, we get 
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First order equations 
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Now, the corresponding boundary conditions are reduced to 
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Now, the equations (16) to (23) are ordinary second order 
coupled differential equations and solved under the boundary 
conditions (24). Thus, through straight forward calculations 
the expressions for velocity and temperature distribution are 
known and given by 
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where ��  to ���  are constants, whose expressions are not 
given here due to sake of brevity. 

3.1. Skin friction coefficient 
 
The coefficient of skin-friction at the plate is given by 
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4. Results and Discussion 
 
The effects of the various physical parameters on the fluid 
velocity and fluid temperature are shown through graphs 
when � � 0.01, � � 1 and � � 2. From figures 1 to 8, it is 
observed that fluid velocity increases by increasing the 
Grashof number for heat transfer, the Eckert number, the 
permeability parameter or the heat source parameter while it 
decreases by increasing the Hartmann number, the Prandtl 
number, the radiation parameter or the angle of inclination of 
magnetic field. The effects of Eckert number, Hartmann 

number, heat source parameter or angle of inclination of 
magnetic field on temperature field are shown through figure 
9 to 12. It is found that fluid temperature enhances with the 
increase of these physical parameters. Further, the effects of 
Grashof number for heat transfer, permeability parameter, 
Prandtl number or radiation parameter on temperature field 
are shown through figure 13 to 16. It is observed that the 
fluid temperature decreases with the increase of these 
physical parameters. 
 

 
     Figure 1: Velocity distribution versus � when 1,K =  
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      Figure 2: Velocity distribution versus � when 5,Gr =   

     1, 4, Pr 0.71, 1, 0.2, .
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 Figure 3: Velocity distribution versus � when 5,Gr =

4,Pr 0.71, 0.01, 1, 0.2, .
2

M Ec R Q πψ= = = = = =  

 Figure 4: Velocity distribution versus � when 5,Gr =  

1, 4, Pr 0.71, 0.01, 1, .
2

K M Ec R πψ= = = = = =
 

 
Figure 5: Velocity distribution versus � when 5,Gr =  

    
1, Pr 0.71, 0.01, 1, 0.2, .

2
K Ec R Q πψ= = = = = =

 

 Figure 6: Velocity distribution versus � when 5,Gr =  

     
1, 4, 0.01, 1, 0.2, .

2
K M Ec R Q πψ= = = = = =

 

 
Figure 7: Velocity distribution versus � when 5,Gr =  

    
1, 4, Pr 0.71, 0.01, 0.2, .

2
K M Ec Q πψ= = = = = =

 

 
Figure 8: Velocity distribution versus � when 5,Gr =  

    1, 4,Pr 0.71, 0.01, 1, 0.2K M Ec R Q= = = = = =  
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Figure 9: Temperature distribution versus � when 5,Gr =  

  
1, 4, Pr 0.71, 1, 0.2,

2
K M R Q πψ= = = = = =  

 
Figure 10: Temperature distribution versus � when 1,R=  

  5, 1,Pr 0.71, 0.01, 0.2, .
2

Gr K Ec Q πψ= = = = = =  

 
Figure 11: Temperature distribution versus � when 1,R=  

  
5, 1, 4, Pr 0.71, 0.01, .

2
Gr K M Ec πψ= = = = = =

 

 
    Figure 12: Temperature distribution versus � when 1,R=  

    5, 1, 4, 0.01,Pr 0.71, 0.2.Gr K M Ec Q= = = = = =  

 
     Figure 13: Temperature distribution versus � when 1,R=  

    1, 4, Pr 0.71, 0.01, 0.2, .
2

K M Ec Q πψ= = = = = =  

 
    Figure 14: Temperature distribution versus � when 1,R=  

    
5, 4, Pr 0.71, 0.01, 0.2, .

2
Gr M Ec Q πψ= = = = = =
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Figure 15: Temperature distribution versus � when 1,R=  

   
5, 1, 4, 0.01, 0.2, .

2
Gr K M Ec Q πψ= = = = = =

 

 
Figure 16: Temperature distribution versus � when 1,K=  

  
5, 4, Pr 0.71, 0.01, 0.2, .

2
Gr M Ec Q πψ= = = = = =  

The physical quantity of interest to engineers is the skin 
friction coefficient. The skin friction is the non-dimensional 
rate of shear stress. Numerical results of skin friction 
coefficient at the plate for various values of the physical 
parameters are calculated and shown through Table 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Numerical values of skin friction coefficient at the 
plate for various values of physical parameters when � � 1 

and � � 2. 
� �� � �� �� � � � � �� 

0.00 0.71 1 0.01 5 0.2 2 1 π/2 0.9397 
0.01 0.71 1 0.01 5 0.2 2 1 π/2 0.9490 
0.01 1.00 1 0.01 5 0.2 2 1 π/2 0.4468 
0.01 0.71 2 0.01 5 0.2 2 1 π/2 0.1538 
0.01 0.71 1 0.02 5 0.2 2 1 π/2 0.9587 
0.01 0.71 1 0.01 10 0.2 2 1 π/2 3.3249 
0.01 0.71 1 0.01 5 0.4 2 1 π/2 1.4511 
0.01 0.71 1 0.01 5 0.2 4 1 π/2 0.0370 
0.01 0.71 1 0.01 5 0.2 2 0.4 π/2 0.2175 
0.01 0.71 1 0.01 5 0.2 2 1 π/6 2.0729 

 
It is observed from Table 1 that the skin friction coefficient 
increases due to increase in the Eckert number, the Grashof 
number for heat transfer, the permeability parameter or the 
heat source parameter; while it decreases due to increase in 
the Prandtl number, the radiation parameter, the Hartmann 
number or the angle of inclination of magnetic field. 
 
5. Conclusions 
 
An unsteady radiative free convective flow of a viscous, 
incompressible and electrically conducting fluid in an 
optically thin environment past an infinite vertical plate 
placed in a porous media with viscous dissipation effect and 
joule effect in the presence of heat source, constant heat flux 
and inclined magnetic field are analyzed and the following 
conclusions are made; 
 
1. An increase in the Grashof number for heat transfer, 

permeability parameter or heat source parameter leads to 
a rise in the magnitude of fluid velocity. 

2. An increase in the radiation parameter, Hartmann number 
or Prandtl number leads to decrease in the magnitude of 
fluid velocity. 

3. The fluid temperature increases with the increase of 
Eckert number, Hartmann number or heat source 
parameter, while it decreases with the increase of the 
Prandtl number, Grashof number for heat transfer, 
permeability parameter or radiation parameter. 

4. As radiation parameter, Hartmann number or Prandtl 
number increases, the skin friction coefficient decreases. 

5. The skin friction coefficient rises with the increase of 
Eckert number, Grashof number for heat transfer, 
permeability parameter or heat source parameter. 
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