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1. Introduction 

 
The first definition of fuzzy graph was introduced by 
Kaufmann (1973), based on Zadeh’s fuzzy relations (1971). 
A more elaborate definition is due to Azriel Rosenfeld who 
considered fuzzy relations on fuzzy sets and developed the 
theory of fuzzy graph in 1975.  
 
During the same time Yeh and Bang have also introduced 
various connectedness concepts in fuzzy graph. Till now 
fuzzy graphs has been witnessing a tremendous growth and 
finds applications in many branches of engineering and 
technology. 
 
Fuzzy systems based on fuzzy if-then rules have been 
successfully applied to various theorems in the field of fuzzy 
control. Fuzzy rule based system has high comprehensibility 
because human users can easily understand the meaning of 
each fuzzy if-then rule through its linguistic interpretation.  
 
A graph is a convenient way of representing information 
involving relationship between objects. The objects are 
represented by vertices and relations by edges. When there is 
vagueness in description of the objects or in its relationships 
or in both, it is natural that we need to design a ‘Fuzzy 
Graph Model.’  
 
2. Basic Concepts 
 
Definition 2.1: Let V be a non-empty set. A fuzzy graph is a 

pair of functions ),,(: G  where  is a fuzzy subset of V 

and  is a symmetric fuzzy relation on . i.e., 
]1,0[:  V  and ]1,0[:  VV  such that 

)()(),( vuvu   for all vu,  in .V   Where, uv  

denotes the edge between u  and v  and )()( vu   

denotes the minimum of ).(&)( vu   

 
 
 
 
 
 

Example 2.1: 

 
Figure 1: Fuzzy Graph 

 
The Petersen graph G  is the simple graph with 10-
vertices and 15-edges. The Petersen graph is most 
commonly drawn as a pentagon inside with five spokes.  
 
Example: 

 
Figure 2: Petersen graph 

It is set of vertices  

}.,,,,,,,,,{ 10987654321 vvvvvvvvvv  

It is set of edges  
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Definition 2.2: When a vertex )( iu  is an end vertex of 

some edges ),( ji vu  of any fuzzy graph ).,(: G  

Then )( iu  and ),( ji vu  are said to be incident to each 

other.  
 
Example 2.2: 

 
Figure 3: Incident graph 

 

In this diagram ),(),,( 3231 uuuu   and ),( 43 uu  are 

incident on ).( 3u  

Definition 2.3: The degree of any vertex )( iu  of a fuzzy 

graph is sum of degree of membership of all those edges 

which are incident on vertex )( iu  and is denoted by 

)].([ iud    

 
Example 2.3: 
 

 
Figure 4: Degree of vertex 

 
Degree of vertex )( 1u  = degree of membership of  

 all those edges which are  

 incident on a vertex ).( 1u  

= 0.4 + 0.6 + 0.5 
= 1.5 

i.e., )]([ 1ud   = 1.5 

Degree of vertex )( 2u  = 0.4 + 0.3 

= 0.7 
i.e., )]([ 2ud   = 0.7 

Degree of vertex )( 3u  = 0.6 + 0.3 + 0.2 

= 1.1 
i.e., )]([ 3ud   = 1.1 

Degree of vertex )( 4u  = 0.5 + 0.2 

= 0.7 
i.e., )]([ 4ud   = 0.7 

 
Definition 2.4: A fuzzy rule is defined as a conditional 
statement in the form:  
 
IF x  is A, THEN y  is B ; where x  and y  are linguistic 

variables; A and B are linguistic values determined by fuzzy 
sets on the universe of discourse X and Y, respectively.  
 
 A rule is also called a fuzzy implication. 
 “x is A” is called the antecedent or premise. 
 “y is B” is called the consequence or conclusion. 
 
Example 2.4: 
 
(i) IF pressure is high, THEN volume is small. 
(ii) IF the speed is high, THEN apply the brake a little.  
 
3. Fuzzy Petersen graph with fuzzy rule 
 
Result 3.1:  
Let ),(: G  is a fuzzy Petersen graph, then the distance 

)](),([ ji vvd   between two of its vertices )( iv  and )( jv  

is the length of shortest path between them.  

i.e., 







 

ji
jiji vuvvd

,
),(min)](),([  

 
Example 3.1: 

 
Figure 5: Fuzzy Petersen graph 

 
In this fuzzy Petersen graph, there is four path between 

)( 1v  and ).( 4v  

(i) )()()()( 4961 vvvv   i.e., 3 path 

(ii) )()()( 451 vvv   i.e., 2 path 
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(iii) )()()()( 4321 vvvv   i.e., 3 path 

(iv) )()()()()( 43861 vvvvv   i.e., 4 path 

 
 IF we find the shortest path from ),()( 41 vtov  THEN 

the shortest path will be,  
 ).()()( 451 vvv   

 
 IF membership grades are assigned to edges, THEN the 
length of the shortest path is,  

)()()()](),([( 45141 vvvvvd   

 = 0.6 + 0.8 
 = 1.4 

 i.e., 4.1)](),([ 41  vvd  

 
Theorem 3.2: 
 
 In fuzzy Petersen graph G, the sum of degrees of vertices of 
even degree is equal to twice the degree of membership of 
all the edges and the difference of the sum of degrees of 
vertices of odd degree.  
 
Proof 
Let ),(: G  is a fuzzy Petersen graph. Consider 10-vertices  

)}(),...,(),(),({ 10321 vvvv  of fuzzy Petersen graph 

).,(: G   

 

 
Figure 6: Fuzzy Petersen graph 

 
IF the membership grades of edges which are incident on 
any degree of vertex )( iv are added, THEN the sum of 

corresponding membership values of vertices vary.  
)]([ 1vd   = 0.6 + 0.3 + 0.2 = 1.1 

)]([ 2vd   = 0.3 + 0.5 + 0.4 = 1.2 

)]([ 3vd   = 0.5 + 0.4 + 0.3 = 1.2 

)]([ 4vd   = 0.6 + 0.8 + 0.4 = 1.8 

)]([ 5vd   = 0.6 + 0.8 + 0.7 = 2.1 

)]([ 6vd   = 0.7 + 0.3 + 0.2 = 1.2 

)]([ 7vd   = 0.2 + 0.4 + 0.6 = 1.2 

)]([ 8vd   = 0.4 + 0.3 + 0.7 = 1.4 

)]([ 9vd   = 0.3 + 0.6 + 0.2 = 1.1 

)]([ 10vd   = 0.6 + 0.4 + 0.7 = 1.7 

 
IF the membership grades of edges are added, THEN we 
find the degree of edges, 
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1),(

i
ii vu  = 0.6 + 0.3 + 0.5 + 0.4 + 0.8 + 0.2 +  

 0.4 + 0.3 + 0.6 + 0.7 + 0.4 + 0.3 +  
 0.6 + 0.7 +0.2 

 = 7 
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But here,  
The deg )]([ iv  has been splited into two parts.  

i.e., 






n
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),(2degdeg  

 

 Here, 


k

i
iv

1
deg  is the sum over even degree vertices, i.e., 

).(),(),(),(),( 108642 vvvvv   

 
 

)]([)]([)]([)]([)]([deg 108642
1

vdvdvdvdvdv
k

i
i 



 = 1.2 + 1.8 + 1.2 + 1.4 + 1.7 
 = 7.3 

3.7deg
1




k

i
iv   

 Now, 


n

K
kw

1
deg  is the sum over odd degree vertices, i.e., 

).(),(),(),(),( 97531 vvvvv   

 

)]([)]([)]([)]([)]([deg 97531
1

vdvdvdvdvdw
n

K
k 



 = 1.1 + 1.2 + 2.1 + 1.2 + 1.1 
 = 6.7 

7.6deg
1




k

i
kw  

 
IF the sum of degrees of vertices of even degree is 7.3, 
THEN it is equal to twice the degree of membership of all 
edges and the difference of the sum of degrees of vertices of 
odd degree.  

i.e., 
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)deg(),(2)deg(  

 7.3 = 2(7) – 6.7 
 = 14 - 6.7 
 7.3 = 7.3 

Hence the theorem.  
 
4. Conclusion 
 
We have applied fuzzy IF-THEN rule in fuzzy Petersen 
graph to arrive distance between two vertices. Finally, IF-
THEN rules applied through shortest paths are shown with 
different analysis.  
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