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Abstract: Detecting errors in arithmetic and logic operations is very important, and the simplest way is by using Duplication. However, 
the use of duplication is very expensive. In this arithmetic and logic function the errors are detected by using check bit prediction 
schemes. The only available technique that can be used to detect the three types of errors (transfer errors, arithmetic errors[12], and 
logic errors) where only one non-arithmetic code for example Parity code, Berger code, Dong’s code. In this paper the mathematical 
equations for the check bit prediction of the logical functions using Dong's code are outlined.  
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1. Introduction 
 
The arithmetic and logic functions are performed by the 
general purpose processors. This processor is also having a 
self checker, using the Concurrent Error Detection (CED) 
techniques; it can detect the errors in arithmetic and logic 
units. In the earlier stage they are using the duplication 
process. It is one of the easiest ways of detecting errors. The 
duplication is very expensive. If the check symbol is same 
size as the information bit. The number of information bit is 
large so this process not is not widely used. In this arithmetic 
function the errors are detected by using arithmetic code 
[1][2][3]. Because of the inherent difference between 
arithmetic errors and logical errors, arithmetic codes are 
inefficient in detecting logical errors [4]. 
 
 The Two-rail Code method is used only for check the 
logical operation[5]. This process is used for self testing and 
fault secure for all faults affecting in this logical and 
arithmetic unit. But the fault can occur in both unit are 
undetectable. The redundancy is 100%, plus the hardware 
overheads for the checker and synchronization. It is 
preferable to use the same code for checking both arithmetic 
and logic operations. The only available technique that can 
be used to detect the three types of errors (transfer errors, 
arithmetic errors, and logic errors) is the Check Symbol 
Prediction (CSP) technique, where only one non-arithmetic 
code for example Parity code[6], Berger code[7], Dong’s 
code[8], Residue codes [10], and Berger codes [11 is used 
for error detection throughout the entire system. 
 
2. Code Composition  
 
For constructing Dong’s code we want to set the maximum 
weight of unidirectional errors. The check symbols have two 
parts that are C1, C2. The number of bits in C1 is i, where i 
= [ log2 ( m + 1 ) ].C1 will count the number of zeros in the 
information bit and using the j formula,C2 will counting the 
number of zeros in C1 result. If the C2 will saving the bits. 
 
Here we are using a 32 bit information word. So we assume 
a- Maximum weight (m) of unidirectional errors needed to 
be detected is 7. 

b- Number of bits in C1 will be i = [log2 (m+1)] = 3 from 
the above the code can be constructed as follows: 
 
1) Count the number of zeros in the information word.  
2) Take modulo (m+1) of the number of zeros in the 

information word. 
3) Represent the result in binary form using i - bits ( j=3 ) , 

to obtain C1. 
4) Count the number of zeros in C1 and represent it in binary 

form, which represents C2. 
 

Table 1: Encoding Example 
Information bits Number of 

zeros 
0s mod 
(m+1) 

CK1 CK2 

0000……0000 32 0 000 11 
0000……0001 31 7 111 00 
0000……0011 30 6 110 01 
0111……1111 1 1 001 10 
1111……1111 0 0 000 11 

 
3. Error Detection Capability  
 
The code detects all unidirectional errors except those which 
affect only the information bits and have weight equal to ( 
m+1 ) or its multiples [8] . In other words if m is set to 7, the 
number of information bits is 32 , and the errors affect only 
the information bits, then the code can detect any 
unidirectional error of weight not equal to 8,16 24 and 32, 
but all other weight can be detected . 
 
The code can also detect some other types of errors. For 
example, if the check bits are affected by any number of 
unidirectional errors then the code can detect all types of 
errors (unidirectional or bi-directional errors which affect 
the information bits) this comes from the fact that the check 
symbols of the code form a set of unordered words in which 
no check symbol can be changed into another by any 
unidirectional errors; this is an advantage over the Berger 
code itself.  
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4. Check Symbol Prediction  
 
Check symbol prediction is one of the schemes used to 
perform concurrent error detection in arithmetic functions, 
and it has been considered for some codes, but from 
literature survey to date, however, the only prediction 
method designed for Dong’s code is for arithmetic functions 
[12]. In this section the mathematical equations for the check 
symbol prediction for Logic functions using Dong’s code, 
will be outlined. The equations are based on the 
mathematical foundation for the prediction of Berger codes 
described in [11]. 
 
Given a logic operation S = X op Y , where the operands X 
and Y are coded into Dong’s code . Let XCk1 and YCk1 be the 
Ck1 check symbols of the operands. The predicted Ck1 of 
the result ( SCk1 ) can be computed form X, Y, XCk1, and 
YCk1, i.e.SCk1 = f (X, Y, XCk1, YCk1 ) only Ck1 of the check 
symbol of the result needs to be predicted, Ck2 is then 
generated from Ck1.  
 
5. CSP for Logic Operation  
 
This section describes the CSP technique for Logic functions 
for Dong’s code, the CSP equations used are based on the 
equations for the Logic functions for Berger Code presented 
in [11]. 
 
The three basic logical operations are OR (٧), AND(٨), and 

the Exclusive OR (⊕), the function of the three operations 
are shown in Tables (2-4). The last column of each table is 
used for the number of ones lost; a one is said to be lost if it 
appears at the input of the gate, but it does not propagate to 
the output of the gate. For the OR gate when two ones 
appear at the inputs, only one of them propagates to the 
output, and the other is lost . If the lost column in the truth 
table of the OR gate is compared with the output column (Si) 
of the AND gate, the two columns are exactly the same. In 
other words the number of ones in the result of the OR 
operation is equal to the number of ones in the inputs (Xi,Yi) 
minus the number of ones in the result of AND operation .  
 
For the AND gate, if there are two ones at the inputs of the 
gate, then only of them propagates to the output, and the 
other is lost, and if there is only one 1 at the inputs, that one 
will be lost too . The last column in the truth table of the 
AND Gate is exactly the same as the output column in the 
truth table of the OR gate (Si). 
 
The XOR gate is different, when there are two ones at the 
inputs of the XOR gate, then the two ones cannot be 
propagated, and both are lost. The number of ones lost is 
exactly equal to the double he ones propagated by the AND 
gate (Si column of AND gate) .  
 
Form above, we can verify the following:  
Xi ٧ Yi = Xi + Yi – (Xi ٨ Yi) 
Xi ٨ Yi = Xi + Yi – (Xi ٧ Yi) 

Xi ⊕ Yi = Xi + Yi – (Xi ٨ Yi) 
 
In general, if the two operands X and Y have n-bits each, 
and number of ones in X is N (X), the number of ones in Y 

is N(Y), then the number of ones in the result of the three 
Logical operations can be predicted as follows: 
  
N(X ٧ Y) = N(X) + N(Y) – N(X ٨ Y) (1) 
N(X ٨ Y) = N(X) + N(Y) – N(X ٧ Y) (2) 

N(X⊕ Y) = N(X) + N(Y) – 2xN(X ٨ Y) (3) 
 
The above equations are the basic equations used for check 
symbol prediction for Berger Code [11], but in Dong’s 
Code, only modulo 2r of the number of Zeros are used to 
generate the Ck1 of the check symbol, therefore, the above 
equation can be modified as shown below :  
 
N(X ٧ Y) mod 2r = N(X) mod 2r + N(Y) mod 2r – N(X ٨ Y) 
mod 2r (4) 
N(X ٨ Y) mod 2r = N(X) mod 2r + N(Y) mod 2r – N(X ٧ Y) 
mod 2r (5) 

N(X⊕ Y) mod 2r = N(X) mod 2r + N(Y) mod 2r – 2XN(X 
٨Y) mod 2r (6) 

 
Table 2: Truth table for OR Operation 

Xi Yi Si 1’s in Xi and Yi 1’s in Si 1’s Lost 
0 0 0 0 0 0 
0 1 1 1 1 0 
1 0 1 1 1 0 
1 1 1 2 1 1 

 
Table 3: Truth table for AND Operation 

Xi Yi Si 1’s in Xi and Yi 1’s in Si 1’s Lost 
0 0 0 0 0 0 
0 1 0 1 0 1 
1 0 0 1 0 1 
1 1 1 2 1 1 

 
Table 4: Truth table for XOR Operation 

Xi Yi Si 1’s in Xi and Yi 1’s in Si 1’s Lost 
0 0 0 0 0 0 
0 1 0 1 1 0 
1 0 0 1 1 0 
1 1 1 2 0 2 

 
5.1 CSP for OR Operation  
 
The check symbol of the result (S), where:  
 
S = X ٧ Y, can be predicted from the check symbol of the 
operands (X, Y) and (X ٨ Y) as shown in equation (4). 
 
In other words the number of Zeros in the result of the OR 
operation depends on the number of ones in the two 
operands (X and Y) , and the number of ones in X ٨ Y. 
However, only the first part of the check symbol Ck1, needs 
to be predicted, and then the second part of the check 
symbol Ck2 is obtained by simply counting the number of 
zeros in Ck1. Check symbol of the result Ck1 of the OR 
operation can be predicted by the following equation:  
 
Ck1 = (2r + XCk1 + YCk1 – (X ٨Y)Ck1) mod 2r (7) 
 
Example : Table 5 shows the OR operation of X and Y , 
where X and Y are two 32 bit numbers, if these two numbers 
are encoded into Dong’s Code, and r = 3 , then to predict the 
result of the OR operation, an AND operation has to be 
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performed on X and Y, the number of Zeros mod 2r of the 
AND operation will be used with the Ck1 of the two 
operands (X, Y) to predict Ck1 of the check symbol of the 
result of the OR operation Ck2 can be then obtained by 
counting the number of Zeros in the predicted Ck1 .  
 
XCk1 = number of Zeros in X mod 23 
 = 17 mod 8 = 1 
YCk1 = number of Zeros in Y mod 23 
 = 13 mod 8 = 5 
(X ٨Y)Ck1 = number of Zeros in (X and Y) mod 23 
 = 25 mod 8 = 1 
Ck1 of the check symbol of the result can be predicted by 
substituting in equation (7),  
 Ck1 = (2r + XCk1 + YCk1 – (X ٨Y)Ck1) mod 2r 
 = (8 = 1 = 5 – 1) mod 8 
 = 5, in binary = 101 
 
The last row in Table 2 shows the result of the OR 
operation, the result contains exactly 5 Zeros, which means 
Ck1 of the result is 101 in binary, and it is equal to the 
predicted Ck1 of the result of OR operation. The second part 
of the check symbol Ck2 is equal to the number of Zeros in 
the predicted Ck1=01, and the complete check symbol = 01 
101. 
 
5.2 CSP for AND Operation  
 
The first part Ck1 of the check symbol of the AND 
operation (X ٨ Y), can be predicted based on equation (2), 
using the check symbol of the two operands (X, Y) and (X ٧ 
Y) . 
 
Ck1 = (2r + XCk1 + YCk1 – (X ٧ Y)Ck1) mod 2r (8) 
 
Example : if the AND operation, needs to be performed on 
X and Y, where the values of X and Y are shown in Table 6 
then to predict Ck1 of the check symbol of the result of the 
OR operation (X ٧ Y) should be evaluated, the number of 
Zeros in the result of (X ٧ Y) mod 2r is used with the Ck1 of 
the operands X and Y, to predict Ck1 of the result of (X ٨ Y) 
the equation given below can be used :  
 
XCk1 = number of Zeros in operand X mod 23  
 = 18 mod 8 = 2 
YCk1 = number of Zeros in operand Y mod 23 = 20 mod 8 = 
4 
(X ٨Y)Ck1 = number of Zeros in (X ٧ Y) mod 23 = 14 mod 8 
= 6 
Then, Ck1= (2r + XCk1 + YCk1 – (X ٧Y)Ck1)mod 2r 
 = (8 + 2 + 4 – 6) mod 8 = 0 , in binary = 000 
The check bits of (X ٨Y)Ck1 = 11 000 . 
 
5.3 CSP for Complement Operation 
 
The complement operation X is performed by 
complementing all the bits of X bit by bit, which means the 
number of zeros in X is equal to the number of ones in X, 
and the number of ones in X is equal to n-XCk1; where n is 
the number of bits in X. Therefore Ck1 of the check symbols 
of the result of the complement operation can be predicted 
as:  
Ck1 = XCk1 = ( 2j+1 - XCk1 ) mod ( m+1 ) (9) 

5.4 CSP for XOR Operation  
 
To predict the check symbol of the Exclusive OR (XOR) 
operation, an AND operation should be performed. 
Thereafter Ck1 of the two operands, X and Y, twice the 
number of Zeros in (X ٨ Y) and the number of bits (n) in the 
information word, are used to predict Ck1 of the operation 

(X⊕ Y) by substituting in the equation (3) . It should be 
noted that the number of bits n is used to ensure that the Ck1 
is always positive.  
 
Ck1=(2r +XCk1+YCk1– 2(X٨Y)Ck1+ n)mod 2r (10) 
 

Table 5: Example of Check symbol prediction of OR 
operation 

X 1100 0101 0000 0011 1111 0011 1010 
0001 

Zeros in X=17 

Y 0111 1010 1100 1010 0101 1111 0101 
0011 

Zeros in Y= 13 

X^Y 0100 0000 0000 0010 0101 0011 0000 
0001 

Zeros in X^Y=25

XVY 1111 1111 1100 1011 1111 1111 1111 
0011 

Zeros in XVY=5

 
Table 6: Example of Check symbol prediction of AND 

operation 
X 1100 1000 0101 0010 1101 0011 0010 

1001 
Zeros in X=18 

Y 0100 1010 0100 0110 0101 1001 0100 
0001 

Zeros in Y= 20 

XVY 1100 1010 0101 0110 1101 1011 0110 
1001 

Zeros in XVY=14 

X^Y 0100 1000 0100 0010 0101 0001 0000 
0001 

Zeros in X^Y=24 

 
5.5 CSP for Logical Shift  
 
Two logic shift operation can be performed on an operand 
X, during the logical shift all the bits of X will be shifted to 
the left or to the right one place, one bit of X will be moved 
out to the output carry Cout, and the input carry Cin shifted in, 
if the Cin is set then a 1 is loaded in, but if Cin is reset then a 
0 is shifted in .  
 
5.5.1 Logic Shift Left  
If X = (xn, xn-1, ….. , x1) is to be shifted to the left, then all 
the bits of X are shifted to the left one place, and X 
becomes, X=(xn-1,xn-2,….,x1,Cin) and Cout = xn .  
 
Ck1 of the result of Logic Shift Left operation can be 
predicted as follows:  
 
Ck1 = (XCk1 + Cout – Cin) mod 2r (11) 
 
5.5.2 Logic Shift Right  
When X = (xn,…..,x2,x1) is shifted to the right, then the least 
significant bit is shifted out to the output carry and Cin is 
loaded into the most significant bit, the operand becomes 
X=(Cin,xn,….,x2) Cout = x1 .  
 
The check symbol of the operation can be predicted using 
the equation below:  
 
Ck1 = (XCk1 + Cout – Cin) mod 2r (12) 

Paper ID: OCT14987 948



International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

In summary the above Equations are the Check Symbol 
Prediction equations used to predict the check symbol of the 
most common logic operations.  
 
Other operations for example, NOR, NAND, NOR… can be 
obtained by using the prescribed operations. These equations 
with equations presented in [12] will be used in the check 
symbol prediction hardware for a 32-bit Self-Checking 
RISC (SC-RISC) Processor using Dong’s Code. 
 
6. Check Symbol Prediction Circuit 
 
Fig(1) shows block diagram of the circuitry which generates 
the predicted check symbols Ck1 and Ck2, the circuit also 
generates the actual check symbols Ck1 and Ck2 from the 
result. When the result becomes available from the output of 
the Logic unit, the actual check symbol of the result is 
generated by check symbol generator, following the same 
steps described in section 2, Then the predicted and the 
actual check symbols are compared using Totally Self-
checking Checkers (TSC); if they match then the result is 
error free, otherwise an error signal will be generated, and 
the execution sequence is halted. It should be noted that the 
error can be either from the Logic unit or from the prediction 
circuit itself. In both cases the error will be detected, and an 
error signal will be generated, since there will be a mismatch 
between the actual and the predicted check symbols of the 
result. 
 
7. Conclusions  
 
The capabilities of the Dong’s code to predict the check 
symbol for some common logical operations have been 
demonstrated, and the block diagram of the check symbol 
prediction circuit is given.  
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