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Abstract: Efficient and Economic trip plan is the most Complicated job for a traveler. Although travel agency can provide some 
predefined itineraries, they are not tailored for each specific customer. Previous efforts address the problem by providing an automatic 
itinerary planning service, which organizes the points-of-interests (POIs) into a customized itinerary. Because the search space of all 
possible itineraries is too costly to fully explore, to simplify the complexity, most work assume that user’s trip is limited to some 
important POIs and will complete within one day. To address the above limitation, in this paper, we design a more general itinerary 
planning service, which generates multiday itineraries for the users. In our service, all POIs are considered and ranked based on the 
users’ preference. The problem of searching the optimal itinerary is a team orienteering problem (TOP), a well-known NP complete 
problem. To reduce the processing cost, a two-stage planning scheme is proposed. In its pre-processing stage, single-day itineraries are 
precomputed via the Map Reduce jobs. In its online stage, an approximate search algorithm is used to combine the single day 
itineraries. In this way, we transfer the TOP problem with no polynomial approximation into another NP-complete problem (set-packing 
problem) with good approximate algorithms. Experiments on real data sets show that our approach can generate high-quality itineraries 
efficiently. 
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1. Introduction 
 
Traveling market is divided into two parts. For casual 
customers, they will pick a package from local travel agents. 
The package, in fact, represents a pregenerated itinerary. The 
agency will help the customer book the hotels, arrange the 
transportations, and preorder the tickets of museums/parks. It 
prevents the customers from constructing their personalized 
itineraries, which is very time-consuming and inefficient. For 
instance, Fig. 1 lists a four-day package to Hong Kong, 
provided by a Singapore agency. It covers the most popular 
POIs for a first-time traveler and the customers just need to 
follow the itinerary to schedule their trips. 
 
Although the travel agencies provide efficient and 
convenient services, for experienced travellers, the itineraries 
provided by the travel agents lack customization and cannot 
satisfy individual requirements. Some interested POIs are 
missing in the itineraries and the packages are too expensive 
for a backpack traveller. Therefore, they have to plan their 
trips in every detail, such as selecting the hotels, picking 
POIs for visiting, and contacting the car rental service. 
 
Therefore, to attract more customers, travel agency should 
allow the users to customize their itineraries and still enjoy 
the same services as the predefined itineraries. However, it is 
impossible to list all possible itineraries for users. A practical 
solution is to provide an automatic itinerary planning service. 
The user lists a set of interested POIs and specifies the time 
and money budget. The itinerary planning service returns 
top-K trip plans satisfying the requirements. In the ideal case, 

the user selects one of the returned itineraries as his plan and 
notifies the agent. 
 
However, none of the current itinerary planning algorithms 
(e.g., [1] and [2]) can generate a ready-to-use trip plan, as 
they are based on various assumptions. 
 
First, current planning algorithms only consider a single 
day’s trip, while in real cases; most users will schedule an n-
day itinerary (e.g., the one shown in Fig. 1). Generating an n-
day itinerary is more complex than generating a single day 
one. It is not equal to constructing n single-day itineraries 
and combining them together, as POI can only appear once 
in the itinerary. It is tricky to group POIs into different days. 
One possible solution is to exploit the geolocations, for 
example, nearby POIs are put in the same day’s itinerary. 
Alternatively, we can also rank POIs by their importance and 
use a priority queue to schedule the trip. 
 
Second, the travel agents tend to favour the popular POIs 
.Even for a city with a large number of POIs; the travel 
agents always provide the same set of trip plans, composed 
with top POIs. However, those popular POIs may not be 
attractive for the users, who have visited the city for several 
times or have limited time budget. It is impossible for a user 
to get his personal trip plan. The travel agent’s service cannot 
cover the whole POI set, leading to few choices for the users. 
In our algorithm, we adopt a different approach by giving 
high priorities to the selected POIs and generating a 
customized trip plan on the fly. 
 
Third, suppose we have N available POIs and there are m 
POIs in each single day’s itinerary averagely. We will end 
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Figure 1: A four-day trip to Hong Kong 

 

up with candidate itineraries. It is costly to evaluate 
the benefit of every itinerary and select the optimal one. 
Therefore, in [1] and [2], some heuristic approaches are 
adopted to simplify the computation. However, the heuristic 
approaches are based on some assumptions (e.g., popular 
POIs are selected with a higher probability).They only 
provide limited number of itineraries and are not optimized 
for the backpack traveler, who plans to have a unique 
journey with his own customized itinerary. 
 
Last but not the least, handling new emerging POIs were 
tricky in previous approaches. The model needs to be rebuilt 
to evaluate the benefit of including the new POIs into the 
itinerary. For systems based on the users’  feedback [2], we 
need to collect the comments for the new POIs from the 
users, which is very time-consuming. 
 
To address the above problems, in this paper, a novel 
itinerary planning approach is proposed. The design 
philosophy of our approach is to generate itineraries that 
narrow the gap between the agents and travellers. We reduce 
the overhead of constructing a personalized itinerary for the 
traveller; and we provide a tool for the agents to customize 
their services. Fig. 2 shows an overall architecture of our 
trip-planning system. Specifically, our approach can be 
summarized as follows. 
 
In the pre-processing, POIs are organized into an undirected 
graph, G. The distance of two POIs is evaluated by Google 
Map’s APIs.1 Given a request, the system provides interfaces 
for the user to select preferred POIs explicitly, while the rest 
POIs are assumed to be the optional POIs. Different ranking 
functions are applied to different types of POIs. The 
automatic itinerary planning service needs to return an 
itinerary with the highest ranking. Searching the optimal 
itinerary can be trans-formed into the team orienteering 
problem (TOP), which is an NP-complete problem without 
polynomial approximations [3]. Therefore, a two stage 
scheme is applied. 
 
In the pre-processing stage, we iterate all candidate single-
day itineraries using a parallel processing frame-work, Map 
Reduce [4]. The results are maintained in the distributed file 
system (DFS) and an inverted index is built for efficient 

itinerary retrieval. To construct a multiday itinerary, we need 
to selectively combine the single itineraries. The pre-
processing stage, in fact, trans-forms the TOP into a set-
packing problem [5], which has well-known approximated 
algorithms. In the online stage, we design an approximate 
algorithm to generate the optimal itineraries. The 
approximate algorithm adopts the initialization-adjustment 

 

 
Figure 2: Architecture of a trip planning system 

 
model and a theoretic bound is given for the quality of the 
approximate result. To evaluate the proposed approach, we 
use the real data from Yahoo Travel.2The experiments show 
that our approach can efficiently return high-quality 
customized itineraries. The remainder of this paper is 
organized as follows: In Section 2, we formalize the problem 
and give an overview of our approach. Then, Section 3 and 
Section 4present the pre-processing stage and online stage of 
our approach, respectively. We evaluate our approach in 
Section 5 and review previous work in Section 6. Finally, the 
paper is concluded in Section 6. 
 
2. Overview 
 
2.1 Problem Statement 
 
In the itinerary planning system, the user selects a set of 
interested POIs, Sp, and asks the system to generate a k-day 

itinerary. We use to denote a user’s request. To model 
the planning problem, we organize the POIs into a complete 
graph, the POI graph. 
 
Definition 1 (POI Graph).In the POI graph G= (V, E), we 
generate a vertex for each POI and every pair of vertices are 
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connected via an undirected edge in E. In G, the vertex and 
edge have the following properties: 

. 
Fig. 3 shows a POI graph with five nodes. Each node denotes 
a POI and has two properties: the weight and travel time 
(shown in the red blocks). The nodes are connected via 
weighted edges. The edge’s weight is set to the average 
travelling time for the shortest path between the 
corresponding POIs in the map. In fact, there are two types 
of edges. The first type represents that the two nodes are 
directly connected in the map (no other POI exists in their 

shortest path, ) The second type contains multiple 
shortest paths in the map . 
Transforming the POI graph into a complete graph reduces 
the processing cost of our itinerary algorithm. 
 
The definition of POI graph assumes that the costs of edges 
are symmetric. Namely, the travelling time from vi to vj is 
equal to the time from vj to vi. In fact, as our approach does 
not rely on the assumption, it can be directly applied to the 
case of non symmetric cost (e.g., traffics are different for 

). 
 
Let denote the weight (importance) of POI vi. The 
initial weight of vi is generated from the users’ reviews (e.g., 
in Yahoo Travel, users can specify score ranging from 0 to 
5for each POI. We accumulate the scores and use the average 
values as the initial weight). 

 
Figure 3: POI graph 

 
Users can also select a set of preferred POIs, denoted as Sp. 

Given a request ,if vi is selected by the request (vi 
2Sp), we intentionally increase its weight to , 

where can be set to an arbitrary integer. The intuition is that 
user-selected POIs are far more important than any other 
POIs. 

For a request , we just need to generate a single-day 
itinerary. A single-day itinerary is represented as 

, where hj  is a hotel POI. The 
elapsed time is estimated as 

 

In the rest of the discussion, we remove the hotel part and 
focus on how to merge the POIs into itineraries. After all 
other POIs are fixed, we will solve the hotel-selection 
problem. Assume there are H available hours per day for 

travelling. The itinerary L must satisfy that . For a 
common travelling request, it always includes a k-day(k1) 
trip, which is defined as 
 
Definition 2 (k-Day Itinerary).Given a POI graph G and 
time budget k, a valid k-day itinerary consists of k single-day 
itineraries, L={L1;L2;...;Lk}, which satisfies that 

 
Based on the POIs included in the itinerary, the score of a k-
day itinerary can be computed as 

 
The goal of our itinerary planning algorithm is to find the k-
day itinerary with the highest score. However, we will show 
that finding the optimal itinerary is an NP-complete problem, 
which is equivalent to the team orienteering problem [3]. 
Even approximate algorithm within constant factor does not 
exist. The existing work [6] solves the problem by employing 
heuristic algorithms, which may generate arbitrarily bad 
results. 
 
2.2 System Architecture 
 
In our system, instead of trying to propose new algorithms 
for the TOP, we transform the optimal itinerary planning 
problem into a set-packing problem by an offline Map 
Reduce process and an approximate algorithm is applied to 
solve the set-packing problem. If the maximal number of 
POIs in the single-day itinerary is bounded by m, the optimal 

result can be approximated within factor of  (m is the 
maximal number of POIs in each single-day itinerary). 
 
Fig. 2 shows the architecture of our trip-planning system. In 
the first step, POI graph is constructed via the road network 
and POI coordinates. The Google Map’s APIs are used to 
evaluate the distance between POIs. The average elapsed 
time of POI is estimated from users’  blogs and travel 
agency’s schedules. 
 
After the POI graph is constructed, a set of Map Reduce jobs 
are submitted to iterate all possible single-day itineraries in 
the pre-processing. The number of itineraries is exponential 
to the number of POIs. However, using parallel processing 
engine, such as Map Reduce, we can efficiently generate all 
itineraries in an offline manner. To speed up the single-day 
itinerary retrieval, an inverted index is built. Given a POI, all 
single-day itineraries involving the POI can be efficiently 
retrieved. 

For a user request , POIs’ weights are updated based 
on Sp and we compute the scores for each single-day 
itinerary. The problem of finding optimal k-day itinerary is 
transformed to select k single-day itineraries that maximize 
the total score. We show that the new problem can be 
reduced to the weighted set-packing problem, which has 
polynomial approximate algorithms. Therefore, we simulate 
the approximate algorithm for set-packing problem to 
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generate the k-day itinerary. The algorithm uses a greedy 
strategy to create an initial solution, which is continuously 
refined in the adjustment phase. The adjustment phases cans 
the index to find a potentially better solution. 
 
In the next two sections, we first present how we apply the 
Map Reduce framework to generate and index the single-day 
itineraries. The parallel processing engine enables us to 
search the optimal solution in a brute-force manner. Next, we 
show after the pre-processing, the complexity of TOP is 
reduced and approximate algorithms are available. 
 
3. Pre-processing 
 
The pre-processing includes two steps. In the first step, a set 
of Map Reduce jobs are submitted to produce all possible 
single-day itineraries. In the second step, the single-day 
itineraries are reorganized as an itinerary index, which 
supports efficient itinerary search. 
 
3.1 Intractability of Optimal Itinerary Algorithm 

Given a user request , the goal of an itinerary planning 
algorithm is to provide an itinerary, which ranks highest 
among all possible itineraries. The score of the itinerary is 
computed based on the POI weights. However, as shown in 
the following theorem, this is an NP-complete problem and 
no polynomial time algorithm exists 
 
Theorem 1.Finding optimal k-day itinerary in a POI graph 
G= (V, E) is an NP-complete problem.  
 
Proof (Sketch).The optimal k-day itinerary can be reduced 
to the TOP [3], which is a well-known NP-complete 
problem. Consider a simple scenario where, 
1) K vehicles are created, which start from the same 

position. 
2) Each vehicle has a time limit (1 day) for traveling the 

POIs. 
3) Each vehicle collects the profit by visiting the POIs. 
4) The POI accessed by a vehicle will not be considered by 

other vehicles. 
5) The POI’s profit is equal to its weight. 
 
The TOP is to find the travelling plan that generates the most 
profits. The results of the TOP are also the best k-day 
itinerary.  
 
Due to the complexity of TOP, it is impossible to find the 
exact solution. Instead, previous work focuses on proposing 
heuristic algorithms. The basic idea is to generate an initial 
plan and then adjust it based on some heuristic rules. Those 
algorithms have three drawbacks. First, the heuristic 
algorithms need many iterations to get a good enough result, 
which incur high computation cost [7]. Second, the adjusting 
rules are too complicated and the potential gains are 
unknown. Finally, there is no bound of the approximate 
result, which may be arbitrarily bad in some cases. 
 
In this paper, we reduce the complexity of the TOP by 
transforming it into a set-packing [8] problem. As the 
transformation is done in an offline manner, the performance 
of online query processing is not affected. 
 

3.2 Single-Day Itinerary 
 
The basic idea of transformation is to iterate all possible 
single-day itineraries. This is done by a set of Map Reduce 
jobs. In the first job, we generate |P| initial itineraries for the 
POI set P. Each initial itinerary only consists of one POI. 
Iteratively, the subsequent Map Reduce job tries to add one 
more POI to the itineraries. If no more single-day itineraries 
can be generated, the process terminates. In current 
implementation, we allow maximally m Map Reduce jobs in 
the transformation process to reduce the over heads. 
Therefore, a single-day itinerary contains at most m POIs. 
This strategy is based on the assumption that users cannot 
visit too many POIs in one day. In our crawled data set from 
Yahoo travel, setting m to 10 is enough for Singapore data, 
which include more than 400 POIs. Only a few single-day 
itineraries can contain more than 10 POIs. 
 
Algorithms 1 and 2 show the pseudo codes of the Map 
Reduce job. Them appears load the partial paths from the 
DFS, which are generated in the previous Map Reduce jobs. 
We try to append new POI to the existing itineraries. For 
each new path, we test whether it can be completed within 
one day. If not, we will discard the new path. If the old path 
cannot result in any new path, we will output the old path. 
For the last Map Reduce job (them th job), all the candidate 
itineraries are used as the results. The output key-value pair 
is using the sorted POIs in the itinerary as the key. 
 

 
In the mappers, to compute the weight and cost of new 
itinerary, we load the POI graph table from the DFS. As the 
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graph table is small, each reducer maintains a copy in its 
memory. The table’s schema is as follows: 

 
Where S_POI and E_POI denote the two POIs linked by 
aspecific edge,costis the traveling cost from S_POI to 
E_POI,and S_POI is the primary key of the table. 
 
In the reducers (Algorithm 2), we select the path with 
smallest cost of paths with the same POIs. In each reducer, 
all the paths have the same POIs. We only keep the path with 
smallest cost and output such path for the next round.Note 
that since all the paths have the same POIs, these paths have 
the same weight. 
 
After all itineraries have been generated, a clean process is 
invoked to remove the duplication. For 

 
Namely, all POIs inL1 are also included by L0. IfL0 
Contains L1, we will only keep L0, as it provides more POIs 
for the users. 
 
3.3 Itinerary Index 
 
To efficiently locate the single-day itineraries, an inverted 
index is built. The key is the POI and the values are all 
itineraries involving the POI. By scanning the index, we can 
retrieve all the itineraries. We create an index file for each 
POI in the DFS. The file includes all single itineraries 
involving the POI, which are sorted based on their weights. 
For example, in Fig. 4, “1.idx” contains all itineraries for the 
first POI. The itinerary “1|5|20|12|40”  is the most important 
itinerary in the index file with weight 320. 
 
The inverted index is constructed via a Map Reduce job 
Algorithms 3 and 4 show the process. The mappers load the 
single-day itinerary and generate key-value pairs for each 
involved POI. The reducers collect all itineraries for a 
specific POI and sort them based on the weights before 
creating the index file. In our system, the size of the index 
file may vary alot. Some POI may have an extremely large 
index file, due to its popularity and short visit time. In 
reducers, those POIs may result in the exception of memory 
overflow in the sorting process. To address this problem, in 
the map phase, instead of using the POI as the key, we 
generate the composite key by combining the POI and the 
itinerary weight. 

 
In particular, we partition the itineraries into n buckets. The 
bucket ID is used as a part of the composite key. In this way, 
we split the itineraries of a POI into n groups and each group 
can be efficiently sorted in the memory. Each group will 
result in an index file. However, it is not necessary to merge 
the files, as the files are partitioned based on the weights. By 
scanning all files from the nth bucket to the 1th bucket, we 
can get a sorted list for all itineraries involving POI. 
 
To simplify the index manipulation, an index manager is 
built in our query engine. The index manager only provides 
one interfaces can (POI), where POI denotes the owner of the 
index. The interface returns an iterator, which can be used to 
retrieve all itineraries of the POI. A memory buffer is 
established to cache the used itineraries and the LRU strategy 
is applied to maintain the buffer. 
 
3.4 Discussion: Why Map Reduce 
 
Although the input data set (POI graph) is small in size, the 
partial results of the possible itineraries are extremely large 
(more than 100G or even 1T). The computation is also 
intensive, which cannot be completed by a single machine. 
MapReduce is the solution to partition the partial results and 
generate the itineraries in parallel. Its advantages are 
twofold: 
1) Parallel computing effectively reduces the running time 

of pre-processing. The search space explodes, when the 
number of POIs and traveling days increases. It is 
impractical to generate all possible itineraries. But by 
exploiting the power of Map Reduce, we can share and 
balance the workload between multiple machines. The 
scalability is achieved by adding more nodes into the 
cluster. In our experiment, the running time of pre-
processing is significantly reduced with the number of 
nodes. 

2) Map Reduce algorithms can remove the duplicated 
itineraries in a simple way. In Algorithm 2, by leveraging 
the framework of Map Reduce, we map all the itineraries 
with the same POIs into the same reducer and only keep 
one itinerary with the lowest cost. This approach can 
prune the low-benefit partial itineraries as early as 
possible and lead to less input for the next round of 
computation. 
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4. Related Work 
 
Most existing work on itinerary generation take a two-step 
scheme. They first adopt the data mining algorithms to 
discover the users’  traveling patterns from their published 
images, geolocations and events [11], [12], [13]. Based on 
the relationships of those historical data, new itineraries are 
generated and recommended to the users [14], [15], [16].This 
scheme leverages the user data to retrieve POIs and organize 
the POIs into itinerary, which is based on a different 
application scenario to ours. We help the traveling agency 
provide the customized itinerary service, where all details of 
POIs are known and each user prefers different itinerary 
instead of adopting the most popular ones. In our case, the 
itinerary generation problem is a search problem for the 
optimal POI combinations. 
In fact, searching for the optimal single-day itinerary has 
been well studied. It can be transformed into the traveling 
salesman problem (TSP) [5], which is a well-known NP-
complete problem. For example, in [17], given a set of 
POIs,the system will generate a shortest itinerary to access 
all the POIs. If the distance measure is a metric and 
symmetric, the TSP has the polynomial approximate solution 
[18], but the approximate solution incurs high overhead for a 
large POI graph [19]. Therefore, some heuristic approaches 
[1] are adopted to simplify the computation. 
 
Some interactive search algorithms [2], [20] are proposed in 
recent years. These algorithms still focus on optimal single-
day itinerary planning. To reduce the computation overhead 
and improve the quality of generated itineraries, users’ 
feedbacks are integrated into the search algorithm. The 
search algorithm works iteratively. It proposes new 
itineraries for users based on their previous feedbacks and 
the users can adjust the weights of POIs in the itinerary or 
select new POIs into the itinerary. In the next iteration, the 
algorithm will refine its results based on the collected 
information. Those works can be considered as variants of 
optimal single-day itinerary planning problems, where as our 
algorithms focus on generating multi-day itineraries. 
Moreover, interactive algorithms pose requirements for the 
users, who may be reluctant to provide the feedbacks. 
 
To the best of our knowledge, no previous work studied the 
problem of generating multiday itinerary. This problem is 
more challenging than the single-day itinerary, because 
simply combining multiple optimal single-day itineraries 
may result in a suboptimal solution. The multiday itinerary, 
as shown in this paper, can be reduced to the team orienting 
problem (TOP) [3], which is an NP-complete problem with 
no approximate solution. Therefore, many heuristic 
approaches are proposed [6], [21], [22]. The heuristic 
approaches cannot guarantee the quality of generated 
itineraries. The weight ratio is computed between the MR-
Set with adjustment and MR-Set without adjustment. the 
Map Reduce framework to generate the single-day 
itineraries. The parallel engine of Map Reduce allows us to 
solve some NP-complete problems more efficiently. Other 
work [23], [24] also try to leverage the power of Map Reduce 
to reduce the processing cost of NP-complete problems. The 
beauty of our approach is that after the transformation, the 
itinerary planning problem is reduced to the weighted set-

packing problem, which has approximate solutions under 
some constraints. 
 
5. Conclusion 
 
In this paper, we present an automatic itinerary generation 
service for the backpack travellers. The service creates a 
customized multiday itinerary based on the user’s preference. 
This problem is a famous NP-complete problem, team 
orienting problem, which has no polynomial time 
approximate algorithm. To search for the optimal solution, a 
two-stage scheme is adopted. In the pre-processing stage, we 
iterate and index the candidate single-day itineraries using 
the Map Reduce framework. The parallel processing engine 
allows us to scan the whole dataset and index as many 
itineraries as possible. After the pre-processing stage, the 
TOP is transformed into the weighted set-packing problem, 
which has efficient approximate algorithms. In the next 
stage, we simulate the approximate algorithm for the set-
packing problem. The algorithm follows the initialization-
adjustment model and can generate a result, which is at most 

worse than the optimal result. Experiments on real data 
set from Yahoo’s traveling website show that our proposed 
approach can efficiently generate high-quality customized 
itineraries. 
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