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Abstract: We present a Split Canny edge detection algorithm that results in significantly reduced memory requirements, decreased 
latency and increased throughput with no loss in edge detection performance as compared to the original Canny algorithm. The Canny 
edge detector is one of the most widely used edge detection algorithms due to its superior performance. Unfortunately, not only is it 
computationally more intensive as compared with other edge detection algorithms, but it also has a higher latency because it is based 
on frame-level statistics. In this paper, we propose a mechanism to implement the Canny algorithm at the block level without any loss 
in edge detection performance compared with the original frame-level Canny algorithm. Directly applying the original Canny 
algorithm at the block-level leads to excessive edges in smooth regions and to loss of significant edges in high-detailed regions since 
the original Canny computes the high and low thresholds based on the frame-level statistics. To solve this problem, we present a Split 
Canny edge detection algorithm that adaptively computes the edge detection thresholds based on the block type and the local 
distribution of the gradients in the image block. In addition, the new algorithm uses a non uniform gradient magnitude histogram to 
compute block-based hysteresis thresholds. The resulting block-based algorithm has a significantly reduced latency and can be easily 
integrated with other block-based image codecs. It is capable of supporting fast edge detection of images and videos with high 
resolutions, including full-HD since the latency is now a function of the block size instead of the frame size. In addition, quantitative 
conformance evaluations and subjective tests show that the edge detection performance of the proposed algorithm is better than the 
original frame-based algorithm, especially when noise is present in the images. Finally, this algorithm is implemented using a 32 
computing engine architecture and is synthesized on the Xilinx Virtex-5 FPGA 
 
Keywords: Distributed image processing, Canny edge detector, high throughput, parallel processing, FPGA. 
 

1. Introduction 
 
Edge detection is a very important first step in many 
algorithms used for segmentation, tracking and image/video 
coding. The Canny edge detector is predominantly used due 
to its ability to extract significant edges. A lot of edge 
detection algorithms, such as Robert detector, Prewitt 
detector, Kirsch detector, Gauss -Laplace detector and Canny 
detector have been proposed. Among these algorithms, 
Canny algorithm has been used widely in the field of image 
processing because of its good performance].The Canny 
edge detector is predominantly used in many real -world 
applications due to its ability to extract significant edges with 
good detection and good localization performance. 
Unfortunately, the Canny edge detection algorithm contains 
extensive pre-processing and post-processing steps and is 
more computationally complex than other edge detection 
algorithms. Furthermore, it performs hysteresis thresholding 
which requires computing high and low thresholds based on 
the entire image statistics. This places heavy requirements on 
memory and results in large latency, hindering real-time 
implementation of the Canny edge detection algorithm [3]. 
Many implementations of the Canny algorithm have been 
proposed on a wide list of hardware platforms. The Canny-
Deriche filter [1] is a network with four transputers that 
detect edges in a 256 × 256 image in 6s, far from the 
requirement for real- time applications. Although the design 
in [2] improved the Canny-Deriche filter implementation of 
[1] and was able to process 25 frames/s at 33 MHz, the used 
off-chip SRAM memories consist of Last-In First-Out 
(LIFO) stacks, which increased the area overhead compared 
to [1]. Demigny pro- posed a new organization of the Canny-
Deriche filter in [3], which reduces the memory size and the 
computation cost by a factor of two. However, the number of 
clock cycles per pixel of the implementation [3] varies with 

the size of the processed image, resulting in variable clock-
cycles/pixel from one image size to another with increasing 
processing time as the image size increases.  
 
Our focus is on reducing the latency and increasing the 
throughput of the Canny edge detection algorithm so that it 
can be used in real-time processing applications. As a first step, 
the image can be partitioned into blocks and the Canny 
algorithm can be applied to each of the blocks in parallel. 
Unfortunately, directly applying the original Canny at a block-
level would fail since it leads to excessive edges in smooth 
regions and loss of significant edges in high-detailed regions. 
In this paper, we propose an adaptive threshold selection 
algorithm which computes the high and low threshold for 
each block based on the type of block and the local 
distribution of pixel gradients in the block. Each block can be 
processed simultaneously, thus reducing the latency 
significantly. Furthermore, this allows the block-based 
Canny edge detector to be pipelined very easily with 
existing block-based codecs, thereby improving the timing 
performance of image/video processing systems. Most 
importantly, conducted conformance evaluations and 
subjective tests show that, compared with the frame-based 
Canny edge detector, the proposed algorithm yields better 
edge detection results for both clean and noisy images.  
 
The block-based Canny edge detection algorithm is mapped 
onto an FPGA-based hardware architecture. The architecture 
is flexible enough to handle different image sizes, block sizes 
and gradient mask sizes. It consists of 32 computing engines 
configured into 8 groups with 4 engines per group. All 32 
computing engines work in parallel lending to a 32-fold 
decrease in running time without any change in performance 
when compared with the frame-based algorithm. The 
architecture has been synthesized on the Xilinx Virtex-5 
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FPGA. It occupies 64% of the total number of slices and 
87% of the local memory, and takes 0.721ms (including the 
SRAM read/write. 
 
In this paper, FPGA synthesis results, including the resource 
utilization, execution time, and comparison with existing 
FPGA implementations are presented.  
 
The rest of the paper is organized as follows. Section 2 gives a 
brief overview of the original Canny algorithm. Section 3 
presents the proposed Split Canny edge detection algorithm 
which includes the adaptive threshold selection algorithm 
and a non-uniform quantization method to compute the 
gradient magnitude histogram. Quantitative conformances as 
well as subjective testing results are presented in Section 4 in 
order to illustrate the edge detection performance of the 
proposed Split Canny algorithm as compared to the original 
Canny algorithm for clean as well as noisy images. In 
addition, the effects of the gradient mask size and the block 
size on the performance of the proposed Split Canny edge 
detection scheme are discussed and illustrated in Section 4. 
The proposed hardware architecture and the FPGA 
implementation of the proposed algorithm are described in 
Section 5. The FPGA synthesis results and comparisons with 
other implementations are presented in Section 6. Finally, 
conclusions are presented in Section 7.  
 
 
 
 
 

2. Canny Edge Detection 
 
Canny edge detector which is also well known as an optimal 
edge detector is one of the most efficient and successful edge 
detection methods. It operates on the gray-scale version of 
the image under consideration. He considered three criteria 
desired for any edge detector: 
 
a) Good detection: The algorithm should mark as many real 

edges as possible in the image.  
b) Good localization: Edges marked should be as close as 

possible to the edges in the real image. 
c) Minimal response: A given edge in the image should only 

be marked once and noise should not create false edges.  
 
The effect of the Canny operator is determined by three 
parameters:  

 Width of the Gaussian kernel used in the smoothing 
stage, and the upper and lower thresholds used by the 
edge tracker.  

 By increasing the width of the Gaussian kernel, reduces 
the edge detector's sensitivity to noise  

 The localization error in the detected edges increases as 
the Gaussian width is increased.  The Canny edge 
detector is an edge detection operator that uses a multi-
stage algorithm to detect a wide range of edges in 
images, and it is regarded as a near optimal edge 
detection technique because it produces reliable, thin 
edges even in the presence of noise in the image. It is 
developed by John Canny in 1986.  

 
Figure 1: Block Diagram of Canny Edge Detection Algorithm 

 
The Canny algorithm has 5 separate steps:  
 Smoothing: removal of noise from image  
 Gradient magnitude and direction: the image having 

larger magnitudes should be marked as an edge.  

 
Figure 2: Gradient direction 

 
 Non-maximum suppression: Only local maxima should be 

marked as edges.  
 Double thresholding: strong edges are determined by 

thresholding.  

 Edge tracking by hysteresis: Final edges are determined 
by suppressing all the edges that are not connected to 
strong edges.  

 
As a result we miss some edges or detect some spurious 
edges when the threshold is not set to a proper value. the 
latency is increased, throughput is decreased and cost is 
increased. To overcome these limitations of a canny edge 
detector, a Split canny edge detector is proposed.  
 
3. Proposed Split Canny Edge Detection 

Algorithm 
 
The superior performance of the frame-based Canny 
algorithm is due to the fact that it computes the gradient 
thresholds by analyzing the histogram of the gradients at all 
the pixel locations of an image. Though it is purely based on 
the statistical distribution of the gradient values, it works 
well on natural images which consist of a mix of smooth 
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regions, texture regions and high-detailed regions [1]. Direct 
ly applying the frame-based Canny at a block-level would 
fail because such a mix of regions may not be available 
locally in every block of the frame. This would lead to 
excessive edges in texture regions and loss of significant 
edges in high detailed regions. The Canny edge detection 
algorithm operates on the whole image and has a latency that 
is proportional to the size of the image. While performing the 
original canny algorithm at the block-level would speed up 
the operations, it would result in loss of significant edges in 
high -detailed regions and excessive edges in texture regions. 
Natural images consist of a mix of smooth regions, texture 
regions and high -detailed regions and such a mix of regions 
may not be available locally in every block of the entire 
image. In [1], it is proposed a Split Canny edge detection 
algorithm, which removes the inherent dependency between 
the various blocks so that the image can be divided into 
blocks and each block can be processed in parallel. In order 
to improve the performance of the edge detection at the 
block level and achieve the same performance as the original 
frame-based Canny edge detector when this latter one is 
applied to the entire image, a Split Canny edge detection 
algorithm is proposed.  
 

 
Figure 3: Block Diagram of Proposed Split Canny Edge 

Detection algorithm 
 
A diagram of the proposed algorithm is shown in Fig. 3. In 
the proposed Split version of the Canny algorithm, the input 
image is divided into m × m overlapping blocks and the 
blocks are processed independent of each other. For an L × L 
gradient mask, the m × m overlapping blocks are obtained by 
first dividing the input image into n × n non-overlapping 
blocks and then extending each block by (L + 1)/2 pixels 
along the left, right, top, and bottom boundaries, 
respectively. This results in m × m overlapping blocks, with 
m = n + L + 1. The non-overlapping n ×n blocks need to be 
extended in order to prevent edge artifacts and loss of edges 
at block boundaries while computing the gradients and due 
to the fact that the NMS operation at boundary pixels 
requires the gradient values of the neighboring pixels of the 
considered boundary pixels in a block. 

 
Figure 4: An example of the structure of an m × m 

overlapping block, where m = n + L + 1foran L × L(L = 3) 
gradient mask and when the image is initially divided into n 

× n non-overlapping blocks. 
 
Fig. 4 shows an example of non-overlapping block and its 
extended overlapping block version in the case when a 3×3 
gradient mask. In order to perform NMS for the border pixel 
(i , j ), the gradient information of the adjacent pixels(i−1, 
j−1), (i−1, j ), (i−1, j+1), (i, j−1), (i+1, j−1) are needed. In 
order to compute the gradient of the adjacent pixels (i −1, j 
−1), (i −1, j ), (i −1, j +1), (i, j −1), (i +1, j −1)for the 3 × 3 
gradient mask, the block has to be extended by2(where(L − 
1)/2 + 1 = 2) pixels on all sides in order to generate a block 
of size (n + 4) × (n+4). Thus, m equals ton+4 for this 
example. Note that, for each block, only edges in the central 
n × n non-overlapping region are included in the final edge 
map, where n = m − L − 1. Steps 1 to 3and Step 5 of the Split 
Canny algorithm are the same as in the original Canny 
algorithm except that these are now applied at the block 
level. Step 4, which is the hysteresis high and low thresholds 
calculation, is modified to enable parallel block-level 
processing without degrading the edge detection 
performance. 
 
Exploiting the local block statistics can significantly improve 
the edge detection performance for the distributed Canny 
edge detector. For this purpose, in order to learn the statistics 
of local blocks, we use a training database consisting of 
natural images. For each image in the database, we first 
divide the image into n×n non-overlapping blocks and 
classify the blocks into six types, uniform, uniform/texture, 
texture, edge/texture, medium edge, and strong edge block, 
by adopting the block classification method of [17]. This 
classification method utilized the local variance of each pixel 
using a 3 × 3 window that is centered around the considered 
pixel in order to label it as of type edge, texture, or uniform 
pixel. Then, each block is classified based on the total 
number of edge, texture, and uniform pixels in the 
considered block. 

 

 
Figure 5: (a) Original 512 × 512 Lena image; b) uniform 

block; (c) uniform/texture block; (d) texture block; (e) 
edge/texture block; (f) medium edge block of the Lena 

image. Shown blocks are of size 64 × 64. 
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Fig. 5 shows an example where the 512 × 512 Lena image is 
divided into blocks, and each block is classified according to 
this classification technique. Fig. 5(b)–(f) provide, 
respectively, examples of uniform, uniform/texture, texture 
 
In order not to degrade the performance of the original 
frame-based Canny algorithm when it is applied to a block, 
the high and low thresholds when computed at the block 
level should match thresholds that would have been obtained 
for the entire Image.  
 

 
Figure 6: Normalized gradient magnitude CDFs for the 512 
× 512 Lena image and CDFs for the 64 × 64 uniform block, 

uniform/texture block, texture block, edge/texture block, 
medium/edge block shown in Fig. 5. 

 
The gradient magnitude CDFs of each block in Fig. 5 are 
shown in Fig. 6,1 along with the gradient- magnitude CDF of 
the entire Lena image. According to the CDF of the entire 
Lena image, the high threshold should be selected as 1.8 
corresponding to a P1 value (percentage of pixels that should 
be classified as strong edges) of 0.2. However, if P1 is still 
set to 0.2 for the medium edge block, the local high threshold 
for that block would be about 5.2, which is significantly 
different from the high threshold, 1.8, that is obtained for the 
entire image. Such a setting will result in a loss of significant 
edges in the considered strong edge block. On the other 
hand, the local high thresholds for the uniform and 
uniform/texture block would be about 0.7, if P1 is set to 0.2. 
Such a setting will lead to excessive edges in the uniform 
and uniform/texture blocks. From this analysis, it can be seen 
that, in order to keep a similar threshold for all block types, 
P1 should be selected differently for different types of blocks 
by adapting its value to the local block content. In order to 
determine, for each block type, the appropriate percentage 
value P1 that would result in high and low threshold values 
similar to the ones that are obtained for the entire image, 
training set 2 of 200 images is formed from the Berkeley 
Segmentation Image Database [18]. For each image in the 
training database, the high threshold of the entire image is 
first calculated. Then, the image is divided into blocks and 
the blocks are classified into six block types as discussed 
previously. Then, for each block type, the gradient 
magnitude CDF is computed and the corresponding CDF 
used to compute the P1 value such that the local high 
threshold of the blocks entire image, a training set 2 of 200 
images is formed from the Berkeley Segmentation Image 
Database [18]. For each image in the training database, the 

high threshold of the entire image is first calculated. Then, 
the image is divided into blocks and the blocks are classified 
into six block types as discussed previously. Then, for each 
block type, the gradient magnitude CDF is computed and the 
corresponding CDF used to compute the P1 value such that 
the local high threshold of the blocks in this class is the same 
as the one for the entire image.  
 

 
Figure 7: P1 values for each block type. 

 
Fig. 7 shows the P1 values that are obtained for different 
block types, each of size 64 × 64, for 200 512 × 512 images 
with varied content. It illustrates that the P1 values of each 
block type are highly different from each other, except for 
the uniform block and uniform/texture block types. Also, for 
a given block type, the P1 values across all 200 images are 
quite similar for different block sizes. The final P1 value for 
a considered block type is computed as the average value of 
its corresponding set over all images and over all block sizes.  
 

Table 1 

 
 
Standard Deviations of P1 Values for Each Block type for 
64 × 64 Block 
 
For illustration, the standard deviations of the obtained P1 
values for each block type are shown in Table I for 64 × 64 
blocks. To evaluate the robustness of the obtained P1 values 
with respect to the block size, the 512×512 images are 
divided into fixed-size blocks, with the block size varying 
from 8 × 8 to 256×256. Table II shows the P1 values that are 
obtained for each block type and for each block size. It 
should be noted that the P1 values for uniform and 
uniform/texture blocks are equal to 0 for all block sizes, 
which indicates that the uniform and uniform/texture blocks 
can be combined into one block type, which we refer to as 
smooth block type. Also, this implies that there are no pixels 
that should be classified as edges in a smooth block. 
Therefore, there is no need to perform edge detection on 
smooth blocks, and this result in reduced computations, a 
feature that is exploited in the FPGA implementation. 
 
In order to compute the high and low hysteresis thresholds, a 
finely quantized gradient magnitude histogram is usually 
needed. Here, we employ the non-uniform quantizer, which 
has been proposed by us in [13], to obtain the gradient 
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magnitude histogram for each block such that the high 
threshold can be precisely calculated. Examples of gradient 
magnitude histograms for an edge/texture, medium edge and 
strong edge block are shown in Fig. 8.  

 

 
Figure 8: (a)-(c) Different types of 64 × 64 blocks ((a) 

Edge/texture,(b) medium edge, (c) strong edge) and 
(d)corresponding gradient magnitude histograms 

 

 
Figure 9: Reconstruction values and quantization levels 

 
Fig. 9 shows the schematic diagram of the proposed non-
uniform quantizer. The first reconstruction level (R1) is 
computed as the average of the maximum value and 
minimum value of the gradient magnitude in the considered 
block, and the second reconstruction level (R2) is the 
average of the minimum value of the gradient magnitude and 
the first reconstruction level. Accordingly, n reconstruction 
levels can be computed as shown in [13], R1 = (min+max)/2 
and Ri+1 = (min+Ri )/2(i = 2, 3, ... n),where min and max 
represent the minimum and maximum values of the gradient 
magnitude, respectively, and Ri is the reconstruction level. 

 
Figure 10: Pseudo-codes for the proposed (a) block 

classification and (b) adaptive threshold selection scheme 
 
The pseudo-code of the block classification technique [17] 
and the proposed adaptive threshold selection algorithm is 
shown in Fig. 10(a) and (b), respectively. 
 
4. MATLAB Experimental Results 
 
A.Parametrical Analysis 
 
The performance of the proposed algorithm is affected by 
two parameters, the mask size and the block size. the size of 
the gradient mask is a function of the standard 
 
1) The Effect of Mask Size: deviation σ of the Gaussian filter, 
and the best choice of σ is based on the image characteristics. 
Canny has shown in [14] that the optimal operator for 
detecting step edges in the presence of noise is the first 
derivative of the Gaussian operator. As stated in Section 2, 
for the original Canny algorithm as well as the proposed 
algorithm, this standard deviation is a parameter that is 
typically set by the user based on the knowledge of sensor 
noise characteristics. It can also be set by a separate 
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application that estimates the noise and/orblur in the image. 
A large value of σ results in smoothing and improves the 
edge detector’s resilience to noise, but it undermines the 
detector’s ability to detect the location of true edges. In 
contrast, a smaller mask size (corresponding to a lower σ) is 
better for detecting detailed textures and fine edges but it 
decreases the edge detector’s resilience to noise.An L-point 
even-symmetric FIR Gaussian pulse-shaping filter design can 
be obtained by truncating a sampled version of the 
continuous-domain Gaussian filter of standard deviation 
σ.The size L of the FIR Gaussian filter depends on the 
standarddeviation σ and can be determined as follows: 

 
where CT represents the cut-off value in the spatial domain 
of the continuous-domain Gaussian function and determines 
the cut-off error.  
 
2) Block Size: To find out the smallest block size for which 
the proposed Canny algorithm can detect all the psycho-
visually important edges, the perceptual visual quality of the 
obtained edge maps was assessed using visual quality 
metrics.  
B. Edge Detection Performance Analysis 
The edge detection performance of the proposed split 
approach is analyzed by comparing the perceptual 
significance of its resulting edge map with the one produced 
by the original. 

 

 
Figure 11: Comparison of the edge maps of noisy images by 

using the originalCanny edge detector and the proposed 
method: (a) images with Gaussian white noise (σn = 0.01); 
edge-maps of (b) the original Canny edge detector,and (c) 

the proposed algorithm with a non-overlapping block size of 
64 × 64,using a 9 × 9 gradient mask to noise than the original 

frame-based Canny. 
 

To further assess the performance of the proposed Split 
Canny algorithm, quantitative conformance evaluations and 
subjective tests are performed. The conformance evaluations 
aim to evaluate the similarity between edges detected by the 
original frame-based Canny algorithm and the proposed 
distributed Canny edge detection algorithm, while the 
subjective tests aim to validate whether the edge detection 
performance of the proposed distributed Canny is better, 
worse, or similar to the original frame-based Canny as 
perceived by subjects. 
 
1) Conformance Evaluation: In order to quantify the 

similarity of two edge maps, three metrics, Pco 
(percentage of edge pixels detected by both 
implementations) Pnd (percentage of edge pixels detected 
by the original Canny edge detection2) Subjective 
Testing:  

2) Subjective tests: were conducted by having human 
subjects evaluate the quality of the detected edge maps 
that are generated by the proposed algorithm and the 
original Canny for both clean and noisy images, without 
the subjects knowing which algorithm produced which 
edge maps, using images from the SIPI Database [20] and 
the Standard Test Image Database [21].  

 
5. FPGA Implementation Of The Proposed 

Distributed Canny Edge Detection Algorithm 
 
In order to demonstrate the parallel efficiency of the 
proposed split Canny edge detection algorithm, we describe 
an FPGA-based hardware implementation of the proposed 
algorithm it gives a bird’s eye view of the embedded system 
for implementing the distributed Canny edge detection 
algorithm based on an FPGA platform. It is composed of 
several components, including an embedded micro-
controller, a system bus, peripherals & peripheral controllers, 
external Static RAMs (SRAM) & memory controllers, and 
an intellectual property (IP) design for the proposed 
distributed Canny detection algorithm. The embedded micro-
controller coordinates the transfer of the image data from the 
host computer (through the PCI e (or USB) controller, 
system local bus, and memory controller) to the SRAM; then 
from the SRAM to the local memory in the FGPA for 
processing and finally storing back to the SRAM. Xilinx and 
Alter a offer extensive libraries of intellectual property (IP) 
in the form of embedded micro-controllers and peripherals 
controller [23], [24]. Therefore, in our design, we focused 
only on the implementation of the proposed algorithm on the 
Xilinx Virtex-5 FPGA and the data communication with 
external SRAMs.  
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Figure 12: Block diagram of the embedded system for the 

proposed algorithm. 
 

 
Figure 13: The architecture of the proposed split Canny 

algorithm. 
 
6. Synthesis Results 
 
The proposed FPGA-based architecture can support multiple 
image sizes and block sizes. To demonstrate the performance 
of the proposed system, a Xilinx Virtex-5 FPGA [26] was 
used to process grayscale images with a block size of 64 × 
64. The data width is 16 bits (Q8.7) with 8 bits to represent 
the integer part since the maximum gray value of the image 
data is 255, and 7 bits to represent the fractional part since 
the Gaussian filter parameters are decimals. Ouranalysis 
shows that 7 bits are sufficient to meet the accuracy 
requirement of the Gaussian filter parameters, which is 
typically in the order of 0.001. To store grayscale images, we 
used the SRAM (CY7C0832BV) [27].  
 
 
 
 
 

Table 2 

 
 
Resource Utilization on Xc5vsx240t For 1CE 

Table 3 

 
 
Resource Utilization on Xc5vsx240t For 1PU  

 
Table 4 

 
 

Resource Utilization on Xc5vsx240t for an 8-PU 
Architecture 

 
Table 5 

 
 
Clock Cycles for Each Unit 
 
This is a dual ported SRAM with 110 pins. The Xilinx 
Virtex-5 FPGA (XC5VSX240T) has 960 I/O pins and so, to 
satisfy the I/O pin constraint, the maximum number of PUs 
is 8 (q = 8). The local memory on the FPGA for a block size 
of 64 × 64, which is needed to support 8 PUs, is equal to 7 
pqm2b = 4046 p Kbits (see Section 5.1), for q = 8, m = 68 
(for a 64 × 64 block size and A 3 × 3 gradient mask size), 
and b = 16. Since the available memory resource on the 
FPGA is 18,576 Kbits, the p value using the memory 
constraint is determined to be 4. The p value could have also 
been constrained by the number of available slices. Since the 
number of slices for the considered FPGA is very large (37 
440) and since each CE only utilizes a small slice percentage 
(as shown later in Section 5.3.2),the local memory resource 
in each PU constrains p, the number of CEs in each PU, and 
not the numbers of slices. Taking all this into consideration, 
our design has q = 8Pus and each PU has p = 4 CEs. This 
design is coded in Verilog and synthesized on a Xilinx 
Virtex-5 device (XC5VSX240T) using the Xilinx’s ISE 
software and verified using Modelsim. According to the 
‘Place and Route’ synthesis report, our implementation can 
achieve an operating frequency of 250 MHz. But we choose 
100 MHz to support a pipelined implementation of SRAM 
read/write and CE processing as described later in Section 
6.2 
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7. Conclusion 
 
The original Canny algorithm relies on frame-level statistics 
to predict the high and low thresholds and thus has latency 
proportional to the frame size. In order to reduce the large 
latency and meet real-time requirements, we presented a 
novel Split Canny edge detection algorithm which has the 
ability to compute edges of multiple blocks at the same time. 
To support this, an adaptive threshold selection method is 
proposed that predicts the high and low thresholds of the 
entire image while only processing the pixels of an 
individual block. This results in three benefits: 1) a 
significant reduction in the latency; 2) better edge detection 
performance; 3) the possibility of pipelining the Canny edge 
detector with other block-based image codecs. In addition, a 
low complexity non-uniform quantized histogram calculation 
method is proposed to compute the block hysteresis 
thresholds. The proposed algorithm is scalable and has very 
high detection performance.We show that our algorithm can 
detect all psycho-visually important edges in the image for 
various block sizes. Finally, the algorithm is mapped onto a 
Xilinx Virtex-5 FPGA platform and tested using ModelSim. 
The synthesized results show 64% slice utilization and 87% 
BRAM memory utilization. The proposed FPGA 
implementation takes only 0.721ms (including the SRAM 
read/write time and the computation time) to detect edges of 
512 × 512 images in the USC SIPI database when clocked at 
100 MHz. Thus the proposed implementation is capable of 
supporting fast real-time edge detection of images and videos 
including those with full-HD content. 
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