
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Survey on an Efficient Data Caching Mechanism
for Big Data Application

Shakil B. Tamboli1, Smita Shukla Patel2

1Student MEIT 2nd year, Department of Information technology, Smt.Kashibai Navale College of Engineering, Pune, Maharashtra, India

2Professor & Guide, Department of Information technology, Smt.Kashibai Navale College of Engineering, Pune, Maharashtra, India

Abstract: Now a day Big Data has turned the attention of the academia and IT industry towards it to think due to information is
generated and collected at unimaginable rate that rapidly exceeds the very large range. The easy availability of big data indicated the
need to manage it for useful purpose, business need, scientific research, future predictions for community welfare, lifestyle
enhancements etc. The observations stated by researchers are that Google processes 50TB, Twitter 20TB data everyday which is huge in
volume, velocity and variety. To streamline the big data issues several solutions are developed on high computing machines and through
large scale nodes with the help of distributed processing technologies and software tools like MapReduce from Google, Hadoop of
Apache foundation and its eco system. However it is also the observation that these technologies and tools needs to be modified due to
problems exists such as not making usefulness of intermediate data, inefficiency in output, increased overhead on processors, inefficient
storage technologies and poor security. The purpose of this survey is to appreciate and think for probable enhancements that can be
possible for the forthcoming requirements of future. One of the observations among various issues of enhancements for big data where
in this paper concentration is provided that large amount of intermediate data generated by map and reduce operation is not used when
task finish and thrashed away as well as incremental computations are not treated well by the existing cache mechanism. Hence the
research will be done to use cache mechanism efficiently to optimize computational time and reduce storage overhead for real time data
over the distributed file system (DFS). The survey focuses on big data domain orientation, the technologies applied for execution of big
data applications and its eco system, literature survey from various existing practices towards improvements in optimization of
computational time and reduction in space of storage system as well as to improve the performance, efficiency, scalability and
architecture and proposed new system architecture to achieve above aspects.

Keywords: Google, MapReduce, Hadoop, Cache Mechanism, Distributed File System

1. Introduction

Big Data is the sea of information with vast zeta bytes of
data flowing from computers, mobile devices, and machine
sensors used for future predictions and valuable perceptions
that were before unimaginable. Big Data technologies and
analysis tools are applied to transform business into
simplified IT architecture and support real-time
opportunities, quickly identify risks, improve predictive
capabilities, streamline operations and unlock new revenue
sources, deliver complete and accurate information to any
application or user with effective data management and
extract the maximum value from Big Data. Large volume of
information from multimedia, social media and Internet of
Things increases exponential growth in data for the
predictable future.

The huge amount of data has blasted world, and analyzing
large data sets has become a key basis of competition,
behind new impersonations of productivity growth,
innovation, and consumer surplus, as per the research by
MGI and McKinsey's Business Technology Office [12]. The
study of big data in some areas like healthcare, public sector,
retail, manufacturing and personal location data globally
indicated that big data can generate value in each. For
example, a retailer using big data may increase its operating
margin. Healthcare sector uses big data creatively and
effectively to improve efficiency and quality and raise large
profit every year. The developed nations, government
administrators could save more than corers in operational
efficiency improvements alone by using big data, reduce
fraud and errors and boost the collection of tax revenues.

Users of services created by personal location data could
seizure several corers in consumer surplus.

Some real world examples of Big Data in action are
appreciated like consumer product firms and selling
organizations may monitor social media sites such as
Facebook and Twitter to get an extraordinary view into
customer behavior, preferences, and product awareness.
Manufacturers can monitor minute vibration data from their
equipment, which changes somewhat as it wears down, to
forecast the best time to replace or maintain. Financial
Services establishments may use data mined from customer
relations to share and risk their users into finely adjusted
sections. Advertising and marketing agencies can track
social media to comprehend openness to movements,
elevations, and other publicity mediums. Insurance
companies can use Big Data analysis to see which home
insurance claims can be immediately handled. Hospitals can
analyze medical data and patient records to guess those
patients that are probable to seek readmission within a few
months of discharge. Web based businesses can develop
information products that combine data gathered from
customers to offer more attractive endorsements and more
fruitful coupon programs. The government can make data
public at various levels like national, state, and city for users
to develop new applications that can generate public good.
Sports teams can use data for follow up of ticket sales and
even for tracking team policies.

The clear understanding of big data requires fundamental
technologies like cloud computing, IoT, data center, and
Hadoop appreciated well. Cloud computing transforms the

Paper ID: OCT14903 1242

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

IT architecture while big data influences business decision
making. The IoT model has huge amount of networking
sensors rooted into various devices and machines in the real
world. The sensors are deployed in different fields for
collecting various kinds of data like environmental data,
geographical data, astronomical data, and logistic data.
Mobile equipment’s, transportation facilities, public
facilities, and home appliances could all be data acquisition
equipment’s in IoT. The data center platform concentrates
storage of data and undertakes responsibilities like acquiring
data, managing data, organizing data, and leveraging the
data values and functions.

The remaining paper is prepared as follows. A brief
description of MapReduce, Hadoop and its ecosystem is
given in section 2. The literature survey is presented in
section 3. The existing system architecture is explained in
section 4. Section 5 presents proposed system architecture to
optimize computational time and reduce space of storage
system.

2. Related work

Google MapReduce is a programming model and a software
framework for large scale distributed processing work on
enormous amounts of data. Application designers decide the
computation in terms of a map and a reduce function, and
the original MapReduce job arranging method routinely
parallelizes the computation through a cluster of machines.
MapReduce accepted widely because of its simple
programming interface and excellent performance when
executing a huge range of applications. In this model input
data is first divided and then supplied to worker systems in
the map phase location. Separated items of data are called
records. The MapReduce configured machine divides the
input parts to each worker and produces records. When
record is produced in the map phase, in-between results are
shuffled and sorted by the MapReduce system and are then
served into the workers in the reduce phase. Last results are
calculated by multiple reducers and written to the disk [1].
The design of the MapReduce framework has main
principles as Low cost reliable commodity hardware,
extremely scalable RAIN cluster, fault tolerant yet easy to
administer, highly parallel yet abstracted.

Apache Hadoop is another important technology used to
handle big data with its analytics and stream calculating
techniques. Apache Hadoop is an open source software
project that allows the distributed processing of large data
sets through clusters of commodity servers. It can be
mounted up from a single server to thousands of machines
and with a very high grade of fault tolerance. Instead of
trusting on high end hardware, the effectiveness of these
clusters comes from the software’s ability to sense and
handle failures at the application layer. A small Hadoop
cluster will include a single master and multiple worker
nodes. The master node runs multiple procedures, including
a JobTracker and a NameNode. The JobTracker is
answerable for managing successively jobs in the Hadoop
cluster. The NameNode, on the other hand, manages the
HDFS. The JobTracker and the NameNode are usually
collocated on the same physical machine. Other servers in
the cluster run a TaskTracker and a DataNode processes. A

MapReduce job is divided into tasks. Tasks are managed by
the TaskTracker. The TaskTrackers and the DataNode are
collated on the same servers to provide data locality in
computation [1].

Hadoop subprojects or Ecosystem include Hadoop Common
which is the common utilities that provision other Hadoop
modules. HDFS is a distributed file system that offers high
throughput access to application data discussed earlier with
some detail. Hadoop YARN is a framework for job
scheduling and cluster resource management. Hadoop
MapReduce is a YARN-based system for parallel processing
of large data sets. Avro is a data serialization system.
Cassandra is a scalable multi-master database with no single
points of failure. Chukwa is a data collection system for
handling big distributed systems. HBase is a scalable,
distributed database that provisions structured data storage
for large tables. Hive is a data warehouse infrastructure that
offers data summarization and ad hoc querying. Mahout is a
Scalable machine learning and data mining library. Pig is a
high-level data-flow language and execution framework for
parallel computation and ZooKeeper is a high-performance
management facility for distributed applications.

Distributed file system or network file system allows client
nodes to contact files with the help of network developed of
computers. Because of this a number of users working on
multiple machines are able to share files and storage
resources.

The Google File System is planned and applied to see the
rapidly growing demands of Google’s data handling needs.
GFS promises many goals as distributed file systems such as
performance, scalability, reliability, and availability. The
design looks after component failures rather than the
exemption. The file system consists of hundreds or even
thousands of storage machines built from cheap service parts
and are accessed by a similar number of client machines.
The errors are created by application, operating system,
human’s and disks, memory, connectors, networking, and
power supplies. As a result of this continuous observation,
bug detection, management of fault tolerance, and
programmed recovery are fundamental part of the system.
Files are enormous by traditional standards. Multi GB files
are common. Most files are changed by appending new data
rather than overwriting current data. Accidental writes
within a file are virtually does not exist. When data is
written, reading of the files is started. A variety of data share
these features. Co designing the applications and the file
system API benefits the overall system by increasing our
flexibility [14].

Hadoop HDFS represents a distributed file system that is
designed to house very large amounts of data (TB or PB)
and to deliver high-throughput (streaming) access to the data
sets. In any IT environment, HW failures do happen. A
single HDFS occurrence may contain of thousands of server
nodes, each storing and maintaining part of the file system
data. Fault detection and rapid, automated recovery features
are at the core of the HDFS design architecture. The HDFS
design is fundamentally concentrated the pattern write once,
read often input output in which a dataset is generated, and
where numerous analysis cycles are performed on the

Paper ID: OCT14903 1243

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

dataset over time. The HDFS design incorporates the notion
of a block size, just at a much larger unit size of 64MB
(default) compared to other file system solutions [15].

3. Literature Survey

In paper [1] designed a data aware cache framework in
which tasks surrenders its intermediate outcomes to the
cache manager. A task asks the cache manager before
processing the actual computing work. Cache algorithm for
customizable indexing of data objects enables the
applications to describe their operations and the content of
their partial results is written. A cache request and reply
protocol is designed. This Dache protocol is aimed to extend
the MapReduce framework and made provision of cache
layer for efficiently identifying and accessing cache items in
a MapReduce task. In Map phase intermediate data produced
by worker nodes processes during the execution of a
MapReduce task is stored in a Distributed File System
(DFS). The content of a cache item is described by the
original data and the operations applied. Relationship
between job types and cache organization is managed by
creating a protocol with the help of two types of cache items
as the map cache and the reduce cache.

The paper[2] focuses on MapReduce applications with huge
amount of intermediate key value pairs and relatively low
amount of computations situation. Here run time is not
dominated by application code in map and reduce. The
overhead is of library itself on commodity multicore
computer. The core challenge is the organization of
MapReduce intermediate data. The paper has presented a
new MapReduce library called Metis whose intermediate
data structure is a hash table with b+ tree in each entry.
Tiled-MapReduce (TMR) [3] has extended the general
MapReduce programming model with tiling strategy. It is
more effective for MapReduce to iteratively process small
pieces of data in turn than processing a large pieces of data
at one time on shared memory multicore platforms. Tiled-
MapReduce presented number of different methods;
executed optimizing techniques which are directed on
multicore to improve the memory, cache and CPU resources.

In[4] to minimize the gap in disk access time and bandwidth
for large cluster based systems, the efforts are made to
design a proactive fetching and caching mechanism based on
Memcached distributed caching system and integrated with
Hadoop. Two Level greedy caching strategy is adopted for
cache policy with two ways. The Incoop system [5] is
presented as a MapReduce implementation for incremental
computations for finding changes on the input datasets. It
allows the automatic update of the outputs of the
MapReduce jobs by providing a fine-grained output recycle
mechanism. It permits incremental processing to be
implemented clearly in an incremental manner. The design
of Incoop introduced new techniques such as Inc-HDFS
(Incremental HDFS) that offers mechanisms to recognize
likenesses in the input data of consecutive job runs. Incoop

also controls the granularity with new contraction phase. As
well as Incoop increases the usefulness of memoization
technique by implementing an affinity based scheduler. That
applies a work stealing algorithm to minimize the amount of
data movement across machines.

In [6] proposed the extension of MapReduce programming
model with EFind, an Efficient and Flexible index access
method to better support big data applications. EFind
collects index statistics and performs cost-based adaptive
optimization to improve index access performance. In [7]
XTrie and ETrie extended partitioning techniques are
developed to increase load balancing for distributed
applications. Increasing load balancing helps MapReduce
programs become well-organized at handling tasks by
reducing the overall computation time consumed processing
data on each node. The HaLoop system [8] is designed to
make facility for iterative processing on the MapReduce
framework. It uses a new task scheduler that leverages data
locality. It also caches and indices application data on slave
nodes. HaLoop relies on the earlier file system and has the
same task queue structure as Hadoop but the task scheduler
and task tracker modules are improved whereas loop control,
caching, and indexing modules are freshly presented to the
architecture. In [9] suggested a distributed storage
middleware HyCache to allow input output efficiently
influence the high bi section bandwidth of the high speed
interconnect of massively parallel high end computing
systems. In this also proposed and analyzed new caching
technique named as 2 layer scheduling for optimizing
network coast and heuristically reduce the disk input/output
cost and evaluated system along with caching mechanism at
large scale.

In [10] the Redoop infrastructure is demonstrated. Redoop
introduces an incremental processing model in which
Window Semantic Analyzer is the optimizer, Dynamic Data
Packer is the partition executor, Execution Profiler collects
the statistics after the completion of each query recurrence,
Local Cache Manager installed on each task node in Redoop
maintains the Redoop caches on the node’s respective local
file system and Window Aware Cache Controller is a new
module housed on the Redoop master node that maintains
window aware metadata of reduce input and output data
cached on any of the task nodes’ local file systems. The
major innovations include adaptivity to load fluctuations,
cache based processing and cache aware scheduling.

In [11] PACMan is developed which is an in memory
synchronized caching system for data intensive similar jobs.
Similar jobs run numerous tasks concurrently in a wave, and
have the all-or-nothing property, i.e., a job is zoomed up
only when inputs of all similar parallel tasks are cached. On
highest of its coordinated arrangement, PACMan
implements two cache replacement policies LIFE and LFU-
F that are intended to minimize average accomplishment
time of jobs and maximize efficiency of the cluster.

Paper ID: OCT14903 1244

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Table 1: Comparative Table of Cache Mechanism Variations
Sr.
No.

Paper Name Major Contribution Optimization
Type

Computational
Time

Space
Overhead

Drawback

1 Dache: A Data Aware
Caching for Big-Data

Applications Using the
MapReduce Framework

Dache, a data-aware cache
description scheme, protocol, and

architecture

Caching
framework

Moderate Extra Two way cache

2 Optimizing MapReduce for
Multicore Architectures

The “hash+tree” data structure used,
library Metis introduced

Data structure Better Moderate Not attractive,
doesn’t support

restarting
3 Tiled-MapReduce:

Optimizing Resource Usages
of Data-parallel Applications

on Multicore with Tiling

Optimizations on memory, cache Programming
model

Speed up 1.2X
to 3.3X

85%
memory

saved

Data locality
difficult

4 A Dynamic Caching
Mechnism for Hadoop using

Memcached

Proactive fetching and caching,
Two Level greedy caching strategy

Integration
with Hadoop

Better Average Increased traffic
overhead when

added new
components

5 Incoop: MapReduce for
Incremental Computations

Incremental HDFS, Memoization,
Contraction phase and new

scheduling algorithm

New
architecture

5%-22% More
space

Difficult to
manage

6 Efficient and Flexible Index
Access in MapReduce

EFind index access solution

Index access
interface

2X-8X adequate Maintaining
indices is difficult

7 An improved partitioning
mechanism for optimizing
massive data analysis using

MapReduce

XTrie and ETrie partitioning
techniques

Partitioning
mechanism

Moderate better Micro partitioning
not supported.

8 HaLoop: Efficient Iterative
Data Processing on Large

Clusters

Loop aware task scheduling,
caching for loop invariant data,

caching to support fix point
evaluation

New
programming

model and
architecture

Speed up by
1.85

4%
memory

load

A single pipeline
in the loop body
rather than DAG

9 HyCache+: Towards Scalable
High-Performance Caching
Middleware for Parallel File

Systems

The new caching technique 2 layer
scheduling is designed

Distributed
storage

middleware
HyCache+

Speed up by
29X

High Real time
applications are
not supported.

10 Redoop Infrastructure for

Recurring Big Data Queries
Window aware optimization, cache
aware scheduling and inter window

caching mechanism

New
Infrastructure

Better Average Unbounded caches
not controlled.

11 PACMan: Coordinated
Memory Caching for Parallel

Jobs

In-memory synchronized caching
system, two cache replacement

policies LIFE and LFU-F

Coordinated
Infrastructure

Speed up by
53% - 51%

Space
efficiency
by 47% -

54%

Small jobs not
supported

12 An efficient data caching
mechanism for big data

application *

One way cache implementation and
utilization

Performance
based

optimization

Low Low Text based
application
supported

4. Existing System architecture

Application developers decide the computational work in
terms of a map and a reduce function, and the fundamental
MapReduce job arranging method routinely parallelizes the
computation across a cluster of machines. There are two
types of cache items as the map cache and the reduce cache.
They have dissimilar complexities when it comes to sharing
under diverse scenarios. Cache items in the map phase are
simple to share because the operations useful are generally
well-formed.

When considering each file divided, the cache manager
reports the earlier file divided method used in the cache
item. The next new MapReduce activity/ job also need to be
divided into the files giving to the same division method in
order to utilize the cache items. If the new MapReduce job
uses a different file splitting order, the map outcomes cannot
be used directly. When seeing cache sharing in the reduce
phase, two general situations are identified. The first is when
the several reducers complete different jobs from the cached

reduce cache items of the earlier MapReduce jobs, as shown
in Fig. 1.

In this case, after the mappers submit the results gained from
the cache items, the MapReduce framework usages the
partitioner provided by the new MapReduce job to feed
input to the reducers. The protected computation is obtained
by removing the processing in the Map phase. Usually, new
content is added at the end of the input files, which requires
additional mappers to process.

However, this does not need additional processes other than
those introduced above. Another situation is when the
reducers can actually take advantage of the previously
cached reduced cache items. The reducers control how the
output of the map phase is shuffled. The cache manager
routinely identifies the best-matched cache item to feed each
reducer, which is the one with the maximum overlap in the
original input file in the Map phase.
The benefit of Dache is that it routinely supports incremental
processing. Incremental processing means that an input that

Paper ID: OCT14903 1245

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

is partially dissimilar or only has a small amount of
additional data. To perform earlier operation on this new
input data is difficult in conventional MapReduce, because
MapReduce does not offer the tools for readily expressing
such incremental operations.

Typically the operation needs to be performed again on the
new input data, or the application developers need to
manually cache the stored intermediate data and pick them
up in the incremental processing. In Dache, this process is
normalized and prepared. Application developers can easily
put their intentions and operations by using cache
description and to request intermediate results through the
dispatching service of the cache manager.

Figure 1: Existing system architecture for Dache

5. Proposed System Architecture

The proposed architecture is shown in Fig.2 along with its
functional diagram in Fig.3. Cache supports the intermediate
data that is created by worker nodes processes during the
execution of a MapReduce task. A part of cached data is then
stored in a Distributed File System (DFS). The content of a
cache item is well-defined by the original data and the
operations applied. Formally, a cache item is described by a
2-tuple i.e. Origin and Operation. Origin is the name of a file
in the distributed file system. The operation performed is a
data structure in the form of linear list of existing operations
done on the original file. As an example, the word count
application has each mapper node process gives a list of
words and count tuples record the count of each word in the
file that the mapper processes. The planned system stores
such list to a file.

The exact format of the cache description of different
applications varies according to their exact purpose which is
to be developed and executed by application developers who
are responsible for implementing their MapReduce tasks. The
supported operations in the system are Item Count which
counts of all occurrences of each item in a text file. The items
are separated by a user defined separator. Sort is the
operation sorts the records of the file. The comparison
operator is defined on two items and returns the order of
precedence. Selection operation selects an item that meets a
given criterion. This may be a sequence in the list of items.
The distinctive selection operation contains selecting the
average of a linear list of items. Transform operation

transforms each item in the input file into a different item.
The transformation is described further by the other
information in the operation reports and then could only be
identified by the site application developers. Classification
operation classifies the items in the input file into multiple
groups.

5.1 Single Phase Cache Description Scheme

The input provided to the reduce phase is a list in terms of
key value combination pairs and the value may be a grouping
of values. As stated in the method applied for the map phase
cache mechanism, the first unique input and the applied
operations are needed. The unique input is acquired by
storing the intermediate results of the map phase in the
distributed file system. The functionally applicable
operations are recognized by unique identifications that are
stated by the user in the cache. The cached results, unlike
those generated in the Map phase, are not be straight
forwardly applied in the final outcome since, in appended
slight incremental processing, in-between results generated in
the Map phase are likely combined in the provided shuffling
phase creates a mismatch between the first unique original
input of the cache items and the newly generated input. The
reducers can identify new inputs from the shuffling sources
by shuffling the newly generated intermediate result from the
Map phase to form the final results.

If a reducer might combine the cached fractional results with
the results gained from the new inputs and considerably
minimize the overall processing time, reducers might cache
fractional results. Basically this stuff is determined by the
operations executed by the reducers.

The Cache manager that is enhanced third party cache utility
which handles data from the reducer. The HDFS gets job task
from the application and submits back to the cache manager.
The job is then stored with unique identity value which is
unique in nature in the cache manager. This manager
proposes the output which is predefined in the manager if
already queried and then omits the mapper phase thus
reducing the time complexity.

The manager even checks the duplication of the job which is
submitted to the system and thus produces unique timeless
output, even for batch input. If queried by the manager
doesn’t exist within the cache system mappers are invoked
for completing the job and the output is again generated for
the system. The intermediate output of the system is thus
stored with unique value in the cache manager for further
retrieval. This data is stored for re enforced for further quires,
so as when a duplicate relevant job is submitted the pre
output from the cache manager is submitted.

Paper ID: OCT14903 1246

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 2: Proposed System Architecture.

Figure 3: Functional diagram of proposed system.

REFERENCES

[1] Yaxiong Zhao, Jie Wu, and Cong Liu “Dache: A Data
Aware Caching for Big-Data Applications Using the
MapReduce Framework” Tsinghua Science and
Technology ISSNl l1007-0214l l05/10l lpp39-50
Volume 19, Number 1, February 2014.

[2] Yandong Mao Robert Morris M. Frans Kaashoek
“Optimizing MapReduce for Multicore Architectures”
Massachusetts Institute of Technology, Cambridge,
MA.

[3] Rong Chen, Haibo Chen, and Binyu Zang “Tiled-
MapReduce: Optimizing Resource Usages of Data-
parallel Applications on Multicore with Tiling” Parallel
Processing Institute Fudan University PACT’10,
September 11–15, 2010.

[4] Gurmeet Singh, Puneet Chandra and Rashid Tahir “A
Dynamic Caching Mechnism for Hadoop using
Memcached” Department of Computer Science,
University of Illinois at Urbana Champaign.

[5] Pramod Bhatotia, Alexander Wieder, Rodrigo
Rodrigues, Umut A. Acar, Rafael Pasquini “Incoop:
MapReduce for Incremental Computations” Max Planck
Institute for Software Systems (MPI-SWS) SOCC’11,
October 27–28, 2011, Cascais, Portugal.

[6] Zhao Cao, Shimin Chen, Dongzhe Ma, Jianhua Feng,
Min Wang “Efficient and Flexible Index Access in
MapReduce” (c) 2014, Copyright is with the authors.
Published in Proc. 17th International Conference on
Extending Database Technology (EDBT), March 24-28,
2014, Athens, Greece.

[7] Kenn Slagter, Ching-Hsien Hsu,Yeh-Ching Chung
Daqiang Zhang “An improved partitioning mechanism

for optimizing massive data analysis using MapReduce”
Published online: 11 April 2013 © Springer
Science+Business Media New York 2013.

[8] Yingyi Bu, Bill Howe, Magdalena Balazinska, Michael
D. Ernst “HaLoop: Efficient Iterative Data Processing
on Large Clusters” Department of Computer Science
and Engineering University of Washington, Seattle,
WA, U.S.A. 36th International Conference on Very
Large Data Bases, September 1317, 2010, Singapore.

[9] Dongfang Zhao, Kan Qiao, Ioan Raicu “HyCache+:
Towards Scalable High-Performance Caching
Middleware for Parallel File Systems” Illinois Institute
of Technology, USA and Argonne National Laboratory,
USA.

[10] Chuan Lei, Zhongfang Zhuang, Elke A. Rundensteiner,
and Mohamed Y. Eltabakh “Redoop Infrastructure for
Recurring Big Data Queries” Worcester Polytechnic
Institute, Worcester, MA USA VLDB ‘14, September
15, 2014, Hangzhou, China.

[11] Ganesh Ananthanarayanan, Ali Ghodsi, AndrewWang,
Dhruba Borthakur, Srikanth Kandula, Scott Shenker,
Ion Stoica “PACMan: Coordinated Memory Caching
for Parallel Jobs” University of California, Berkeley,
Facebook, Microsoft Research, KTH/Sweden.

[12] James Manyika, Michael Chou, Brad Brown, Jacques
Bughin, Rihards Dobbs, Charlas Roxburgs, Angela
Hung Bayer “Big data: The next frontier for innovation,
competition, and productivity” McKinsey Global
Institute, May 2011.

[13] Min Chen · Shiwen Mao · Yunhao Liu “Big Data: A
Survey” Published online: 22 January 2014 © Springer
Science+Business Media New York 2014.

[14] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung “The Google File System” SOSP’03, October
19–22, 2003, Bolton Landing, New York, USA.

[15] Dominique A. Heger “ Hadoop Design, Architecture &
MapReduce Performance” DHTechnologies -
www.dhtusa.com

Paper ID: OCT14903 1247

