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Abstract: The approach to obtain uniformly minimum variance unbiased estimator (UMVUE) through the lower bound on the 
variance of an unbiased estimator involves two problems: 1. To provide a lower bound and 2. To identify the classes of (a) probability 
distributions (b) estimators and (c) parametric functions for which a particular bound is attained by the variance of the UMVUE. Many 
authors have provided various solutions to these problems starting from Fr�́�𝒆chet (1943), Cram�́�𝒆r(1946) and Rao (1945). In this paper we 
are trying to provide a brief history of lower bounds on the variance of unbiased estimators. It is tried to take an account of little bit of 
present and possible future work in the field of non-regular families of distributions. Sometimes different inequalities provide different 
bounds for the variance of estimators of the same parametric function. In such situations, it is natural to compare the bounds. We have 
made a brief mention of these efforts also. A few important references are provided. 
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1. Introduction 
 
The approach through the variance bound, to obtain 
UMVUE, leads to two important problems. The first, which 
we call, ‘the problem of construction’, is to construct a 
lower bound for the variance of all the unbiased estimators 
in a certain situation. The second, whom we call, ‘the 
problem of attainment’, is to investigate whether the 
variance bound is attainable, and to find, if possible, an 
explicit expression for an estimator with minimum variance, 
in a specified situation. Different lower bounds on the 
variance are provided by different inequalities. Therefore, 
the lower bounds on the variance of the same estimator 
provided by different inequalities can be different. 
Therefore, a natural and third problem which we call, ‘the 
problem of comparison’, comes up.  
 
We intend to discuss the past, present and future of the 
solutions to these three problems.  
 
2. The Past 
 
The history of lower bounds on the variance of estimators is 
long and has many contributors. The widely known bound 
and the basis of this theory is the so called Cramér-Rao 
bound (Cramér (1946),Rao(1945)). It is equal to the inverted 
value of Fisher’s information quantity (Fisher (1922), 
(1925)). The earliest expression involving ‘Fisher 
information’ is given by Pearson and Filon(1898) in a 
different context. Doob (1936) and Dugu�́�𝑒 (1937)also used 
Fisher information in their expressions. There intension is 
not to obtain UMVU estimator or to provide a bound on the 
variance of the estimator. In fact, what Doob has done is as 
follows- he considered a class {Tn,n≥1} of maximum 
likelihood estimators of θ which follows asymptotic normal 
distribution and proved that the asymptotic variance of √𝑛𝑛 
(Tn - θ) is the inverted value of Fisher information quantity. 
He has also obtained least upper bound on the Fisher 
information quantity. The actual problem of obtaining 

minimum variance unbiased estimator is considered by 
Aitken and Silverstone (1942). Under certain restrictions 
they proved that there exists a minimum variance unbiased 
estimator T(X) of θ, if the derivative of the log f(x, θ) can be 
written as  

𝑑𝑑
𝑑𝑑θ
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥,𝜃𝜃) = [T(x)− θ ]

λ(θ)
 (2.1) 

where E[T(X)]= θ and Var[T(X)]= λ(θ). They also showed 
that E{ 𝑑𝑑

𝑑𝑑θ
 log f(x, θ)}= 0 ( a result already proved by 

Pearson(1898)).If T(X) satisfies (2.1), they showed that  

𝑉𝑉𝑉𝑉𝑉𝑉�𝑇𝑇(𝑋𝑋)� = [E{
−𝑑𝑑2log f(x, θ)

𝑑𝑑θ2  }]−1 

 =  [E{ 𝑑𝑑
𝑑𝑑θ

 log f(x, θ)}2]−1 
 
Thus, it is clear that Aitken and Silverstone have calculated 
Cram�́�𝑒r-Rao bound as the variance of the estimator T(X) 
when (1.1) holds. But they as well as others mentioned 
above did not obtain the bounds for the variances. 
 
It seems that Fr�́�𝑒chet (1943) has given the inequality which 
is now known as the Cram�́�𝑒r-Rao inequality in the statistical 
literature, after its explicit and independent publication by 
Cram �́�𝑒 r(1946) and Rao(1945).Bhattacharyya(1946) 
generalized Rao’s results, under some additional conditions, 
to give a sequence of sharper bounds. Darmois(1945) 
extended Fr�́�𝑒chet’s inequality to n- dimensions. 
 
Cram�́�𝑒r-Rao inequality and Bhattacharyya inequality hold 
under certain regularity conditions. Therefore, many other 
authors tried to provide the lower bounds on the variance of 
estimators, by dropping the regularity assumptions or by 
giving sharper bounds. 
 
Barankin (1949), with a complementary remark in the 
(1951) paper, starts with the goal to obtain (locally) 
attainable variance bounds. His results are very general, but 
unfortunately difficult to apply. He demonstrates that the 
Cram�́�𝑒r-Rao and Bhattacharyya bounds are special cases of 
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bound obtained by him. The variance bounds “without 
regularity conditions” appeared around 1950. Hammersley 
(1950)and Chapman and Robbins (1951) use the same idea 
to give bounds without regularity conditions use the same 
idea to give bounds without regularity conditions. Fraser and 
Guttman (1952) used the idea applied by Chapman and 
Robbins to give Bhattacharyya bounds without regularity 
assumptions. In (1952), Kiefer gave a modified form of 
Barankin’s bound, and showed at the same time that it is a 
generalization of Hammersley-Chapman and Robbins 
bound. Blischke (1969), Polfeldt (1967),(1970) and many 
others including Mitra (1954), Vincze (1979), Khatri (1980), 
Chatterji (1982) etc., have provided some bounds. 
 
Fr �́�𝑒 chet (1943) as well as many others mentioned that 
Cram�́�𝑒r-Rao lower bound is attained only if the family of 
distributions of X is one parameter exponential. In this way, 
together with providing a lower bound on the variance of 
unbiased estimators, Fr�́�𝑒chet has studied its attainment. Fend 
(1959) gives proof of the above result but his proof is not 
rigorous. He provided the situation where Bhattacharyya 
bound is attained by considering a larger family of 
distributions. His result for the larger family seems to be 
vacuous. Revealing this Jadhav and Prasad modified Fend’s 
results on attainment of Bhattacharyya bound. Their results 
are similar to those by Zacks (1971) and are presented in 
Jadhav’s M. Phil. dissertation. A rigorous account on 
attainment of Cram �́�𝑒 r-Rao lower bound is provided by 
Wijsman (1973) and Joshi (1976). Sen and Ghosh (1976) 
provided results about attainment of Chapman-Robbin’s 
bound. The bound constructed by Kiefer (1952) is the most 
general variance bound including non-regular situations. It is 
described below: 
 
Let X be a r.v. having p.d.f. f(x,𝜃𝜃) with x ∊𝖃𝖃 and 𝜃𝜃 ∊𝚯𝚯. Let 
(𝖃𝖃, 𝔽𝔽, µ ) be the measure space with a σ -finite measure µ. 
An estimator T of 𝜃𝜃 or its function m(𝜃𝜃) is a measurable 
function T: 𝖃𝖃⟶ℝ: the real line. Let 𝚯𝚯 be an interval of ℝ. 
For each 𝜃𝜃 ∊𝚯𝚯 let θ = { h; (𝜃𝜃 + h)∊𝚯𝚯 }. For a fixed 𝜃𝜃, let G1 
and G2 be any two probability measures ∊ G defined on 𝚯𝚯θ 
such that Ei(h) = expectation of h w.r.t. Gi, i= 1,2. Then 
Kiefer, J.(1952) has proved , for the variance of estimator T 
of 𝜃𝜃, that  

𝑉𝑉𝑉𝑉𝑉𝑉�𝑇𝑇(𝑋𝑋)�  ≥  𝑠𝑠𝑠𝑠𝑠𝑠
𝐺𝐺1,𝐺𝐺2∊𝐺𝐺

𝐾𝐾(𝐺𝐺1(ℎ),𝐺𝐺2(ℎ),𝜃𝜃)  

 = 𝐾𝐾(𝜃𝜃) (2.2) 
Where, 
𝐾𝐾(𝐺𝐺1,𝐺𝐺2,𝜃𝜃) = {𝐸𝐸1(ℎ)−𝐸𝐸2(ℎ)}2

∫ �
�∫ 𝑙𝑙(𝑥𝑥 ;𝜃𝜃+ℎ)𝑑𝑑[𝐺𝐺1(ℎ)−𝐺𝐺2(ℎ)] 
Θ𝜃𝜃

�
2

𝑙𝑙(𝑥𝑥 ;𝜃𝜃 ) �𝑑𝑑𝑑𝑑 (𝑥𝑥) 
𝔛𝔛

 

Inequality (2.2) is called Kiefer inequality and its R.H.S. 
K(𝜃𝜃) is called Kiefer bound.  
 
Minimum variance estimation in non-regular situations is 
previously treated in a systematic manner by Blischke et al. 
in a (1969) paper and in their reports of (1965), (1966) and 
(1968). Polfeldt (1970) considered attainment of Kiefer 
bound only in the asymptotic situation. Bartlett (1982) 
investigates attainment of Kiefer bound through ideal 
estimation equation involving generalized difference for 
certain probability distributions. Jadhav and Prasad (1986-
87) provided a necessary and sufficient condition for the 

attainment of Kiefer bound for finite sample and extended 
Kiefer’s results for a class of non-regular family of 
distributions to estimate the parameter and its rth power. 

 
The lower bounds on the variance of an estimator provided 
by different inequalities may not be the same. This raises a 
problem of comparison of the various bounds. Though 
various authors like Bhattacharyya, Chapman and Robbins 
compared the bounds obtained by them with Cram�́�𝑒r-Rao 
lower bound, up to some extent detailed study of relative 
magnitudes of bounds is done for the first time by Sen and 
Ghosh(1976). They compared bounds due to Fr �́�𝑒 chet-
Cram �́�𝑒 r-Rao, Bhattacharyya, and Chapman and Robbins. 
Jadhav and Prasad (1986-87) compared Kiefer bound with 
the bounds due to Fr�́�𝑒chet-Cram�́�𝑒r-Rao, Bhattacharyya, and 
Chapman and Robbins.  
 
In this discussion we restricted ourselves only to one 
parameter. For the cases of vector parameters, sequential 
procedures and other related problems one may refer to the 
extensive (but not exhaustive) list of references given at the 
end. To describe the present and future of lower bounds on 
variance, we restrict ourselves to our work on Kiefer bound 
only. 
 
3. The Present 
 
Jadhav and Shanubhogue(2014) deal with the attainment and 
comparison of Kiefer bound in truncated families of 
distributions. Identifying the prior distributions, it is proved 
that the variances of unbiased estimators based upon the 
single sufficient statistics attain Kiefer bound in left as well 
as right truncated families to estimate the parametric 
functions involved in the densities, their linear functions and 
the rth powers. They considered these functions of the 
parameter which is a step ahead of the other research 
workers. Treating Kiefer bound itself as a parametric 
function to be estimated, the attainment is investigated. The 
results for complete, Type 2 and doubly censored samples 
are also established. Thus, given the truncated distribution 
admitting single sufficient statistic, we have the expressions 
for estimable parametric functions, their UMVUE s and their 
variances attaining Kiefer bound. 
 
4. The Future 
The results may be extended to some more parametric 
functions, their estimators and some more probability 
distributions for complete as well as censored samples. The 
values of various bounds would be compared. Some more 
prior distributions would be identified enhancing the 
applicability of Kiefer bound. The situations involving two 
or more parameters might be dealt. Kiefer inequality may be 
generalized to deal with any estimable function, say, m(θ). 
One may try similar things for vector parameters, remaining 
bounds and bounds in sequential and other related situations. 
The added results might be used to get confidence intervals 
etc.  
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