
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Split Canny Edge Detection: Algorithm and its
FPGA Implementation

Shamlee .V1, Jeyamani2

1, 2Department of Electronics and Communication, United Institute of Technology, Coimbatore, India

Abstract: We present a Split Canny edge detection algorithm that results in significantly reduced memory requirements, decreased
latency and increased throughput with no loss in edge detection performance as compared to the original Canny algorithm. The Canny
edge detector is one of the most widely used edge detection algorithms due to its superior performance. Unfortunately, not only is it
computationally more intensive as compared with other edge detection algorithms, but it also has a higher latency because it is based
on frame-level statistics. In this paper, we propose a mechanism to implement the Canny algorithm at the block level without any loss
in edge detection performance compared with the original frame-level Canny algorithm. Directly applying the original Canny
algorithm at the block-level leads to excessive edges in smooth regions and to loss of significant edges in high-detailed regions since
the original Canny computes the high and low thresholds based on the frame-level statistics. To solve this problem, we present a Split
Canny edge detection algorithm that adaptively computes the edge detection thresholds based on the block type and the local
distribution of the gradients in the image block. In addition, the new algorithm uses a non uniform gradient magnitude histogram to
compute block-based hysteresis thresholds. The resulting block-based algorithm has a significantly reduced latency and can be easily
integrated with other block-based image codecs. It is capable of supporting fast edge detection of images and videos with high
resolutions, including full-HD since the latency is now a function of the block size instead of the frame size. In addition, quantitative
conformance evaluations and subjective tests show that the edge detection performance of the proposed algorithm is better than the
original frame-based algorithm, especially when noise is present in the images. Finally, this algorithm is implemented using a 32
computing engine architecture and is synthesized on the Xilinx Virtex-5 FPGA

Keywords: Distributed image processing, Canny edge detector, high throughput, parallel processing, FPGA.

1. Introduction

Edge detection is a very important first step in many
algorithms used for segmentation, tracking and image/video
coding. The Canny edge detector is predominantly used due
to its ability to extract significant edges. A lot of edge
detection algorithms, such as Robert detector, Prewitt
detector, Kirsch detector, Gauss -Laplace detector and Canny
detector have been proposed. Among these algorithms,
Canny algorithm has been used widely in the field of image
processing because of its good performance].The Canny
edge detector is predominantly used in many real -world
applications due to its ability to extract significant edges with
good detection and good localization performance.
Unfortunately, the Canny edge detection algorithm contains
extensive pre-processing and post-processing steps and is
more computationally complex than other edge detection
algorithms. Furthermore, it performs hysteresis thresholding
which requires computing high and low thresholds based on
the entire image statistics. This places heavy requirements on
memory and results in large latency, hindering real-time
implementation of the Canny edge detection algorithm [3].
Many implementations of the Canny algorithm have been
proposed on a wide list of hardware platforms. The Canny-
Deriche filter [1] is a network with four transputers that
detect edges in a 256 × 256 image in 6s, far from the
requirement for real- time applications. Although the design
in [2] improved the Canny-Deriche filter implementation of
[1] and was able to process 25 frames/s at 33 MHz, the used
off-chip SRAM memories consist of Last-In First-Out
(LIFO) stacks, which increased the area overhead compared
to [1]. Demigny pro- posed a new organization of the Canny-
Deriche filter in [3], which reduces the memory size and the
computation cost by a factor of two. However, the number of
clock cycles per pixel of the implementation [3] varies with

the size of the processed image, resulting in variable clock-
cycles/pixel from one image size to another with increasing
processing time as the image size increases.

Our focus is on reducing the latency and increasing the
throughput of the Canny edge detection algorithm so that it
can be used in real-time processing applications. As a first step,
the image can be partitioned into blocks and the Canny
algorithm can be applied to each of the blocks in parallel.
Unfortunately, directly applying the original Canny at a block-
level would fail since it leads to excessive edges in smooth
regions and loss of significant edges in high-detailed regions.
In this paper, we propose an adaptive threshold selection
algorithm which computes the high and low threshold for
each block based on the type of block and the local
distribution of pixel gradients in the block. Each block can be
processed simultaneously, thus reducing the latency
significantly. Furthermore, this allows the block-based
Canny edge detector to be pipelined very easily with
existing block-based codecs, thereby improving the timing
performance of image/video processing systems. Most
importantly, conducted conformance evaluations and
subjective tests show that, compared with the frame-based
Canny edge detector, the proposed algorithm yields better
edge detection results for both clean and noisy images.

The block-based Canny edge detection algorithm is mapped
onto an FPGA-based hardware architecture. The architecture
is flexible enough to handle different image sizes, block sizes
and gradient mask sizes. It consists of 32 computing engines
configured into 8 groups with 4 engines per group. All 32
computing engines work in parallel lending to a 32-fold
decrease in running time without any change in performance
when compared with the frame-based algorithm. The
architecture has been synthesized on the Xilinx Virtex-5

Paper ID: OCT141140 1198

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

FPGA. It occupies 64% of the total number of slices and
87% of the local memory, and takes 0.721ms (including the
SRAM read/write.

In this paper, FPGA synthesis results, including the resource
utilization, execution time, and comparison with existing
FPGA implementations are presented.

The rest of the paper is organized as follows. Section 2 gives a
brief overview of the original Canny algorithm. Section 3
presents the proposed Split Canny edge detection algorithm
which includes the adaptive threshold selection algorithm
and a non-uniform quantization method to compute the
gradient magnitude histogram. Quantitative conformances as
well as subjective testing results are presented in Section 4 in
order to illustrate the edge detection performance of the
proposed Split Canny algorithm as compared to the original
Canny algorithm for clean as well as noisy images. In
addition, the effects of the gradient mask size and the block
size on the performance of the proposed Split Canny edge
detection scheme are discussed and illustrated in Section 4.
The proposed hardware architecture and the FPGA
implementation of the proposed algorithm are described in
Section 5. The FPGA synthesis results and comparisons with
other implementations are presented in Section 6. Finally,
conclusions are presented in Section 7.

2. Canny Edge Detection

Canny edge detector which is also well known as an optimal
edge detector is one of the most efficient and successful edge
detection methods. It operates on the gray-scale version of
the image under consideration. He considered three criteria
desired for any edge detector:

a) Good detection: The algorithm should mark as many real

edges as possible in the image.
b) Good localization: Edges marked should be as close as

possible to the edges in the real image.
c) Minimal response: A given edge in the image should only

be marked once and noise should not create false edges.

The effect of the Canny operator is determined by three
parameters:

 Width of the Gaussian kernel used in the smoothing
stage, and the upper and lower thresholds used by the
edge tracker.

 By increasing the width of the Gaussian kernel, reduces
the edge detector's sensitivity to noise

 The localization error in the detected edges increases as
the Gaussian width is increased. The Canny edge
detector is an edge detection operator that uses a multi-
stage algorithm to detect a wide range of edges in
images, and it is regarded as a near optimal edge
detection technique because it produces reliable, thin
edges even in the presence of noise in the image. It is
developed by John Canny in 1986.

Figure 1: Block Diagram of Canny Edge Detection Algorithm

The Canny algorithm has 5 separate steps:
 Smoothing: removal of noise from image
 Gradient magnitude and direction: the image having

larger magnitudes should be marked as an edge.

Figure 2: Gradient direction

 Non-maximum suppression: Only local maxima should be

marked as edges.
 Double thresholding: strong edges are determined by

thresholding.

 Edge tracking by hysteresis: Final edges are determined
by suppressing all the edges that are not connected to
strong edges.

As a result we miss some edges or detect some spurious
edges when the threshold is not set to a proper value. the
latency is increased, throughput is decreased and cost is
increased. To overcome these limitations of a canny edge
detector, a Split canny edge detector is proposed.

3. Proposed Split Canny Edge Detection

Algorithm

The superior performance of the frame-based Canny
algorithm is due to the fact that it computes the gradient
thresholds by analyzing the histogram of the gradients at all
the pixel locations of an image. Though it is purely based on
the statistical distribution of the gradient values, it works
well on natural images which consist of a mix of smooth

Paper ID: OCT141140 1199

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

regions, texture regions and high-detailed regions [1]. Direct
ly applying the frame-based Canny at a block-level would
fail because such a mix of regions may not be available
locally in every block of the frame. This would lead to
excessive edges in texture regions and loss of significant
edges in high detailed regions. The Canny edge detection
algorithm operates on the whole image and has a latency that
is proportional to the size of the image. While performing the
original canny algorithm at the block-level would speed up
the operations, it would result in loss of significant edges in
high -detailed regions and excessive edges in texture regions.
Natural images consist of a mix of smooth regions, texture
regions and high -detailed regions and such a mix of regions
may not be available locally in every block of the entire
image. In [1], it is proposed a Split Canny edge detection
algorithm, which removes the inherent dependency between
the various blocks so that the image can be divided into
blocks and each block can be processed in parallel. In order
to improve the performance of the edge detection at the
block level and achieve the same performance as the original
frame-based Canny edge detector when this latter one is
applied to the entire image, a Split Canny edge detection
algorithm is proposed.

Figure 3: Block Diagram of Proposed Split Canny Edge

Detection algorithm

A diagram of the proposed algorithm is shown in Fig. 3. In
the proposed Split version of the Canny algorithm, the input
image is divided into m × m overlapping blocks and the
blocks are processed independent of each other. For an L × L
gradient mask, the m × m overlapping blocks are obtained by
first dividing the input image into n × n non-overlapping
blocks and then extending each block by (L + 1)/2 pixels
along the left, right, top, and bottom boundaries,
respectively. This results in m × m overlapping blocks, with
m = n + L + 1. The non-overlapping n ×n blocks need to be
extended in order to prevent edge artifacts and loss of edges
at block boundaries while computing the gradients and due
to the fact that the NMS operation at boundary pixels
requires the gradient values of the neighboring pixels of the
considered boundary pixels in a block.

Figure 4: An example of the structure of an m × m

overlapping block, where m = n + L + 1foran L × L(L = 3)
gradient mask and when the image is initially divided into n

× n non-overlapping blocks.

Fig. 4 shows an example of non-overlapping block and its
extended overlapping block version in the case when a 3×3
gradient mask. In order to perform NMS for the border pixel
(i , j), the gradient information of the adjacent pixels(i−1,
j−1), (i−1, j), (i−1, j+1), (i, j−1), (i+1, j−1) are needed. In
order to compute the gradient of the adjacent pixels (i −1, j
−1), (i −1, j), (i −1, j +1), (i, j −1), (i +1, j −1)for the 3 × 3
gradient mask, the block has to be extended by2(where(L −
1)/2 + 1 = 2) pixels on all sides in order to generate a block
of size (n + 4) × (n+4). Thus, m equals ton+4 for this
example. Note that, for each block, only edges in the central
n × n non-overlapping region are included in the final edge
map, where n = m − L − 1. Steps 1 to 3and Step 5 of the Split
Canny algorithm are the same as in the original Canny
algorithm except that these are now applied at the block
level. Step 4, which is the hysteresis high and low thresholds
calculation, is modified to enable parallel block-level
processing without degrading the edge detection
performance.

Exploiting the local block statistics can significantly improve
the edge detection performance for the distributed Canny
edge detector. For this purpose, in order to learn the statistics
of local blocks, we use a training database consisting of
natural images. For each image in the database, we first
divide the image into n×n non-overlapping blocks and
classify the blocks into six types, uniform, uniform/texture,
texture, edge/texture, medium edge, and strong edge block,
by adopting the block classification method of [17]. This
classification method utilized the local variance of each pixel
using a 3 × 3 window that is centered around the considered
pixel in order to label it as of type edge, texture, or uniform
pixel. Then, each block is classified based on the total
number of edge, texture, and uniform pixels in the
considered block.

Figure 5: (a) Original 512 × 512 Lena image; b) uniform

block; (c) uniform/texture block; (d) texture block; (e)
edge/texture block; (f) medium edge block of the Lena

image. Shown blocks are of size 64 × 64.

Paper ID: OCT141140 1200

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Fig. 5 shows an example where the 512 × 512 Lena image is
divided into blocks, and each block is classified according to
this classification technique. Fig. 5(b)–(f) provide,
respectively, examples of uniform, uniform/texture, texture

In order not to degrade the performance of the original
frame-based Canny algorithm when it is applied to a block,
the high and low thresholds when computed at the block
level should match thresholds that would have been obtained
for the entire Image.

Figure 6: Normalized gradient magnitude CDFs for the 512
× 512 Lena image and CDFs for the 64 × 64 uniform block,

uniform/texture block, texture block, edge/texture block,
medium/edge block shown in Fig. 5.

The gradient magnitude CDFs of each block in Fig. 5 are
shown in Fig. 6,1 along with the gradient- magnitude CDF of
the entire Lena image. According to the CDF of the entire
Lena image, the high threshold should be selected as 1.8
corresponding to a P1 value (percentage of pixels that should
be classified as strong edges) of 0.2. However, if P1 is still
set to 0.2 for the medium edge block, the local high threshold
for that block would be about 5.2, which is significantly
different from the high threshold, 1.8, that is obtained for the
entire image. Such a setting will result in a loss of significant
edges in the considered strong edge block. On the other
hand, the local high thresholds for the uniform and
uniform/texture block would be about 0.7, if P1 is set to 0.2.
Such a setting will lead to excessive edges in the uniform
and uniform/texture blocks. From this analysis, it can be seen
that, in order to keep a similar threshold for all block types,
P1 should be selected differently for different types of blocks
by adapting its value to the local block content. In order to
determine, for each block type, the appropriate percentage
value P1 that would result in high and low threshold values
similar to the ones that are obtained for the entire image,
training set 2 of 200 images is formed from the Berkeley
Segmentation Image Database [18]. For each image in the
training database, the high threshold of the entire image is
first calculated. Then, the image is divided into blocks and
the blocks are classified into six block types as discussed
previously. Then, for each block type, the gradient
magnitude CDF is computed and the corresponding CDF
used to compute the P1 value such that the local high
threshold of the blocks entire image, a training set 2 of 200
images is formed from the Berkeley Segmentation Image
Database [18]. For each image in the training database, the

high threshold of the entire image is first calculated. Then,
the image is divided into blocks and the blocks are classified
into six block types as discussed previously. Then, for each
block type, the gradient magnitude CDF is computed and the
corresponding CDF used to compute the P1 value such that
the local high threshold of the blocks in this class is the same
as the one for the entire image.

Figure 7: P1 values for each block type.

Fig. 7 shows the P1 values that are obtained for different
block types, each of size 64 × 64, for 200 512 × 512 images
with varied content. It illustrates that the P1 values of each
block type are highly different from each other, except for
the uniform block and uniform/texture block types. Also, for
a given block type, the P1 values across all 200 images are
quite similar for different block sizes. The final P1 value for
a considered block type is computed as the average value of
its corresponding set over all images and over all block sizes.

Table 1

Standard Deviations of P1 Values for Each Block type for
64 × 64 Block

For illustration, the standard deviations of the obtained P1
values for each block type are shown in Table I for 64 × 64
blocks. To evaluate the robustness of the obtained P1 values
with respect to the block size, the 512×512 images are
divided into fixed-size blocks, with the block size varying
from 8 × 8 to 256×256. Table II shows the P1 values that are
obtained for each block type and for each block size. It
should be noted that the P1 values for uniform and
uniform/texture blocks are equal to 0 for all block sizes,
which indicates that the uniform and uniform/texture blocks
can be combined into one block type, which we refer to as
smooth block type. Also, this implies that there are no pixels
that should be classified as edges in a smooth block.
Therefore, there is no need to perform edge detection on
smooth blocks, and this result in reduced computations, a
feature that is exploited in the FPGA implementation.

In order to compute the high and low hysteresis thresholds, a
finely quantized gradient magnitude histogram is usually
needed. Here, we employ the non-uniform quantizer, which
has been proposed by us in [13], to obtain the gradient

Paper ID: OCT141140 1201

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

magnitude histogram for each block such that the high
threshold can be precisely calculated. Examples of gradient
magnitude histograms for an edge/texture, medium edge and
strong edge block are shown in Fig. 8.

Figure 8: (a)-(c) Different types of 64 × 64 blocks ((a)

Edge/texture,(b) medium edge, (c) strong edge) and
(d)corresponding gradient magnitude histograms

Figure 9: Reconstruction values and quantization levels

Fig. 9 shows the schematic diagram of the proposed non-
uniform quantizer. The first reconstruction level (R1) is
computed as the average of the maximum value and
minimum value of the gradient magnitude in the considered
block, and the second reconstruction level (R2) is the
average of the minimum value of the gradient magnitude and
the first reconstruction level. Accordingly, n reconstruction
levels can be computed as shown in [13], R1 = (min+max)/2
and Ri+1 = (min+Ri)/2(i = 2, 3, ... n),where min and max
represent the minimum and maximum values of the gradient
magnitude, respectively, and Ri is the reconstruction level.

Figure 10: Pseudo-codes for the proposed (a) block

classification and (b) adaptive threshold selection scheme

The pseudo-code of the block classification technique [17]
and the proposed adaptive threshold selection algorithm is
shown in Fig. 10(a) and (b), respectively.

4. MATLAB Experimental Results

A.Parametrical Analysis

The performance of the proposed algorithm is affected by
two parameters, the mask size and the block size. the size of
the gradient mask is a function of the standard

1) The Effect of Mask Size: deviation σ of the Gaussian filter,
and the best choice of σ is based on the image characteristics.
Canny has shown in [14] that the optimal operator for
detecting step edges in the presence of noise is the first
derivative of the Gaussian operator. As stated in Section 2,
for the original Canny algorithm as well as the proposed
algorithm, this standard deviation is a parameter that is
typically set by the user based on the knowledge of sensor
noise characteristics. It can also be set by a separate

Paper ID: OCT141140 1202

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

application that estimates the noise and/orblur in the image.
A large value of σ results in smoothing and improves the
edge detector’s resilience to noise, but it undermines the
detector’s ability to detect the location of true edges. In
contrast, a smaller mask size (corresponding to a lower σ) is
better for detecting detailed textures and fine edges but it
decreases the edge detector’s resilience to noise.An L-point
even-symmetric FIR Gaussian pulse-shaping filter design can
be obtained by truncating a sampled version of the
continuous-domain Gaussian filter of standard deviation
σ.The size L of the FIR Gaussian filter depends on the
standarddeviation σ and can be determined as follows:

where CT represents the cut-off value in the spatial domain
of the continuous-domain Gaussian function and determines
the cut-off error.

2) Block Size: To find out the smallest block size for which
the proposed Canny algorithm can detect all the psycho-
visually important edges, the perceptual visual quality of the
obtained edge maps was assessed using visual quality
metrics.
B. Edge Detection Performance Analysis
The edge detection performance of the proposed split
approach is analyzed by comparing the perceptual
significance of its resulting edge map with the one produced
by the original.

Figure 11: Comparison of the edge maps of noisy images by

using the originalCanny edge detector and the proposed
method: (a) images with Gaussian white noise (σn = 0.01);
edge-maps of (b) the original Canny edge detector,and (c)

the proposed algorithm with a non-overlapping block size of
64 × 64,using a 9 × 9 gradient mask to noise than the original

frame-based Canny.

To further assess the performance of the proposed Split
Canny algorithm, quantitative conformance evaluations and
subjective tests are performed. The conformance evaluations
aim to evaluate the similarity between edges detected by the
original frame-based Canny algorithm and the proposed
distributed Canny edge detection algorithm, while the
subjective tests aim to validate whether the edge detection
performance of the proposed distributed Canny is better,
worse, or similar to the original frame-based Canny as
perceived by subjects.

1) Conformance Evaluation: In order to quantify the

similarity of two edge maps, three metrics, Pco
(percentage of edge pixels detected by both
implementations) Pnd (percentage of edge pixels detected
by the original Canny edge detection2) Subjective
Testing:

2) Subjective tests: were conducted by having human
subjects evaluate the quality of the detected edge maps
that are generated by the proposed algorithm and the
original Canny for both clean and noisy images, without
the subjects knowing which algorithm produced which
edge maps, using images from the SIPI Database [20] and
the Standard Test Image Database [21].

5. FPGA Implementation Of The Proposed

Distributed Canny Edge Detection Algorithm

In order to demonstrate the parallel efficiency of the
proposed split Canny edge detection algorithm, we describe
an FPGA-based hardware implementation of the proposed
algorithm it gives a bird’s eye view of the embedded system
for implementing the distributed Canny edge detection
algorithm based on an FPGA platform. It is composed of
several components, including an embedded micro-
controller, a system bus, peripherals & peripheral controllers,
external Static RAMs (SRAM) & memory controllers, and
an intellectual property (IP) design for the proposed
distributed Canny detection algorithm. The embedded micro-
controller coordinates the transfer of the image data from the
host computer (through the PCI e (or USB) controller,
system local bus, and memory controller) to the SRAM; then
from the SRAM to the local memory in the FGPA for
processing and finally storing back to the SRAM. Xilinx and
Alter a offer extensive libraries of intellectual property (IP)
in the form of embedded micro-controllers and peripherals
controller [23], [24]. Therefore, in our design, we focused
only on the implementation of the proposed algorithm on the
Xilinx Virtex-5 FPGA and the data communication with
external SRAMs.

Paper ID: OCT141140 1203

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 12: Block diagram of the embedded system for the

proposed algorithm.

Figure 13: The architecture of the proposed split Canny

algorithm.

6. Synthesis Results

The proposed FPGA-based architecture can support multiple
image sizes and block sizes. To demonstrate the performance
of the proposed system, a Xilinx Virtex-5 FPGA [26] was
used to process grayscale images with a block size of 64 ×
64. The data width is 16 bits (Q8.7) with 8 bits to represent
the integer part since the maximum gray value of the image
data is 255, and 7 bits to represent the fractional part since
the Gaussian filter parameters are decimals. Ouranalysis
shows that 7 bits are sufficient to meet the accuracy
requirement of the Gaussian filter parameters, which is
typically in the order of 0.001. To store grayscale images, we
used the SRAM (CY7C0832BV) [27].

Table 2

Resource Utilization on Xc5vsx240t For 1CE

Table 3

Resource Utilization on Xc5vsx240t For 1PU

Table 4

Resource Utilization on Xc5vsx240t for an 8-PU
Architecture

Table 5

Clock Cycles for Each Unit

This is a dual ported SRAM with 110 pins. The Xilinx
Virtex-5 FPGA (XC5VSX240T) has 960 I/O pins and so, to
satisfy the I/O pin constraint, the maximum number of PUs
is 8 (q = 8). The local memory on the FPGA for a block size
of 64 × 64, which is needed to support 8 PUs, is equal to 7
pqm2b = 4046 p Kbits (see Section 5.1), for q = 8, m = 68
(for a 64 × 64 block size and A 3 × 3 gradient mask size),
and b = 16. Since the available memory resource on the
FPGA is 18,576 Kbits, the p value using the memory
constraint is determined to be 4. The p value could have also
been constrained by the number of available slices. Since the
number of slices for the considered FPGA is very large (37
440) and since each CE only utilizes a small slice percentage
(as shown later in Section 5.3.2),the local memory resource
in each PU constrains p, the number of CEs in each PU, and
not the numbers of slices. Taking all this into consideration,
our design has q = 8Pus and each PU has p = 4 CEs. This
design is coded in Verilog and synthesized on a Xilinx
Virtex-5 device (XC5VSX240T) using the Xilinx’s ISE
software and verified using Modelsim. According to the
‘Place and Route’ synthesis report, our implementation can
achieve an operating frequency of 250 MHz. But we choose
100 MHz to support a pipelined implementation of SRAM
read/write and CE processing as described later in Section
6.2

Paper ID: OCT141140 1204

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

7. Conclusion

The original Canny algorithm relies on frame-level statistics
to predict the high and low thresholds and thus has latency
proportional to the frame size. In order to reduce the large
latency and meet real-time requirements, we presented a
novel Split Canny edge detection algorithm which has the
ability to compute edges of multiple blocks at the same time.
To support this, an adaptive threshold selection method is
proposed that predicts the high and low thresholds of the
entire image while only processing the pixels of an
individual block. This results in three benefits: 1) a
significant reduction in the latency; 2) better edge detection
performance; 3) the possibility of pipelining the Canny edge
detector with other block-based image codecs. In addition, a
low complexity non-uniform quantized histogram calculation
method is proposed to compute the block hysteresis
thresholds. The proposed algorithm is scalable and has very
high detection performance.We show that our algorithm can
detect all psycho-visually important edges in the image for
various block sizes. Finally, the algorithm is mapped onto a
Xilinx Virtex-5 FPGA platform and tested using ModelSim.
The synthesized results show 64% slice utilization and 87%
BRAM memory utilization. The proposed FPGA
implementation takes only 0.721ms (including the SRAM
read/write time and the computation time) to detect edges of
512 × 512 images in the USC SIPI database when clocked at
100 MHz. Thus the proposed implementation is capable of
supporting fast real-time edge detection of images and videos
including those with full-HD content.

References

[1] R. Deriche, “Using canny criteria to derive a recursively

implemented optimal edge detector,” Int. J. Comput.
Vis., vol. 1, no. 2, pp. 167–187, 1987.

[2] L. Torres, M. Robert, E. Bourennane, and M.
Paindavoine, “Implementation of a recursive real time
edge detector using retiming technique,” in Proc. Asia
South Pacific IFIP Int. Conf. Very Large Scale
Integr.,1995, pp. 811–816.

[3] F. G. Lorca, L. Kessal, and D. Demigny, “Efficient
ASIC and FPGA implementation of IIR filters for real
time edge detection,” in Proc. IEEE ICIP, vol. 2. Oct.
1997, pp. 406–409.

[4] D. V. Rao and M. Venkatesan, “An efficient
reconfigurable architecture and implementation of edge
detection algorithm using handle-C,” inProc. IEEE
Conf. ITCC, vol. 2. Apr. 2004, pp. 843–847.

[5] H. Neoh and A. Hazanchuck, “Adaptive edge detection
for real-time video processing using FPGAs,” Altera
Corp., San Jose, CA, USA, Application Note, 2005.

[6] C. Gentsos, C. Sotiropoulou, S. Nikolaidis, and N.
Vassiliadis, “Real-time canny edge detection parallel
implementation for FPGAs,” in Proc. IEEE ICECS, Dec.
2010, pp. 499–502

[7] W. He and K. Yuan, “An improved canny edge detector
and its realization on FPGA,” in Proc. IEEE 7th
WCICA, Jun. 2008,pp. 6561–6564.

[8] J.D.Owens et al., “A survey of general-purpose
computation on graphics hardware,” Comput. Graph.
Forum, vol. 26, no. 1, pp. 80–113, 2007.

[9] Y. Luo and R. Duraiswami, “Canny edge detection on
NVIDIA CUDA,”in Proc. IEEE CVPRW, Jun. 2008, pp.
1–8.[11] R. Palomar, J. M. Palomares, J. M. Castillo, J.
Olivares, and

[10] J. Gómez-Luna, “Parallelizing and optimizing lip-canny
using NVIDIACUDA,” in Proc. IEA/AIE, Berlin,
Germany, 2010, pp. 389–398.

[11] L. H. A. Lourenco, “Efficient implementation of canny
edge detection filter for ITK using CUDA,” in Proc.
13th Symp. Comput. Syst., 2012,pp. 33–40.

[12] Q. Xu, C. Chakrabarti, and L. J. Karam, “A distributed
Cannyedge detector and its implementation on FPGA,”
in Proc. DSP/SPE),Jan. 2011, pp. 500–505.

[13] J. F. Canny, “A computation approach to edge
detection,” IEEE Trans.Pattern Anal. Mach. Intell., vol.
8, no. 6, pp. 769–798, Nov. 1986.

[14] S. Nercessian, “A new class of edge detection
algorithms with performance measure,” M.S. thesis,
Dept. Electr. Eng., Tufts Univ., Medford,MA, USA,
May 2009.

[15] P. Bao, L. Zhang, and X. Wu, “Canny edge detection
enhancement by scale multiplication,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 27,no. 9, pp. 1485–
1490, Sep. 2005.

[16] J. K. Su and R. M. Mersereau, “Post-processing for
artifact reduction in JPEG-compressed images,” in Proc.
IEEE ICASSP, vol. 3. May 1995,pp. 2363–2366.

[17] P. Arbelaez, C. Fowlkes, and D. Martin. (2013). The
Berkeley Segmentation Dataset and
Benchmark[Online].Available:http://www.eecs.berkeley
.edu/Research/Projects/CS/vision/bsds/

[18] D. V. Rao and M. Venkatesan, “An efficient
reconfigurable Architecture and implementation of edge
detection algorithm Using Handle-C,” ITCC, vol. 2, pp.
843 – 847, Apr. 2004.

[19] Shengxiao Niu, Jingjing Yang, Sheng Wang, Gengsheng
Chen,”Improvement and Parallel Implementation of
Canny Edge Detection Algorithm Based on GPU”.

[20] W. He and K. Yuan, “An improved Canny edge detector
and its Realization on FPGA,” WCICA, pp. 6561 –6564,
Jun. 2008.

[21] J. Canny, “A computational approach to edge
detection,” IEEE Trans. PAMI, vol. 8, no. 6, pp. 679 –
698, Nov. 1986.

Author Profile

V. Shamlee received Bachelor of Engineering degree
in Electronics and Communication Engineering from
CSI College of Engineering, Ketti .Currently she is
doing Master of Engineering degree in VLSI Design at
United Institute of Technology, Coimbatore. Her area

of interest lies in the field of Image Processing and VLSI Design.

J. Jeyamani is an Assistant Professor at United
Institute of Technology, Her area of interest lies in the
field of Wireless networks, Image Processing and
VLSI Design.

Paper ID: OCT141140 1205

