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Abstract: Now a day Big Data has turned the attention of the academia and IT industry towards it to think due to information is 
generated and collected at unimaginable rate that rapidly exceeds the very large range. The easy availability of big data indicated the 
need to manage it for useful purpose, business need, scientific research, future predictions for community welfare, lifestyle 
enhancements etc. The observations stated by researchers are that Google processes 50TB, Twitter 20TB data everyday which is huge in 
volume, velocity and variety. To streamline the big data issues several solutions are developed on high computing machines and through 
large scale nodes with the help of distributed processing technologies and software tools like MapReduce from Google, Hadoop of 
Apache foundation and its eco system. However it is also the observation that these technologies and tools needs to be modified due to 
problems exists such as not making usefulness of intermediate data, inefficiency in output, increased overhead on processors, inefficient 
storage technologies and poor security. The purpose of this survey is to appreciate and think for probable enhancements that can be 
possible for the forthcoming requirements of future. One of the observations among various issues of enhancements for big data where 
in this paper concentration is provided that large amount of intermediate data generated by map and reduce operation is not used when 
task finish and thrashed away as well as incremental computations are not treated well by the existing cache mechanism. Hence the 
research will be done to use cache mechanism efficiently to optimize computational time and reduce storage overhead for real time data 
over the distributed file system (DFS). The survey focuses on big data domain orientation, the technologies applied for execution of big 
data applications and its eco system, literature survey from various existing practices towards improvements in optimization of 
computational time and reduction in space of storage system as well as to improve the performance, efficiency, scalability and 
architecture and proposed new system architecture to achieve above aspects. 
 
Keywords: Google, MapReduce, Hadoop, Cache Mechanism, Distributed File System 
 

1. Introduction 
 
Big Data is the sea of information with vast zeta bytes of 
data flowing from computers, mobile devices, and machine 
sensors used for future predictions and valuable perceptions 
that were before unimaginable. Big Data technologies and 
analysis tools are applied to transform business into 
simplified IT architecture and support real-time 
opportunities, quickly identify risks, improve predictive 
capabilities, streamline operations and unlock new revenue 
sources, deliver complete and accurate information to any 
application or user with effective data management and 
extract the maximum value from Big Data. Large volume of 
information from multimedia, social media and Internet of 
Things increases exponential growth in data for the 
predictable future.  
 
The huge amount of data has blasted world, and analyzing 
large data sets has become a key basis of competition, 
behind new impersonations of productivity growth, 
innovation, and consumer surplus, as per the research by 
MGI and McKinsey's Business Technology Office [12]. The 
study of big data in some areas like healthcare, public sector, 
retail, manufacturing and personal location data globally 
indicated that big data can generate value in each. For 
example, a retailer using big data may increase its operating 
margin. Healthcare sector uses big data creatively and 
effectively to improve efficiency and quality and raise large 
profit every year. The developed nations, government 
administrators could save more than corers in operational 
efficiency improvements alone by using big data, reduce 
fraud and errors and boost the collection of tax revenues. 

Users of services created by personal location data could 
seizure several corers in consumer surplus.  
 
Some real world examples of Big Data in action are 
appreciated like consumer product firms and selling 
organizations may monitor social media sites such as 
Facebook and Twitter to get an extraordinary view into 
customer behavior, preferences, and product awareness. 
Manufacturers can monitor minute vibration data from their 
equipment, which changes somewhat as it wears down, to 
forecast the best time to replace or maintain. Financial 
Services establishments may use data mined from customer 
relations to share and risk their users into finely adjusted 
sections. Advertising and marketing agencies can track 
social media to comprehend openness to movements, 
elevations, and other publicity mediums. Insurance 
companies can use Big Data analysis to see which home 
insurance claims can be immediately handled. Hospitals can 
analyze medical data and patient records to guess those 
patients that are probable to seek readmission within a few 
months of discharge. Web based businesses can develop 
information products that combine data gathered from 
customers to offer more attractive endorsements and more 
fruitful coupon programs. The government can make data 
public at various levels like national, state, and city for users 
to develop new applications that can generate public good. 
Sports teams can use data for follow up of ticket sales and 
even for tracking team policies. 
 
The clear understanding of big data requires fundamental 
technologies like cloud computing, IoT, data center, and 
Hadoop appreciated well. Cloud computing transforms the 
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IT architecture while big data influences business decision 
making. The IoT model has huge amount of networking 
sensors rooted into various devices and machines in the real 
world. The sensors are deployed in different fields for 
collecting various kinds of data like environmental data, 
geographical data, astronomical data, and logistic data. 
Mobile equipment’s, transportation facilities, public 
facilities, and home appliances could all be data acquisition 
equipment’s in IoT. The data center platform concentrates 
storage of data and undertakes responsibilities like acquiring 
data, managing data, organizing data, and leveraging the 
data values and functions. 
 
The remaining paper is prepared as follows. A brief 
description of MapReduce, Hadoop and its ecosystem is 
given in section 2. The literature survey is presented in 
section 3. The existing system architecture is explained in 
section 4. Section 5 presents proposed system architecture to 
optimize computational time and reduce space of storage 
system. 
 
2. Related work 
 
Google MapReduce is a programming model and a software 
framework for large scale distributed processing work on 
enormous amounts of data. Application designers decide the 
computation in terms of a map and a reduce function, and 
the original MapReduce job arranging method routinely 
parallelizes the computation through a cluster of machines. 
MapReduce accepted widely because of its simple 
programming interface and excellent performance when 
executing a huge range of applications. In this model input 
data is first divided and then supplied to worker systems in 
the map phase location. Separated items of data are called 
records. The MapReduce configured machine divides the 
input parts to each worker and produces records. When 
record is produced in the map phase, in-between results are 
shuffled and sorted by the MapReduce system and are then 
served into the workers in the reduce phase. Last results are 
calculated by multiple reducers and written to the disk [1]. 
The design of the MapReduce framework has main 
principles as Low cost reliable commodity hardware, 
extremely scalable RAIN cluster, fault tolerant yet easy to 
administer, highly parallel yet abstracted. 
 
Apache Hadoop is another important technology used to 
handle big data with its analytics and stream calculating 
techniques. Apache Hadoop is an open source software 
project that allows the distributed processing of large data 
sets through clusters of commodity servers. It can be 
mounted up from a single server to thousands of machines 
and with a very high grade of fault tolerance. Instead of 
trusting on high end hardware, the effectiveness of these 
clusters comes from the software’s ability to sense and 
handle failures at the application layer. A small Hadoop 
cluster will include a single master and multiple worker 
nodes. The master node runs multiple procedures, including 
a JobTracker and a NameNode. The JobTracker is 
answerable for managing successively jobs in the Hadoop 
cluster. The NameNode, on the other hand, manages the 
HDFS. The JobTracker and the NameNode are usually 
collocated on the same physical machine. Other servers in 
the cluster run a TaskTracker and a DataNode processes. A 

MapReduce job is divided into tasks. Tasks are managed by 
the TaskTracker. The TaskTrackers and the DataNode are 
collated on the same servers to provide data locality in 
computation [1]. 
 
Hadoop subprojects or Ecosystem include Hadoop Common 
which is the common utilities that provision other Hadoop 
modules. HDFS is a distributed file system that offers high 
throughput access to application data discussed earlier with 
some detail. Hadoop YARN is a framework for job 
scheduling and cluster resource management. Hadoop 
MapReduce is a YARN-based system for parallel processing 
of large data sets. Avro is a data serialization system. 
Cassandra is a scalable multi-master database with no single 
points of failure. Chukwa is a data collection system for 
handling big distributed systems. HBase is a scalable, 
distributed database that provisions structured data storage 
for large tables. Hive is a data warehouse infrastructure that 
offers data summarization and ad hoc querying. Mahout is a 
Scalable machine learning and data mining library. Pig is a 
high-level data-flow language and execution framework for 
parallel computation and ZooKeeper is a high-performance 
management facility for distributed applications.  
 
Distributed file system or network file system allows client 
nodes to contact files with the help of network developed of 
computers. Because of this a number of users working on 
multiple machines are able to share files and storage 
resources.  
 
The Google File System is planned and applied to see the 
rapidly growing demands of Google’s data handling needs. 
GFS promises many goals as distributed file systems such as 
performance, scalability, reliability, and availability. The 
design looks after component failures rather than the 
exemption. The file system consists of hundreds or even 
thousands of storage machines built from cheap service parts 
and are accessed by a similar number of client machines. 
The errors are created by application, operating system, 
human’s and disks, memory, connectors, networking, and 
power supplies. As a result of this continuous observation, 
bug detection, management of fault tolerance, and 
programmed recovery are fundamental part of the system. 
Files are enormous by traditional standards. Multi GB files 
are common. Most files are changed by appending new data 
rather than overwriting current data. Accidental writes 
within a file are virtually does not exist. When data is 
written, reading of the files is started. A variety of data share 
these features. Co designing the applications and the file 
system API benefits the overall system by increasing our 
flexibility [14]. 
 
Hadoop HDFS represents a distributed file system that is 
designed to house very large amounts of data (TB or PB) 
and to deliver high-throughput (streaming) access to the data 
sets. In any IT environment, HW failures do happen. A 
single HDFS occurrence may contain of thousands of server 
nodes, each storing and maintaining part of the file system 
data. Fault detection and rapid, automated recovery features 
are at the core of the HDFS design architecture. The HDFS 
design is fundamentally concentrated the pattern write once, 
read often input output in which a dataset is generated, and 
where numerous analysis cycles are performed on the 
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dataset over time. The HDFS design incorporates the notion 
of a block size, just at a much larger unit size of 64MB 
(default) compared to other file system solutions [15]. 
 
3. Literature Survey 
 
In paper [1] designed a data aware cache framework in 
which tasks surrenders its intermediate outcomes to the 
cache manager. A task asks the cache manager before 
processing the actual computing work. Cache algorithm for 
customizable indexing of data objects enables the 
applications to describe their operations and the content of 
their partial results is written. A cache request and reply 
protocol is designed. This Dache protocol is aimed to extend 
the MapReduce framework and made provision of cache 
layer for efficiently identifying and accessing cache items in 
a MapReduce task. In Map phase intermediate data produced 
by worker nodes processes during the execution of a 
MapReduce task is stored in a Distributed File System 
(DFS). The content of a cache item is described by the 
original data and the operations applied. Relationship 
between job types and cache organization is managed by 
creating a protocol with the help of two types of cache items 
as the map cache and the reduce cache.  
 
The paper[2] focuses on MapReduce applications with huge 
amount of intermediate key value pairs and relatively low 
amount of computations situation. Here run time is not 
dominated by application code in map and reduce. The 
overhead is of library itself on commodity multicore 
computer. The core challenge is the organization of 
MapReduce intermediate data. The paper has presented a 
new MapReduce library called Metis whose intermediate 
data structure is a hash table with b+ tree in each entry. 
Tiled-MapReduce (TMR) [3] has extended the general 
MapReduce programming model with tiling strategy. It is 
more effective for MapReduce to iteratively process small 
pieces of data in turn than processing a large pieces of data 
at one time on shared memory multicore platforms. Tiled-
MapReduce presented number of different methods; 
executed optimizing techniques which are directed on 
multicore to improve the memory, cache and CPU resources.  
 
In[4] to minimize the gap in disk access time and bandwidth 
for large cluster based systems, the efforts are made to 
design a proactive fetching and caching mechanism based on 
Memcached distributed caching system and integrated with 
Hadoop. Two Level greedy caching strategy is adopted for 
cache policy with two ways. The Incoop system [5] is 
presented as a MapReduce implementation for incremental 
computations for finding changes on the input datasets. It 
allows the automatic update of the outputs of the 
MapReduce jobs by providing a fine-grained output recycle 
mechanism. It permits incremental processing to be 
implemented clearly in an incremental manner. The design 
of Incoop introduced new techniques such as Inc-HDFS 
(Incremental HDFS) that offers mechanisms to recognize 
likenesses in the input data of consecutive job runs. Incoop 

also controls the granularity with new contraction phase. As 
well as Incoop increases the usefulness of memoization 
technique by implementing an affinity based scheduler. That 
applies a work stealing algorithm to minimize the amount of 
data movement across machines.  
 
In [6] proposed the extension of MapReduce programming 
model with EFind, an Efficient and Flexible index access 
method to better support big data applications. EFind 
collects index statistics and performs cost-based adaptive 
optimization to improve index access performance. In [7] 
XTrie and ETrie extended partitioning techniques are 
developed to increase load balancing for distributed 
applications. Increasing load balancing helps MapReduce 
programs become well-organized at handling tasks by 
reducing the overall computation time consumed processing 
data on each node. The HaLoop system [8] is designed to 
make facility for iterative processing on the MapReduce 
framework. It uses a new task scheduler that leverages data 
locality. It also caches and indices application data on slave 
nodes. HaLoop relies on the earlier file system and has the 
same task queue structure as Hadoop but the task scheduler 
and task tracker modules are improved whereas loop control, 
caching, and indexing modules are freshly presented to the 
architecture. In [9] suggested a distributed storage 
middleware HyCache to allow input output efficiently 
influence the high bi section bandwidth of the high speed 
interconnect of massively parallel high end computing 
systems. In this also proposed and analyzed new caching 
technique named as 2 layer scheduling for optimizing 
network coast and heuristically reduce the disk input/output 
cost and evaluated system along with caching mechanism at 
large scale. 
 
In [10] the Redoop infrastructure is demonstrated. Redoop 
introduces an incremental processing model in which 
Window Semantic Analyzer is the optimizer, Dynamic Data 
Packer is the partition executor, Execution Profiler collects 
the statistics after the completion of each query recurrence, 
Local Cache Manager installed on each task node in Redoop 
maintains the Redoop caches on the node’s respective local 
file system and Window Aware Cache Controller is a new 
module housed on the Redoop master node that maintains 
window aware metadata of reduce input and output data 
cached on any of the task nodes’ local file systems. The 
major innovations include adaptivity to load fluctuations, 
cache based processing and cache aware scheduling. 
 
In [11] PACMan is developed which is an in memory 
synchronized caching system for data intensive similar jobs. 
Similar jobs run numerous tasks concurrently in a wave, and 
have the all-or-nothing property, i.e., a job is zoomed up 
only when inputs of all similar parallel tasks are cached. On 
highest of its coordinated arrangement, PACMan 
implements two cache replacement policies LIFE and LFU-
F that are intended to minimize average accomplishment 
time of jobs and maximize efficiency of the cluster.  
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Table 1: Comparative Table of Cache Mechanism Variations 
Sr. 
No. 

Paper Name Major Contribution Optimization 
Type 

Computational 
Time 

Space 
Overhead 

Drawback 

1 Dache: A Data Aware 
Caching for Big-Data 

Applications Using the 
MapReduce Framework 

Dache, a data-aware cache 
description scheme, protocol, and 

architecture 
 

Caching 
framework 

Moderate Extra Two way cache 

2 Optimizing MapReduce for 
Multicore Architectures 

The “hash+tree” data structure used, 
library Metis introduced 

Data structure Better Moderate Not attractive, 
doesn’t support 

restarting 
3 Tiled-MapReduce: 

Optimizing Resource Usages 
of Data-parallel Applications 

on Multicore with Tiling 

Optimizations on memory, cache Programming 
model 

Speed up 1.2X 
to 3.3X 

85% 
memory 

saved 

Data locality 
difficult 

4 A Dynamic Caching 
Mechnism for Hadoop using 

Memcached 

Proactive fetching and caching, 
Two Level greedy caching strategy

 

Integration 
with Hadoop 

Better Average Increased traffic 
overhead when 

added new 
components 

5 Incoop: MapReduce for 
Incremental Computations 

Incremental HDFS, Memoization, 
Contraction phase and new 

scheduling algorithm 

New 
architecture 

5%-22% More 
space 

Difficult to 
manage 

6 Efficient and Flexible Index 
Access in MapReduce 

EFind index access solution 
 

Index access 
interface 

2X-8X adequate Maintaining 
indices is difficult

7 An improved partitioning 
mechanism for optimizing 
massive data analysis using 

MapReduce 

XTrie and ETrie partitioning 
techniques 

Partitioning 
mechanism 

Moderate better Micro partitioning 
not supported. 

8 HaLoop: Efficient Iterative 
Data Processing on Large 

Clusters 

Loop aware task scheduling, 
caching for loop invariant data, 

caching to support fix point 
evaluation 

New 
programming 

model and 
architecture 

Speed up by 
1.85 

4% 
memory 

load 

A single pipeline 
in the loop body 
rather than DAG

9 HyCache+: Towards Scalable 
High-Performance Caching 
Middleware for Parallel File 

Systems 

The new caching technique 2 layer 
scheduling is designed 

Distributed 
storage 

middleware 
HyCache+ 

Speed up by 
29X 

High Real time 
applications are 
not supported. 

 
10 Redoop Infrastructure for 

Recurring Big Data Queries 
Window aware optimization, cache 
aware scheduling and inter window 

caching mechanism 

New 
Infrastructure

Better Average Unbounded caches 
not controlled. 

11 PACMan: Coordinated 
Memory Caching for Parallel 

Jobs 

In-memory synchronized caching 
system, two cache replacement 

policies LIFE and LFU-F 
 

Coordinated 
Infrastructure

Speed up by 
53% - 51% 

Space 
efficiency 
by 47% -

54% 

Small jobs not 
supported 

12 An efficient data caching 
mechanism for big data 

application * 

One way cache implementation and 
utilization 

Performance 
based 

optimization 

Low Low Text based 
application 
supported 

 
4. Existing System architecture 
  
Application developers decide the computational work in 
terms of a map and a reduce function, and the fundamental 
MapReduce job arranging method routinely parallelizes the 
computation across a cluster of machines. There are two 
types of cache items as the map cache and the reduce cache. 
They have dissimilar complexities when it comes to sharing 
under diverse scenarios. Cache items in the map phase are 
simple to share because the operations useful are generally 
well-formed.  
 
When considering each file divided, the cache manager 
reports the earlier file divided method used in the cache 
item. The next new MapReduce activity/ job also need to be 
divided into the files giving to the same division method in 
order to utilize the cache items. If the new MapReduce job 
uses a different file splitting order, the map outcomes cannot 
be used directly. When seeing cache sharing in the reduce 
phase, two general situations are identified. The first is when 
the several reducers complete different jobs from the cached 

reduce cache items of the earlier MapReduce jobs, as shown 
in Fig. 1.  
 
In this case, after the mappers submit the results gained from 
the cache items, the MapReduce framework usages the 
partitioner provided by the new MapReduce job to feed 
input to the reducers. The protected computation is obtained 
by removing the processing in the Map phase. Usually, new 
content is added at the end of the input files, which requires 
additional mappers to process.  
 
However, this does not need additional processes other than 
those introduced above. Another situation is when the 
reducers can actually take advantage of the previously 
cached reduced cache items. The reducers control how the 
output of the map phase is shuffled. The cache manager 
routinely identifies the best-matched cache item to feed each 
reducer, which is the one with the maximum overlap in the 
original input file in the Map phase. 
The benefit of Dache is that it routinely supports incremental 
processing. Incremental processing means that an input that 
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is partially dissimilar or only has a small amount of 
additional data. To perform earlier operation on this new 
input data is difficult in conventional MapReduce, because 
MapReduce does not offer the tools for readily expressing 
such incremental operations. 
  
Typically the operation needs to be performed again on the 
new input data, or the application developers need to 
manually cache the stored intermediate data and pick them 
up in the incremental processing. In Dache, this process is 
normalized and prepared. Application developers can easily 
put their intentions and operations by using cache 
description and to request intermediate results through the 
dispatching service of the cache manager. 

 
 

Figure 1: Existing system architecture for Dache 
 

5. Proposed System Architecture 
 
The proposed architecture is shown in Fig.2 along with its 
functional diagram in Fig.3. Cache supports the intermediate 
data that is created by worker nodes processes during the 
execution of a MapReduce task. A part of cached data is then 
stored in a Distributed File System (DFS). The content of a 
cache item is well-defined by the original data and the 
operations applied. Formally, a cache item is described by a 
2-tuple i.e. Origin and Operation. Origin is the name of a file 
in the distributed file system. The operation performed is a 
data structure in the form of linear list of existing operations 
done on the original file. As an example, the word count 
application has each mapper node process gives a list of 
words and count tuples record the count of each word in the 
file that the mapper processes. The planned system stores 
such list to a file.  
 
The exact format of the cache description of different 
applications varies according to their exact purpose which is 
to be developed and executed by application developers who 
are responsible for implementing their MapReduce tasks. The 
supported operations in the system are Item Count which 
counts of all occurrences of each item in a text file. The items 
are separated by a user defined separator. Sort is the 
operation sorts the records of the file. The comparison 
operator is defined on two items and returns the order of 
precedence. Selection operation selects an item that meets a 
given criterion. This may be a sequence in the list of items. 
The distinctive selection operation contains selecting the 
average of a linear list of items. Transform operation 

transforms each item in the input file into a different item. 
The transformation is described further by the other 
information in the operation reports and then could only be 
identified by the site application developers. Classification 
operation classifies the items in the input file into multiple 
groups.  
 
5.1 Single Phase Cache Description Scheme 
 
The input provided to the reduce phase is a list in terms of 
key value combination pairs and the value may be a grouping 
of values. As stated in the method applied for the map phase 
cache mechanism, the first unique input and the applied 
operations are needed. The unique input is acquired by 
storing the intermediate results of the map phase in the 
distributed file system. The functionally applicable 
operations are recognized by unique identifications that are 
stated by the user in the cache. The cached results, unlike 
those generated in the Map phase, are not be straight 
forwardly applied in the final outcome since, in appended 
slight incremental processing, in-between results generated in 
the Map phase are likely combined in the provided shuffling 
phase creates a mismatch between the first unique original 
input of the cache items and the newly generated input. The 
reducers can identify new inputs from the shuffling sources 
by shuffling the newly generated intermediate result from the 
Map phase to form the final results.  
 
If a reducer might combine the cached fractional results with 
the results gained from the new inputs and considerably 
minimize the overall processing time, reducers might cache 
fractional results. Basically this stuff is determined by the 
operations executed by the reducers.  
 
The Cache manager that is enhanced third party cache utility 
which handles data from the reducer. The HDFS gets job task 
from the application and submits back to the cache manager. 
The job is then stored with unique identity value which is 
unique in nature in the cache manager. This manager 
proposes the output which is predefined in the manager if 
already queried and then omits the mapper phase thus 
reducing the time complexity.  
 
The manager even checks the duplication of the job which is 
submitted to the system and thus produces unique timeless 
output, even for batch input. If queried by the manager 
doesn’t exist within the cache system mappers are invoked 
for completing the job and the output is again generated for 
the system. The intermediate output of the system is thus 
stored with unique value in the cache manager for further 
retrieval. This data is stored for re enforced for further quires, 
so as when a duplicate relevant job is submitted the pre 
output from the cache manager is submitted. 
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Figure 2: Proposed System Architecture. 
 

 
Figure 3: Functional diagram of proposed system. 
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