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Abstract: Number of users and devices connected to internet is growing exponentially. Each of these device and user generate lot of 
data which organizations want to analyze and use. Hadoop like batch processing are evolved to process such big data. Batch processing 
systems provide offline data processing capability. There are many businesses which requires real-time or near real-time processing of 
data for faster decision making. Hadoop and batch processing system are not suitable for this. Stream processing systems are designed 
to support class of applications which requires fast and timely analysis of high volume data streams. Complex event processing, or CEP, 
is event/stream processing that combines data from multiple sources to infer events or patterns that suggest more complicated 
circumstances. In this paper I propose “Lightning - High Performance & Low Latency Complex Event Processor” engine. Lightning is 
based on open source stream processor WSO2 Siddhi. Lightning retains most of API and Query Processing of WSO2 Siddhi. WSO2 
Siddhi core is modified using low latency technique such as Ring Buffer, off heap data store and other techniques. 
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1. Introduction 
 
Number of users and devices connected to internet is 
growing exponentially. Each of these device and user 
generate lot of data which organizations want to analyze and 
use for their businesses. Data can be user activity, system 
logs, and transactions in financial systems etc. Traditional 
systems stores data in RDMS and uses SQL query language 
to retrieve required data for business use. BIG data is high 
volume of data which is in scale of Peta Bytes. Transitional 
RDBMS systems are not able to handle BIG data so Hadoop 
like batch processing are evolved to process BIG data. Batch 
processing systems provide offline data processing 
capability. 
 
Stream processing frameworks support a different class of 
applications. These are applications which continuously 
consume and process data while continuously producing 
results. Data element is called touple and a continuous flow 
of touples is called streams. Examples of streams include 
event logs, user-click, network traffic, readings from sensor 
(temperature, GPS location, traffic movement), and various 
other data feeds. Stream processing frameworks provide 
content to user and help organization to make better and 
faster decisions. User want’s real-time information about 
surrounding like news. Organization wants real-time 
information from their system to analyze fraud, detect 
intrusion, analyze social media trends etc. Over time many 
open source and commercial stream processing systems are 
evolved and they provide basic infrastructure for stream 
processing. 
 
The requirements of stream processing applications are very 
different than those of batch processing applications. Order 
in which data is received impacts result. Stream processing 
applications are temporally sensitive. They are generally 
time-critical because there is use is promptness with which 
results are produced. Stream applications which find 
network intrusions or credit cards fraud patterns should 
respond quickly to an observed threat. Some other examples 

of stream applications include automated stock trading, real-
time video processing, vital-signs monitoring and geo-spatial 
trajectory modification. Results produced by such 
applications are often urgent and require immediate 
attention. Because of time sensitivity if result of these 
applications becomes more and more delayed, their 
importance and applicability rapidly decrease. Example of 
this is in intrusion detection systems. If organization is able 
to identify intrusion detection and its patterns they will be 
able to defend their system against attack. Also in financial 
system like stock trading if firm is able to identify stock 
trends before others they will be able to gain more profit. To 
support time-critical stream processing, it is important to 
minimize the average latency of the continuously emitted 
results instead of throughput. Stream applications which are 
not time-critical process as large a stream as possible with 
maximizing throughput. 
 
Complex event processing, or CEP, is event/stream 
processing that combines data from multiple sources to infer 
events or patterns that suggest more complicated 
circumstances. Stream processing system consider each 
event separately while CEP systems consider complex event 
patterns that considers the multiple and related events. 
 
Aim of this papers to represent “Lightning - High 
Performance & Low Latency Complex Event Processor” 
engine. Lightning is based on open source stream processor 
WSO2 Siddhi. WSO2 Siddhi is based on pipeline 
architecture which uses Queue. Lightning retains most of 
API and Query Processing of WSO2 Siddhi. WSO2 Siddhi 
core is modified using low latency technique such as Ring 
Buffer, off heap data store and other techniques. 
 
2. Study of Existing CEP  
 
Complex event processing, or CEP, is event or stream 
processing which combines data from multiple sources to 
find events or patterns that suggest more complicated 
circumstances. Following is difference between traditional 
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DBMS and CEP systems. Tradition DBMS system store data 
before processing CPE systems processes data as it is 
available. Figure 1 shows comparison between database and 
CEP system. 
 

  
Figure 1: DBMS VS CEP Engine 

 
Kristian[24] and GIANPAOLO[33] provide details CEP 
engine. We will review work done in complex event 
processing. Rizvi[34] surveyed complex event processing 
work in multiple contexts, active databases among others. It 
was concluded that processing continuous stream data by 
storing in data base and executing queries it resulted in very 
poor performance of systems. He extended TelegraphCQ 
data stream processor to process execute complex event and 
execute continuous queries (CQs), with traditional SQL-like 
continuous queries. With more result stream databases 
immerged but they used RDMS approach by storing data in 
file system which were not optimized for sequential 
streaming queries. The TelegraphCQ bas based on 
PostgreSQL architecture and supported continuous queries 
over streaming data, and later Truviso provided deep 
integration with databases system and supporting historical 
queries. But these systems failed to provide expected speed 
required of high volume CEP system. 
 
Diao [35] presents the design of system called SASE which 
executes complex queries over event streams over real time 
RFID reading as events. They proposed new complex event 
processing language which allows queries to filter and 
correlate events. It also transforms the relevant events into 
new composite events which will form output. An event 
query provides features such as parameterization, 
sequencing, windowing and negation required for emerging 
RFID event monitoring applications. Effectiveness of SASE 
was demonstrated in a detailed performance study. Also 
SASE was compared to TelegraphCQ a relational stream 
processor. 
 
There are many stream processing systems developed which 
followed pull or publish subscribe approach. Many also 
provide SQL like query language using which user can 
define queries. User can define different filters and windows 
for data aggregation. They have compromised ease of use 
over performance. Some of these systems are Aurora [7], 
Borealis [17] and S4 [22]. 
 
Recently developed Twitter Storm, S4 and Samza are 
excellent in processing high velocity streams but they are not 

CEP system. They all provide very low level API and rule 
engine should be built by user manually. They do not 
provide system to express queries which can relate different 
events so we cannot categorize them as CEP systems. 
 
More recently new stream processing engines like SASE, 
WSO2 Siddhi, Esper are emerged which provides full 
complex event processing capability. Also there are many 
commercial systems emerged for stream processing which 
are based in existing open source application. 
 
We found Siddhi and Esper provides excellent functionality 
for Complex event processing. While Esper has restricted 
some features in commercial license Siddhi is fully open 
source application. 
 
While Siddhi is very good CEP engine it is based on queue 
architecture [23]. It uses java queues to create query 
processing pipeline and inter-thread communication. Queues 
easiest data structure available out of box their performance 
degrades under heavy load [36]. 
 
In order to put some data on a queue, you need to write to 
that queue. Also to take data out of the queue, you need to 
modify/write to the queue to removal the required data. This 
is write contention - where we have more than one client 
may need to write (add or remove) to the same data 
structure. Process requests from multiple clients a queue 
often uses locks. When a lock is used, it can cause a context 
switch to the kernel. When context switch happens the 
processor involved is likely to lose the data in its caches. 
 

Table 1: Comparative throughput (in ops per sec) 

  
Array Blocking 

Queue (ns) 
Disruptor (ns)

Min Latency 145 29
Mean Latency 32,757 52

99% observations less than 2,097,152 128
99.99% observations less than 4,194,304 8,192

Max Latency 5,069,086 175,567
 
Thompson [36] proposed new data structure based on ring 
buffer called Disruptor. The Disruptor has a lower 
concurrency overhead and significantly less write 
contention. It is also more cache friendly than other similar 
approaches. All these features results in greater throughput 
with lower latency. On processors at with average clock 
speed it can process over 25 million messages per second 
and over all latencies much lower than 50 nanoseconds. 
Disruptor has performance very high improvement over any 
other type of data structure like queues. It is very close to the 
theoretical limit of a modern processor to exchange data 
between cores. 

 
Table 1 compares throughput i.e. operations per second 
between array blocking queue and Disruptor. Disruptor gives 
higher throughput than Queue. 
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3. Lightning Architecture 
 

 

 
Figure 2: Lightning CEP Architecture 

 
3.1 Architecture 
 
Proposed “Lightning CEP” Architecture is shown in Figure 
2. Lightning will use pull model which pulls data from 
different sources and send it to CEP engine. It will also use 
Disruptor for inter thread communication which is very fast 
compared to traditional Queue. 

 
3.2 Source and Receiver 
 
Lightening works on Pull architecture instead of push. 
Receiver can read data from multiple sources and send event 
to core engine. Receiver can read data from multiple sources 
like file system, web feeds, queues etc. Input event data can 
be in different format, so receiver will help in converting 
data to correct internal format. 
  
3.3 Ring Buffer 
 
Lightening uses Ring Buffer for inter thread communication. 
There can multiple ring buffers in system and above 
architecture shows input and output ring buffers. Receiver 
reads data from sources and sends it to input ring buffer for 
processing. 

 
In input ring buffer there can be multiple threads working on 
buffer simultaneously. They will work on Tuple one or more 
at a time. Each thread does processing for one tuple and 
moves to other tuple. 

 
Output ring buffer is same as input ring buffer. Once 
processing is done results are written to output ring buffer. 
Output adapter threads will process each element in buffer 
and produces requires output. 
 

3.4 Data Processing Engine 
 
Between input and out ring buffer is core of Lightening. 
User defines queries through admin interface. Processing 
Engine parses queries and creates requires request 
processing pipeline. Pipeline is directed graph of Ring 
Buffers which on which multiple threads operates and does 
data processing. It does all the work on input tuples like 
filtering, aggregation, window operations. 
 
3.5 Output Adapters 
 
Once processing engine is done with processing of data they 
emit output events to output ring buffer. Output adapter 
threads operate on output events from buffer and do required 
processing. 
 
3.6 Query Compiler 
 
Query compiler takes input query from user and compiles it. 
It parses and validates queries and create object graph which 
Processing Engine can understand. Query compiler is based 
in ANTLR and it’s based on Siddhi query compiler which 
borrows all of the query definitions from it. Query compiler 
is based on Siddhi compiler and it borrows most of Siddhi 
Query specification 
 
4. Conclusion and Future Work 
 
As we discussed in literature review Stream processing 
engines provides better performance for analyzing high 
velocity stream data. There are few open source stream 
processing engines available which provide Complex Event 
Processing capability. Many of them use old data structures 
like Queues for input and inter thread communication. While 
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queues are good data structure they do not provide low 
latency and high throughput. We have proposed architecture 
of “Lightning CEP - High Performance & Low Latency 
Complex Event Processor”. 
 
Future work includes designing of detailed architecture and 
implementing it in open source CEP engine.  
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