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Abstract: The purpose of this paper is to obtain a new common fixed point theorem by using a new contractive condition and properties 
in Intuitionistic fuzzy metric spaces. 
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1. Introduction 
 
Since the introduction of the concept of fuzzy set by Zadeh [7] in 1965, many authors have introduced the concept of fuzzy 
metric in different ways. George and Veeramani [2] modified the concept of fuzzy metric space and defined a Hausdorff 
topology on this fuzzy metric space. Atanassov [1] introduced and studied the concept of intuitionistic fuzzy sets. There have 
been a much progress in the study of intuitionistic fuzzy sets by many authors. Park [5] using the idea of intuitionistic fuzzy 
sets, defined by the notation of intuitionistic fuzzy metric space with the help of continuous t-norm and continuous t-conorms 
as a generalization of fuzzy metric space due to George and Veeramani [2], O.Kramosil and J.Michalck [4] and S.Sharma and 
J.K.Tiwari [6] O.Kramosil and J.Michalck[3].  
 
2. Preliminaries 
	
Definition	2.1	A	binary	operation is	a	continuous	t‐norm	if	it	satisfies	the	following	conditions:	
(a) is	commutative	and	associative;	
(b) 	is	continuous;	
(c) 	for	all	 	
(d) whenever	 	and	 ,	for	each	 	
	
Definition	 2.2.	 A	 binary	 operation	 is	 a	 continuous	 t‐conorm	 if	 it	 satisfies	 the	 following	
conditions:	
(a) 	is	commutative	and	associative;	
(b) 	is	continuous;	
(c) 	for	all	 	
(d) 	whenever	 	and	 ,	for	each	 : 	
	
Definition	2.3.	A	three	tuple	 is	said	to	be	a	fuzzy	metric	space	if	X	is	an	arbitrary	set, 	a	continuous	t‐norm	and	M	
a	fuzzy	set	on satisfying	the	following	condition,	for	all	 and	 	
	 �

	 for	all 	iff	 ,	�
	 �

	 		
	 	is	left	continuous,	
	 .	
	
Definition	2.4.	A	5‐tuple	 is	 said	 to	be	an	 intuitionistic	 fuzzy	metric	 space	 (shortly	 IFM‐Space)	 if	X	 is	an	
arbitrary	set,	 	 is	a	continuous	 t‐norm,	 is	a	continuous	 t‐conorm	and	M,	N	are	 fuzzy	sets	on satisfying	 the	
following	conditions:	

	for	all	 and	 	
for	all	 ;	
	for	all	 	and	 	if	and	only	if ,	

	 	for	all	 	and	 ;	
for	all	 	and 		
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	 	is	left	continuous	for	all	 	
	 ,	
	 	for	all	 	
	 	for	all	 	and	 	if	and	only	if	 ,		
	 for	all	 	and	 ,	
	 for	all	 	and	 ,	

	is	right	continuous	for	all	 	
	 	for	all	 ;	
Then	 	 is	 called	an	 intuitionistic	 fuzzy	metric	on	X	 .	The	 functions	 	and	 	denote	 the	degree	of	
nearness	and	degree	of	non	nearness	between	x	and	y	with	respect	to	t,	respectively.	
	
Definition	2.	5:	Let	 be	an	intuitionistic	fuzzy	metric	space.	Then	
(a) 	a	sequence	 	in	X	is	said	to	be	Cauchy	sequence	if,	for	all	 and	 ,	
	 		

(b) 	a	sequence	 	in	 X is	said	to	be	convergent	to	a	point 	if,	for	all	 	
	 		
	
Definition	 2.	 6:	 An	 intuitionistic	 fuzzy	metric	 space	 is	 said	 to	 be	 complete	 if	 and	 only	 if	 every	 Cauchy	
sequence	in	X	is	convergent.	
	
Definition	2.	7:	An	intuitionistic	fuzzy	metric	space	 is	said	to	be	compact	if	every	sequence	in	X	contains	a	
convergent	subsequence.	
	
3. Main Results 
	
Theorem‐2.1.	Let	 be	an	intuitionistic	fuzzy	metric	space.	Let	A,	B,	S	and	T	be	a	mappings	from	X	into	itself	
satisfying,	

	

and	 	

for	 all	 	 and	 	 and	 for	 all	 where	 the	 function	 	 is	 onto	 strictly	 increasing	 and	
decreasing	and	satisfies	condition	 	Also	assume	that	there	exist 	with	 	and		
	 ,	and	

	 	

(c) 	One	of	A(X),	B(X),	S(X)	or	T(X)	is	a	complete	subspace	of	X.	Then	
	(1)	the	pair	(A,S)	has	the	coincidence	point.	
	(2)	the	pair	(B,T)	has	the	coincidence	point	
	(3)	A,	B,	S	and	T	have	a	unique	common	fixed	point	provided	both	the		
	pair	(A,S)	and	(B,T)	are	weakly	compatible.	
Proof‐	 Let	 t0	 be	 an	 arbitrary	 point	 in	 X.	 Since	 	 one	 can	 find	 a	 point	 t1	 in	 X	with	 .	 again	

	 one	 can	 also	 choose	 a	 point	 t2	 in	 X	 with 	 and ,	 	
Inductively	one	can	construct	 	such	that	
	 	and	 	for	 		
where	 	 First	 we	 show	 that	 the	 sequence	 	 described	 by	

,	 is	 a	 Cauchy	 sequence	 in	 X.	 To	 accomplish	 this,	 set	
	 for	 and	

with 	

	 	

	 	
	 	
	 	,and	
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which	on	letting	 	reduce	to.	
	 ,	and		
	 		
Similarly,	one	can	show	that		
	 ,	and	
	 	
therefore	for	all	n(even	and	odd),	we	have,	
	 ,and		
	 	
which	is	true	yields,	
	 ,	and		
	 	
	by	repeated	application	of	the	above	inequality	(for	 	we	get	

	 	

		

	 ,	and		

	 	

		

	 	

	thus	for	each	 	we	have	
	 	

	

	
	 ,and		

	 	

	 	

	 	

	 	

	 	

which	on	making	 	reduces	to	
	 ,and		

	 	

Now	appearing	to	lemma	1.2.We	conclude	that	 	is	a	Cauchy	sequence	in	X.	
Now	suppose	that	S(X)	is	a	complete	subspace	of	X,	then	by	observing	that	the	subsequence	 	which	is	contained	in	

	must	 get	 a	 limit	 z	 in	 .	 Let	 	 then	 .	As	 	 is	 a	 Cauchy	 sequence	 containing	 a	 convergent	
subsequence	 ,	 therefore	 the	 sequence	 ,	 also	 convergent	 implying	 thereby	 the	 convergence	 of	 ,	 being	 a	
subsequence	of	the	convergent	subsequence	 	
To	prove	 	set	 	and	 	with	 in	 and	 	

	 ,and		
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Which	on	letting	 	reduces	to	
	,	and		

	 		
implying	thereby	
	 	and	 ,since		

	and	 	therefore	
	 	and	 		
Again	 in	view	of	 lemma	1.1,	we	have	 	and	 	 for	all	 	and	hence	 .	Thus	one	gets	 	
which	shows	that	the	pair	 	has	a	point	of	coincidence.	
If	one	assumes	that	 	is	a	complete	subspace	of	 ,	then	analogous	argument	establish	(1)	and	(2).	The	remaining	cases	
pertain	essentially	to	the	previous	cases.	Indeed,	if	B(X)	is	a	complete	subspace	of	X,	then	 	and	if	 	is	
complete	then	 	Then	(1)	and	(2)	are	completely	established	.Since	the	pair	 	and	 	are	weakly	
compatible	at	u	and	v	respectively,	i.e.	 ,		
therefore	 		
	and	 �

Which	 show	 that	 z	 is	 a	 common	 coincidence	 point	 of	 both	 the	 pairs	 (A,	 S)	 and	 .	Now	 it	 remains	 to	 show	 that	
	To	do	this,	we	 	,	 	with	 	in	 	

	 	
	 ,and		
	 	
	 	
which	on	letting	 	,	reduces	to	
	 and	�

	 		
	As	 	 and	 	 therefore	 	 and	

Due	to	lemma	1.1,	we	get	 and	 for	all	 and	 .	Hence	 	Thus	
z	is	a	common	fixed	point	of	A,	B,	S	and	T.		
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