International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

The Order of the Set of L-Class for Semigroup of Order-Preserving and Order-Decreasing Partial Transformation

Mbah, Moses Anayo¹, Ugbene, Ifeanyichukwu Jeff², Bakare, Getta Naimat³

¹Department of Mathematics, Federal University Lafia, P.M.B146 Lafia, Nasarawa State, Nigeria.

²Department of Mathematics, Federal University of Petroleum Resources, Effurun, Delta State

³Department of Mathematics, University of Ilorin, Ilorin, Kwara State

Abstract: The major problems usually encountered by transformation semigroup is that of enumeration Umar, 2010. Here we studied the elements of partial transformation and extracted those that are order-preserving and order-decreasing which is a subsemigroup of partial transformation. Thus we listed the elements that satisfy the \bot -class for PC_n . A general order of obtaining the set of \bot -class

for PC_n was obtained.

Keyword: L -class, Green's relation, order-preserving and order-decreasing partial transformation semigroup, partial transformation semigroup.

1. Introduction

Let $[n] = \{1, 2, 3, ..., n\}$, then a (partial) transformation $\alpha : Dom \alpha \subseteq [n] \rightarrow Im \alpha$ is said to be full or total if $Dom \alpha = [n]$ otherwise it is called strictly partial. The set of all partial transformation on *n*-object forms a semigroup under the usual composition of transformations. Here we shall call a partial transformation $\alpha : [n] \rightarrow [n]$ order-preserving if $(\forall x, y \in Dom \alpha)x \leq y \Rightarrow x\alpha \leq y\alpha$ and order-decreasing if $(\forall x \in Dom \alpha)x\alpha \leq x$. Thus we denote the order for order-preserving and order-decreasing partial transformation as PC_n . Obviously P_n has order $(n+1)^n$.

Green's relations are fundamental tools in the study of the structure of semigroups especially regular semigroups. In Mathematics, Green relations are five equivalence relations that characterize the element of a subgroup in terms of the principal Ideals they generate. The relations were named after James Alexander Green, who introduced them in a paper in 1951. Howie (2002) describe the work as "So all pervading" that on encountering a new subgroup; almost the first question we ask is what are the Green's relation like on this semigroup.So we decided to employ one of the five equivalence relation that is the L -class in other to determine its behaviour in the subsemigroup of order-preserving and order-decreasing partial transformation semigroup. Two transformation γ and λ are said to be in L -class if and only if they have the same set of image(s) that is $(\gamma, \lambda) \in L$ -class iff $rank(\gamma) = rank(\lambda)$

2. Partition Structure for L-Class

A partition of a set X is a collection P of pairwise disjoint, non-empty subsets of X whose union is X. The elements of P are called the blocks of the partition.

In the methodology we studied the semigroup of partial transformation and extracted the elements of the subsemigroup of order-preserving and order-decreasing. Thus we partitioned the set of elements that satisfies the L -class from n = 1,2,3 where L is the set of elements for the L -class and we put the result in tabular format for n = 1-10 as fo

Partition of	L -class for	PC_1
--------------	--------------	--------

L _i	Structure	$ L_i $
L_1	$\begin{pmatrix} 1 \\ - \end{pmatrix}$	1
<i>L</i> ₂	$\begin{pmatrix} 1\\1 \end{pmatrix}$	1

Total number of L -class in
$$PC_1 = 2$$

 $|PC_1| = \sum |L_i| = 2$

International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358

Partition of	L -class for	CP_2
--------------	--------------	--------

		2
L_i	Partition Structure	$ L_i $
L_{1}	$\begin{pmatrix} 12\\ \end{pmatrix}$	1
L_2	$ \begin{pmatrix} 12 \\ 1- \end{pmatrix} \begin{pmatrix} 12 \\ -1 \end{pmatrix} \begin{pmatrix} 12 \\ 11 \end{pmatrix} $	3
L_3	$\begin{pmatrix} 12 \\ -2 \end{pmatrix}$	1
L_4	$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$	1

Total number of L -class in $PC_2 = 4$, $|PC_2| = \sum |L_i| = 6$

Partition of L -class for PC_3

-	5	
L_i	Partition class	$ L_i $
L_1	$\begin{pmatrix} 123\\ \end{pmatrix}$	1
L_2	$ \begin{pmatrix} 123\\111 \end{pmatrix} \begin{pmatrix} 123\\1 \end{pmatrix} \begin{pmatrix} 123\\-1- \end{pmatrix} \begin{pmatrix} 123\\1 \end{pmatrix} \begin{pmatrix} 123\\11- \end{pmatrix} $	7
	$ \begin{pmatrix} 123 \\ -11 \end{pmatrix} \begin{pmatrix} 123 \\ 1-1 \end{pmatrix} $	
L_3	$ \begin{pmatrix} 123 \\ -2- \end{pmatrix} \begin{pmatrix} 123 \\2 \end{pmatrix} \begin{pmatrix} 123 \\ -22 \end{pmatrix} $	3
L_4	$\begin{pmatrix} 123\\3 \end{pmatrix}$	1
<i>L</i> ₅	$ \begin{pmatrix} 123\\12- \end{pmatrix} \begin{pmatrix} 123\\1-2 \end{pmatrix} \begin{pmatrix} 123\\-12 \end{pmatrix} \begin{pmatrix} 123\\112 \end{pmatrix} \\ \begin{pmatrix} 123\\122 \end{pmatrix} $	5
L_6	$ \begin{pmatrix} 123\\ 1-3 \end{pmatrix} \begin{pmatrix} 123\\ -13 \end{pmatrix} \begin{pmatrix} 123\\ 113 \end{pmatrix} $	3
<i>L</i> ₇	$\begin{pmatrix} 123\\ -23 \end{pmatrix}$	1
L ₈	$\begin{pmatrix} 123\\ 123 \end{pmatrix}$	1

Total number of L -class in $PC_3 = 8$ $\sum |L_i| = 22$

Table Order of set of L -class

01		
	n	L
	1	2
	2	4
	3	8
	4	16
	5	32
	6	64
	7	128
	8	256
	9	512
	10	1024

Theorem 1 Let PC_n be the subsemigroup of P_n and $L(PC_n)$ denote the L -class of PC_n then $L(PC_n) = 2^n$ proof:

Let $L(PC_n)$ be a subsemigroup of P_n . Thus $L(PC_n) \subseteq PC_n$. Also for element γ and λ of S the Green's relation L is defined by $\gamma L \lambda$ iff $S\gamma' = S\lambda'$ that is γ and λ are L-related if they generate the same left ideal, in other words $(\gamma, \lambda \in L)$ -class iff $rank(\gamma) = rank(\lambda)$.

Hence from the sequence 2,4,8,16,32... generated for the set of L -class of PC_n which we can likened to the power set which are subset of a set, we could also see that this situation is same as most idempotent elements of some subsemigroup. Thus we have

$$|L(PC_n)| = 2^n$$

3. Conclusion

It has been shown that the number for the set of L -class for semigroup of order-preserving and order-decreasing partial transformation can be calculated using the formula:

$$|L(PC_n)| = 2^n \tag{1}$$

References

- [1] Green, J.A. (1951), On the structure of semigroups. Annals of Mathematics (Seconds Series) 54(1);163-172
- [2] Howie, J.M. (1995), Fundamentals of Semigroup Theory, Claredon Press, Oxford.
- [3] Howie, J.M, (2002) Semigroups, Past, present and Future.Proceeding of the International Conference of Algebra and its Application.
- [4] Laradji, A and Umar, A. (2004) "Combinatorial results for Semigroup of Order-Preserving Partial Transformations". Journal of Algebra 278:342-359.
- [5] Laradji, A and Umar, A. (2004) "Combinatorial results for Semigroup of Order-Decreasing Partial Transformations". J.Integer Sequence. 7:04.3.8, 14pp
- [6] Mbah, M.A.(2014)"Combinatorial results on the

Volume 3 Issue 11, November 2014

www.ijsr.net Licensed Under Creative Commons Attribution CC BY Semigroup of Order-Preserving and Order-Decreasing Partial Transformation and Collapse in Partial Transformation", M.Sc Dissertation (Unpublished), Department of Mathematics, University of Ilorin, Nigeria.

- [7] Umar, A. (2010) Some Combinatorial Problems in The Theory of Partial Transformation Semigroups. Algebra and Discrete
- [8] Math 9. 115-126. Wikipedia, the free Encyclopedia online.2012.