
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Lightning CEP - High Performance & Low Latency
Complex Event Processor

Vikas Kale1, Kishor Shedge2

1, 2Sir Visvesvaraya Institute of Technology, Chincholi, Nashik, 422101, India

Abstract: Number of users and devices connected to internet is growing exponentially. Each of these device and user generate lot of
data which organizations want to analyze and use. Hadoop like batch processing are evolved to process such big data. Batch processing
systems provide offline data processing capability. There are many businesses which requires real-time or near real-time processing of
data for faster decision making. Hadoop and batch processing system are not suitable for this. Stream processing systems are designed
to support class of applications which requires fast and timely analysis of high volume data streams. Complex event processing, or CEP,
is event/stream processing that combines data from multiple sources to infer events or patterns that suggest more complicated
circumstances. In this paper I propose “Lightning - High Performance & Low Latency Complex Event Processor” engine. Lightning is
based on open source stream processor WSO2 Siddhi. Lightning retains most of API and Query Processing of WSO2 Siddhi. WSO2
Siddhi core is modified using low latency technique such as Ring Buffer, off heap data store and other techniques.

Keywords: CEP, Complex Event Processing, Stream Processing.

1. Introduction

Number of users and devices connected to internet is
growing exponentially. Each of these device and user
generate lot of data which organizations want to analyze and
use for their businesses. Data can be user activity, system
logs, and transactions in financial systems etc. Traditional
systems stores data in RDMS and uses SQL query language
to retrieve required data for business use. BIG data is high
volume of data which is in scale of Peta Bytes. Transitional
RDBMS systems are not able to handle BIG data so Hadoop
like batch processing are evolved to process BIG data. Batch
processing systems provide offline data processing
capability.

Stream processing frameworks support a different class of
applications. These are applications which continuously
consume and process data while continuously producing
results. Data element is called touple and a continuous flow
of touples is called streams. Examples of streams include
event logs, user-click, network traffic, readings from sensor
(temperature, GPS location, traffic movement), and various
other data feeds. Stream processing frameworks provide
content to user and help organization to make better and
faster decisions. User want’s real-time information about
surrounding like news. Organization wants real-time
information from their system to analyze fraud, detect
intrusion, analyze social media trends etc. Over time many
open source and commercial stream processing systems are
evolved and they provide basic infrastructure for stream
processing.

The requirements of stream processing applications are very
different than those of batch processing applications. Order
in which data is received impacts result. Stream processing
applications are temporally sensitive. They are generally
time-critical because there is use is promptness with which
results are produced. Stream applications which find
network intrusions or credit cards fraud patterns should
respond quickly to an observed threat. Some other examples

of stream applications include automated stock trading, real-
time video processing, vital-signs monitoring and geo-spatial
trajectory modification. Results produced by such
applications are often urgent and require immediate
attention. Because of time sensitivity if result of these
applications becomes more and more delayed, their
importance and applicability rapidly decrease. Example of
this is in intrusion detection systems. If organization is able
to identify intrusion detection and its patterns they will be
able to defend their system against attack. Also in financial
system like stock trading if firm is able to identify stock
trends before others they will be able to gain more profit. To
support time-critical stream processing, it is important to
minimize the average latency of the continuously emitted
results instead of throughput. Stream applications which are
not time-critical process as large a stream as possible with
maximizing throughput.

Complex event processing, or CEP, is event/stream
processing that combines data from multiple sources to infer
events or patterns that suggest more complicated
circumstances. Stream processing system consider each
event separately while CEP systems consider complex event
patterns that considers the multiple and related events.

Aim of this papers to represent “Lightning - High
Performance & Low Latency Complex Event Processor”
engine. Lightning is based on open source stream processor
WSO2 Siddhi. WSO2 Siddhi is based on pipeline
architecture which uses Queue. Lightning retains most of
API and Query Processing of WSO2 Siddhi. WSO2 Siddhi
core is modified using low latency technique such as Ring
Buffer, off heap data store and other techniques.

2. Study of Existing CEP

Complex event processing, or CEP, is event or stream
processing which combines data from multiple sources to
find events or patterns that suggest more complicated
circumstances. Following is difference between traditional

Paper ID: OCT141154 1219

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DBMS and CEP systems. Tradition DBMS system store data
before processing CPE systems processes data as it is
available. Figure 1 shows comparison between database and
CEP system.

Figure 1: DBMS VS CEP Engine

Kristian[24] and GIANPAOLO[33] provide details CEP
engine. We will review work done in complex event
processing. Rizvi[34] surveyed complex event processing
work in multiple contexts, active databases among others. It
was concluded that processing continuous stream data by
storing in data base and executing queries it resulted in very
poor performance of systems. He extended TelegraphCQ
data stream processor to process execute complex event and
execute continuous queries (CQs), with traditional SQL-like
continuous queries. With more result stream databases
immerged but they used RDMS approach by storing data in
file system which were not optimized for sequential
streaming queries. The TelegraphCQ bas based on
PostgreSQL architecture and supported continuous queries
over streaming data, and later Truviso provided deep
integration with databases system and supporting historical
queries. But these systems failed to provide expected speed
required of high volume CEP system.

Diao [35] presents the design of system called SASE which
executes complex queries over event streams over real time
RFID reading as events. They proposed new complex event
processing language which allows queries to filter and
correlate events. It also transforms the relevant events into
new composite events which will form output. An event
query provides features such as parameterization,
sequencing, windowing and negation required for emerging
RFID event monitoring applications. Effectiveness of SASE
was demonstrated in a detailed performance study. Also
SASE was compared to TelegraphCQ a relational stream
processor.

There are many stream processing systems developed which
followed pull or publish subscribe approach. Many also
provide SQL like query language using which user can
define queries. User can define different filters and windows
for data aggregation. They have compromised ease of use
over performance. Some of these systems are Aurora [7],
Borealis [17] and S4 [22].

Recently developed Twitter Storm, S4 and Samza are
excellent in processing high velocity streams but they are not

CEP system. They all provide very low level API and rule
engine should be built by user manually. They do not
provide system to express queries which can relate different
events so we cannot categorize them as CEP systems.

More recently new stream processing engines like SASE,
WSO2 Siddhi, Esper are emerged which provides full
complex event processing capability. Also there are many
commercial systems emerged for stream processing which
are based in existing open source application.

We found Siddhi and Esper provides excellent functionality
for Complex event processing. While Esper has restricted
some features in commercial license Siddhi is fully open
source application.

While Siddhi is very good CEP engine it is based on queue
architecture [23]. It uses java queues to create query
processing pipeline and inter-thread communication. Queues
easiest data structure available out of box their performance
degrades under heavy load [36].

In order to put some data on a queue, you need to write to
that queue. Also to take data out of the queue, you need to
modify/write to the queue to removal the required data. This
is write contention - where we have more than one client
may need to write (add or remove) to the same data
structure. Process requests from multiple clients a queue
often uses locks. When a lock is used, it can cause a context
switch to the kernel. When context switch happens the
processor involved is likely to lose the data in its caches.

Table 1: Comparative throughput (in ops per sec)

Array Blocking

Queue (ns)
Disruptor (ns)

Min Latency 145 29
Mean Latency 32,757 52

99% observations less than 2,097,152 128
99.99% observations less than 4,194,304 8,192

Max Latency 5,069,086 175,567

Thompson [36] proposed new data structure based on ring
buffer called Disruptor. The Disruptor has a lower
concurrency overhead and significantly less write
contention. It is also more cache friendly than other similar
approaches. All these features results in greater throughput
with lower latency. On processors at with average clock
speed it can process over 25 million messages per second
and over all latencies much lower than 50 nanoseconds.
Disruptor has performance very high improvement over any
other type of data structure like queues. It is very close to the
theoretical limit of a modern processor to exchange data
between cores.

Table 1 compares throughput i.e. operations per second
between array blocking queue and Disruptor. Disruptor gives
higher throughput than Queue.

Paper ID: OCT141154 1220

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Lightning Architecture

Figure 2: Lightning CEP Architecture

3.1 Architecture

Proposed “Lightning CEP” Architecture is shown in Figure
2. Lightning will use pull model which pulls data from
different sources and send it to CEP engine. It will also use
Disruptor for inter thread communication which is very fast
compared to traditional Queue.

3.2 Source and Receiver

Lightening works on Pull architecture instead of push.
Receiver can read data from multiple sources and send event
to core engine. Receiver can read data from multiple sources
like file system, web feeds, queues etc. Input event data can
be in different format, so receiver will help in converting
data to correct internal format.

3.3 Ring Buffer

Lightening uses Ring Buffer for inter thread communication.
There can multiple ring buffers in system and above
architecture shows input and output ring buffers. Receiver
reads data from sources and sends it to input ring buffer for
processing.

In input ring buffer there can be multiple threads working on
buffer simultaneously. They will work on Tuple one or more
at a time. Each thread does processing for one tuple and
moves to other tuple.

Output ring buffer is same as input ring buffer. Once
processing is done results are written to output ring buffer.
Output adapter threads will process each element in buffer
and produces requires output.

3.4 Data Processing Engine

Between input and out ring buffer is core of Lightening.
User defines queries through admin interface. Processing
Engine parses queries and creates requires request
processing pipeline. Pipeline is directed graph of Ring
Buffers which on which multiple threads operates and does
data processing. It does all the work on input tuples like
filtering, aggregation, window operations.

3.5 Output Adapters

Once processing engine is done with processing of data they
emit output events to output ring buffer. Output adapter
threads operate on output events from buffer and do required
processing.

3.6 Query Compiler

Query compiler takes input query from user and compiles it.
It parses and validates queries and create object graph which
Processing Engine can understand. Query compiler is based
in ANTLR and it’s based on Siddhi query compiler which
borrows all of the query definitions from it. Query compiler
is based on Siddhi compiler and it borrows most of Siddhi
Query specification

4. Conclusion and Future Work

As we discussed in literature review Stream processing
engines provides better performance for analyzing high
velocity stream data. There are few open source stream
processing engines available which provide Complex Event
Processing capability. Many of them use old data structures
like Queues for input and inter thread communication. While

Paper ID: OCT141154 1221

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

queues are good data structure they do not provide low
latency and high throughput. We have proposed architecture
of “Lightning CEP - High Performance & Low Latency
Complex Event Processor”.

Future work includes designing of detailed architecture and
implementing it in open source CEP engine.

References

[1] David Luckham & Roy Schulte, Event Processing

Glossary – Version 2.0 ,
http://www.complexevents.com/2011/08/23/event-
processing-glossary-version-2/, [Online; accessed on
12/9/2014]

[2] David Luckham & Roy Schulte, Event Processing
Glossary – Version 2.0 ,
http://www.complexevents.com/2011/08/23/event-
processing-glossary-version-2/, [Online; accessed on
12/9/2014]

[3] Jeffrey Dean and Sanjay Ghemawat, MapReduce:
Simplified Data Processing on Large Clusters, Google,
Inc.

[4] Storm Distributed and fault-tolerant realtime
computation. https://storm.apache.org/, [Online;
accessed on 12/9/2014]

[5] S4 distributed stream computing platform. URL
http://incubator.apache.org/s4/, [Online; accessed on
12/9/2014]

[6] Apache Samza is a distributed stream processing
framework. http://samza.incubator.apache.org/, [Online;
accessed on 12/9/2014]

[7] Drools Business Rules Management System (BRMS).
http://www.drools.org/, [Online; accessed on 12/9/2014]

[8] Daniel J. Abadi, Don Carney, et al, Aurora: a new
model and architecture for data stream management.
Springer-Verlag 2003

[9] Understanding Java Garbage Collection.
http://www.cubrid.org/blog/dev-
platform/understanding-java-garbage-collection/,
[Online; accessed on 12/9/2014]

[10] Reducing Garbage-Collection Pause Time.
http://javabook.compuware.com/content/memory/reduce
-garbage-collection-pause-time.aspx, [Online; accessed
on 12/9/2014]

[11] Controlling GC pauses with the GarbageFirst Collector.
http://blog.mgm-tp.com/2014/04/controlling-gc-pauses-
with-g1-collector/, [Online; accessed on 12/9/2014]

[12] How to tame java GC pauses? Surviving 16GiB heap
and greater. http://java.dzone.com/articles/how-tame-
java-gc-pauses, [Online; accessed on 12/9/2014]

[13] Understanding GC pauses in JVM, HotSpot's minor GC.
http://blog.ragozin.info/2011/06/understanding-gc-
pauses-in-jvm-hotspots.html Accessed on [Online;
accessed on 12/9/2014]

[14] Trisha Gee & Michael Barker / LMAX , The Disruptor -
A Beginners Guide to Hardcore Concurrency, JAX
conference 2011 London [Online; accessed on
12/9/2014]

[15] Trisha Gee, Dissecting the Disruptor: What's so special
about a ring buffer?

http://jaa.dzone.com/articles/dissecting-disruptor-whats-
so, [Online; accessed on 12/9/2014]

[16] Martin Fowler, The LMAX Architecture.
http://martinfowler.com/articles/lmax.html , [Online;
accessed on 12/9/2014]

[17] Daniel J. Abadi, Yanif Ahmad, et al . The Design of the
Borealis Stream Processing Engine,. 2005 CIDR
Conference

[18] D. Abadi, D. Carney, U. Cetintemel, et al. Aurora: A
Data Stream Management System. 2003 ACM

[19] Terence Parr, The Definitive ANTLR Reference. The
Pragmatic Programmer Publication ISBN-10: 0-
9787392-5-6

[20] Esper Reference, By Esper Team and EsperTech Inc.
[21] Arun Mathew, Benchmarking of Complex Event

Processing Engine – Esper.
[22] Leonardo Neumeyer, Bruce Robbins, Anish Nair,

Anand Kesari Yahoo Labs. S4: Distributed Stream
Computing Platform. 2010 IEEE International
Conference on Data Mining Workshops

[23] Sriskandarajah Suhothayan, Isuru Loku Narangoda,
Subash Chaturanga. Siddhi: A Second Look at Complex
Event Processing Architectures. November 2011 ACM
978-1-4503-1123-6/11/11

[24] Kristian A. Nagy, Distributing Complex Event
Detection. June 2012

[25] D. Abadi, Y. Ahmad, et al. The design of the borealis
stream processing engine. In Second Biennial
Conference on Innovative Data Systems Research
(CIDR 2005), Asilomar, CA, pages 277–289, 2005.

[26] D. Abadi, D. Carney, et al. Aurora: a data stream
management system. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of
data, pages 666–666, 2003.

[27] M. Aguilera, R. Strom, et al. Matching events in a
content-based subscription system. In Proceedings of
the eighteenth annual ACM symposium on Principles of
distributed computing, pages 53–61, 1999.

[28] D. Arvind, A. Arasu, et al. STREAM: the stanford
stream data manager. In IEEE Data Engineering
Bulletin, 2003.

[29] Aurora project page.
http://www.cs.brown.edu/research/aurora/. [Online;
accessed on 12/9/2014]

[30] The borealis project.
http://www.cs.brown.edu/research/borealis/ public/.
[Online; accessed on 12/9/2014]

[31] M. Cammert, C. Heinz, et al. Pipes: A multi-threaded
publish-subscribe architecture for continuous queries
over streaming data sources. Technical report, Citeseer,
2003.

[32] S. Chandrasekaran, O. Cooper, et al. TelegraphCQ:
continuous dataflow processing. In Proceedings of the
2003 ACM SIGMOD international conference on
Management of data, pages 668–668, 2003.

[33] GIANPAOLO CUGOLA and ALESSANDRO
MARGARA, Processing Flows of Information: From
Data Stream to Complex Event Processing. ACM
Computing Surveys, 2011

[34] S. Rizvi. Complex event processing beyond active
databases: Streams and uncertainties. Master’s thesis,

Paper ID: OCT141154 1222

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

EECS Department, University of California, Berkeley,
Dec 2005

[35] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In SIGMOD
’06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages
407–418, New York, NY, USA, 2006. ACM. URL:
http://doi.acm.org/10.1145/1142473.1142520.

[36] Martin Thompson, Dave Farley, Michael Barker,
Patricia Gee, Andrew Stewart. Disruptor High
performance alternative to bounded queues for
exchanging data between concurrent threads. May-2011

Author Profile

Vikas Kale received the B.E. degree in Electronics Engineering
from Pune University in 2005. He now studies M.E. computes in
Pune University.

Paper ID: OCT141154 1223

