
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Customized Travel Itinerary Mining for Tourism
Services

Bonuguntla Saranya1, Miryala Venkatesh2

1, 2Computer Science Engineering, Guntur Engineering College, Guntur, India

Abstract: Efficient and Economic trip plan is the most Complicated job for a traveler. Although travel agency can provide some
predefined itineraries, they are not tailored for each specific customer. Previous efforts address the problem by providing an automatic
itinerary planning service, which organizes the points-of-interests (POIs) into a customized itinerary. Because the search space of all
possible itineraries is too costly to fully explore, to simplify the complexity, most work assume that user’s trip is limited to some
important POIs and will complete within one day. To address the above limitation, in this paper, we design a more general itinerary
planning service, which generates multiday itineraries for the users. In our service, all POIs are considered and ranked based on the
users’ preference. The problem of searching the optimal itinerary is a team orienteering problem (TOP), a well-known NP complete
problem. To reduce the processing cost, a two-stage planning scheme is proposed. In its pre-processing stage, single-day itineraries are
precomputed via the Map Reduce jobs. In its online stage, an approximate search algorithm is used to combine the single day
itineraries. In this way, we transfer the TOP problem with no polynomial approximation into another NP-complete problem (set-packing
problem) with good approximate algorithms. Experiments on real data sets show that our approach can generate high-quality itineraries
efficiently.

Keywords: Map reduce, trajectory, team orienteering problem, itinerary planning, location-based service

1. Introduction

Traveling market is divided into two parts. For casual
customers, they will pick a package from local travel agents.
The package, in fact, represents a pregenerated itinerary. The
agency will help the customer book the hotels, arrange the
transportations, and preorder the tickets of museums/parks. It
prevents the customers from constructing their personalized
itineraries, which is very time-consuming and inefficient. For
instance, Fig. 1 lists a four-day package to Hong Kong,
provided by a Singapore agency. It covers the most popular
POIs for a first-time traveler and the customers just need to
follow the itinerary to schedule their trips.

Although the travel agencies provide efficient and
convenient services, for experienced travellers, the itineraries
provided by the travel agents lack customization and cannot
satisfy individual requirements. Some interested POIs are
missing in the itineraries and the packages are too expensive
for a backpack traveller. Therefore, they have to plan their
trips in every detail, such as selecting the hotels, picking
POIs for visiting, and contacting the car rental service.

Therefore, to attract more customers, travel agency should
allow the users to customize their itineraries and still enjoy
the same services as the predefined itineraries. However, it is
impossible to list all possible itineraries for users. A practical
solution is to provide an automatic itinerary planning service.
The user lists a set of interested POIs and specifies the time
and money budget. The itinerary planning service returns
top-K trip plans satisfying the requirements. In the ideal case,

the user selects one of the returned itineraries as his plan and
notifies the agent.

However, none of the current itinerary planning algorithms
(e.g., [1] and [2]) can generate a ready-to-use trip plan, as
they are based on various assumptions.

First, current planning algorithms only consider a single
day’s trip, while in real cases; most users will schedule an n-
day itinerary (e.g., the one shown in Fig. 1). Generating an n-
day itinerary is more complex than generating a single day
one. It is not equal to constructing n single-day itineraries
and combining them together, as POI can only appear once
in the itinerary. It is tricky to group POIs into different days.
One possible solution is to exploit the geolocations, for
example, nearby POIs are put in the same day’s itinerary.
Alternatively, we can also rank POIs by their importance and
use a priority queue to schedule the trip.

Second, the travel agents tend to favour the popular POIs
.Even for a city with a large number of POIs; the travel
agents always provide the same set of trip plans, composed
with top POIs. However, those popular POIs may not be
attractive for the users, who have visited the city for several
times or have limited time budget. It is impossible for a user
to get his personal trip plan. The travel agent’s service cannot
cover the whole POI set, leading to few choices for the users.
In our algorithm, we adopt a different approach by giving
high priorities to the selected POIs and generating a
customized trip plan on the fly.

Third, suppose we have N available POIs and there are m
POIs in each single day’s itinerary averagely. We will end

Paper ID: 29101402 619

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 1: A four-day trip to Hong Kong

up with candidate itineraries. It is costly to evaluate
the benefit of every itinerary and select the optimal one.
Therefore, in [1] and [2], some heuristic approaches are
adopted to simplify the computation. However, the heuristic
approaches are based on some assumptions (e.g., popular
POIs are selected with a higher probability).They only
provide limited number of itineraries and are not optimized
for the backpack traveler, who plans to have a unique
journey with his own customized itinerary.

Last but not the least, handling new emerging POIs were
tricky in previous approaches. The model needs to be rebuilt
to evaluate the benefit of including the new POIs into the
itinerary. For systems based on the users’ feedback [2], we
need to collect the comments for the new POIs from the
users, which is very time-consuming.

To address the above problems, in this paper, a novel
itinerary planning approach is proposed. The design
philosophy of our approach is to generate itineraries that
narrow the gap between the agents and travellers. We reduce
the overhead of constructing a personalized itinerary for the
traveller; and we provide a tool for the agents to customize
their services. Fig. 2 shows an overall architecture of our
trip-planning system. Specifically, our approach can be
summarized as follows.

In the pre-processing, POIs are organized into an undirected
graph, G. The distance of two POIs is evaluated by Google
Map’s APIs.1 Given a request, the system provides interfaces
for the user to select preferred POIs explicitly, while the rest
POIs are assumed to be the optional POIs. Different ranking
functions are applied to different types of POIs. The
automatic itinerary planning service needs to return an
itinerary with the highest ranking. Searching the optimal
itinerary can be trans-formed into the team orienteering
problem (TOP), which is an NP-complete problem without
polynomial approximations [3]. Therefore, a two stage
scheme is applied.

In the pre-processing stage, we iterate all candidate single-
day itineraries using a parallel processing frame-work, Map
Reduce [4]. The results are maintained in the distributed file
system (DFS) and an inverted index is built for efficient

itinerary retrieval. To construct a multiday itinerary, we need
to selectively combine the single itineraries. The pre-
processing stage, in fact, trans-forms the TOP into a set-
packing problem [5], which has well-known approximated
algorithms. In the online stage, we design an approximate
algorithm to generate the optimal itineraries. The
approximate algorithm adopts the initialization-adjustment

Figure 2: Architecture of a trip planning system

model and a theoretic bound is given for the quality of the
approximate result. To evaluate the proposed approach, we
use the real data from Yahoo Travel.2The experiments show
that our approach can efficiently return high-quality
customized itineraries. The remainder of this paper is
organized as follows: In Section 2, we formalize the problem
and give an overview of our approach. Then, Section 3 and
Section 4present the pre-processing stage and online stage of
our approach, respectively. We evaluate our approach in
Section 5 and review previous work in Section 6. Finally, the
paper is concluded in Section 6.

2. Overview

2.1 Problem Statement

In the itinerary planning system, the user selects a set of
interested POIs, Sp, and asks the system to generate a k-day

itinerary. We use to denote a user’s request. To model
the planning problem, we organize the POIs into a complete
graph, the POI graph.

Definition 1 (POI Graph).In the POI graph G= (V, E), we
generate a vertex for each POI and every pair of vertices are

Paper ID: 29101402 620

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

connected via an undirected edge in E. In G, the vertex and
edge have the following properties:

.
Fig. 3 shows a POI graph with five nodes. Each node denotes
a POI and has two properties: the weight and travel time
(shown in the red blocks). The nodes are connected via
weighted edges. The edge’s weight is set to the average
travelling time for the shortest path between the
corresponding POIs in the map. In fact, there are two types
of edges. The first type represents that the two nodes are
directly connected in the map (no other POI exists in their

shortest path,) The second type contains multiple
shortest paths in the map .
Transforming the POI graph into a complete graph reduces
the processing cost of our itinerary algorithm.

The definition of POI graph assumes that the costs of edges
are symmetric. Namely, the travelling time from vi to vj is
equal to the time from vj to vi. In fact, as our approach does
not rely on the assumption, it can be directly applied to the
case of non symmetric cost (e.g., traffics are different for

).

Let denote the weight (importance) of POI vi. The
initial weight of vi is generated from the users’ reviews (e.g.,
in Yahoo Travel, users can specify score ranging from 0 to
5for each POI. We accumulate the scores and use the average
values as the initial weight).

Figure 3: POI graph

Users can also select a set of preferred POIs, denoted as Sp.

Given a request ,if vi is selected by the request (vi
2Sp), we intentionally increase its weight to ,

where can be set to an arbitrary integer. The intuition is that
user-selected POIs are far more important than any other
POIs.

For a request , we just need to generate a single-day
itinerary. A single-day itinerary is represented as

, where hj is a hotel POI. The
elapsed time is estimated as

In the rest of the discussion, we remove the hotel part and
focus on how to merge the POIs into itineraries. After all
other POIs are fixed, we will solve the hotel-selection
problem. Assume there are H available hours per day for

travelling. The itinerary L must satisfy that . For a
common travelling request, it always includes a k-day(k1)
trip, which is defined as

Definition 2 (k-Day Itinerary).Given a POI graph G and
time budget k, a valid k-day itinerary consists of k single-day
itineraries, L={L1;L2;...;Lk}, which satisfies that

Based on the POIs included in the itinerary, the score of a k-
day itinerary can be computed as

The goal of our itinerary planning algorithm is to find the k-
day itinerary with the highest score. However, we will show
that finding the optimal itinerary is an NP-complete problem,
which is equivalent to the team orienteering problem [3].
Even approximate algorithm within constant factor does not
exist. The existing work [6] solves the problem by employing
heuristic algorithms, which may generate arbitrarily bad
results.

2.2 System Architecture

In our system, instead of trying to propose new algorithms
for the TOP, we transform the optimal itinerary planning
problem into a set-packing problem by an offline Map
Reduce process and an approximate algorithm is applied to
solve the set-packing problem. If the maximal number of
POIs in the single-day itinerary is bounded by m, the optimal

result can be approximated within factor of (m is the
maximal number of POIs in each single-day itinerary).

Fig. 2 shows the architecture of our trip-planning system. In
the first step, POI graph is constructed via the road network
and POI coordinates. The Google Map’s APIs are used to
evaluate the distance between POIs. The average elapsed
time of POI is estimated from users’ blogs and travel
agency’s schedules.

After the POI graph is constructed, a set of Map Reduce jobs
are submitted to iterate all possible single-day itineraries in
the pre-processing. The number of itineraries is exponential
to the number of POIs. However, using parallel processing
engine, such as Map Reduce, we can efficiently generate all
itineraries in an offline manner. To speed up the single-day
itinerary retrieval, an inverted index is built. Given a POI, all
single-day itineraries involving the POI can be efficiently
retrieved.

For a user request , POIs’ weights are updated based
on Sp and we compute the scores for each single-day
itinerary. The problem of finding optimal k-day itinerary is
transformed to select k single-day itineraries that maximize
the total score. We show that the new problem can be
reduced to the weighted set-packing problem, which has
polynomial approximate algorithms. Therefore, we simulate
the approximate algorithm for set-packing problem to

Paper ID: 29101402 621

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

generate the k-day itinerary. The algorithm uses a greedy
strategy to create an initial solution, which is continuously
refined in the adjustment phase. The adjustment phases cans
the index to find a potentially better solution.

In the next two sections, we first present how we apply the
Map Reduce framework to generate and index the single-day
itineraries. The parallel processing engine enables us to
search the optimal solution in a brute-force manner. Next, we
show after the pre-processing, the complexity of TOP is
reduced and approximate algorithms are available.

3. Pre-processing

The pre-processing includes two steps. In the first step, a set
of Map Reduce jobs are submitted to produce all possible
single-day itineraries. In the second step, the single-day
itineraries are reorganized as an itinerary index, which
supports efficient itinerary search.

3.1 Intractability of Optimal Itinerary Algorithm

Given a user request , the goal of an itinerary planning
algorithm is to provide an itinerary, which ranks highest
among all possible itineraries. The score of the itinerary is
computed based on the POI weights. However, as shown in
the following theorem, this is an NP-complete problem and
no polynomial time algorithm exists

Theorem 1.Finding optimal k-day itinerary in a POI graph
G= (V, E) is an NP-complete problem.

Proof (Sketch).The optimal k-day itinerary can be reduced
to the TOP [3], which is a well-known NP-complete
problem. Consider a simple scenario where,
1) K vehicles are created, which start from the same

position.
2) Each vehicle has a time limit (1 day) for traveling the

POIs.
3) Each vehicle collects the profit by visiting the POIs.
4) The POI accessed by a vehicle will not be considered by

other vehicles.
5) The POI’s profit is equal to its weight.

The TOP is to find the travelling plan that generates the most
profits. The results of the TOP are also the best k-day
itinerary.

Due to the complexity of TOP, it is impossible to find the
exact solution. Instead, previous work focuses on proposing
heuristic algorithms. The basic idea is to generate an initial
plan and then adjust it based on some heuristic rules. Those
algorithms have three drawbacks. First, the heuristic
algorithms need many iterations to get a good enough result,
which incur high computation cost [7]. Second, the adjusting
rules are too complicated and the potential gains are
unknown. Finally, there is no bound of the approximate
result, which may be arbitrarily bad in some cases.

In this paper, we reduce the complexity of the TOP by
transforming it into a set-packing [8] problem. As the
transformation is done in an offline manner, the performance
of online query processing is not affected.

3.2 Single-Day Itinerary

The basic idea of transformation is to iterate all possible
single-day itineraries. This is done by a set of Map Reduce
jobs. In the first job, we generate |P| initial itineraries for the
POI set P. Each initial itinerary only consists of one POI.
Iteratively, the subsequent Map Reduce job tries to add one
more POI to the itineraries. If no more single-day itineraries
can be generated, the process terminates. In current
implementation, we allow maximally m Map Reduce jobs in
the transformation process to reduce the over heads.
Therefore, a single-day itinerary contains at most m POIs.
This strategy is based on the assumption that users cannot
visit too many POIs in one day. In our crawled data set from
Yahoo travel, setting m to 10 is enough for Singapore data,
which include more than 400 POIs. Only a few single-day
itineraries can contain more than 10 POIs.

Algorithms 1 and 2 show the pseudo codes of the Map
Reduce job. Them appears load the partial paths from the
DFS, which are generated in the previous Map Reduce jobs.
We try to append new POI to the existing itineraries. For
each new path, we test whether it can be completed within
one day. If not, we will discard the new path. If the old path
cannot result in any new path, we will output the old path.
For the last Map Reduce job (them th job), all the candidate
itineraries are used as the results. The output key-value pair
is using the sorted POIs in the itinerary as the key.

In the mappers, to compute the weight and cost of new
itinerary, we load the POI graph table from the DFS. As the

Paper ID: 29101402 622

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

graph table is small, each reducer maintains a copy in its
memory. The table’s schema is as follows:

Where S_POI and E_POI denote the two POIs linked by
aspecific edge,costis the traveling cost from S_POI to
E_POI,and S_POI is the primary key of the table.

In the reducers (Algorithm 2), we select the path with
smallest cost of paths with the same POIs. In each reducer,
all the paths have the same POIs. We only keep the path with
smallest cost and output such path for the next round.Note
that since all the paths have the same POIs, these paths have
the same weight.

After all itineraries have been generated, a clean process is
invoked to remove the duplication. For

Namely, all POIs inL1 are also included by L0. IfL0
Contains L1, we will only keep L0, as it provides more POIs
for the users.

3.3 Itinerary Index

To efficiently locate the single-day itineraries, an inverted
index is built. The key is the POI and the values are all
itineraries involving the POI. By scanning the index, we can
retrieve all the itineraries. We create an index file for each
POI in the DFS. The file includes all single itineraries
involving the POI, which are sorted based on their weights.
For example, in Fig. 4, “1.idx” contains all itineraries for the
first POI. The itinerary “1|5|20|12|40” is the most important
itinerary in the index file with weight 320.

The inverted index is constructed via a Map Reduce job
Algorithms 3 and 4 show the process. The mappers load the
single-day itinerary and generate key-value pairs for each
involved POI. The reducers collect all itineraries for a
specific POI and sort them based on the weights before
creating the index file. In our system, the size of the index
file may vary alot. Some POI may have an extremely large
index file, due to its popularity and short visit time. In
reducers, those POIs may result in the exception of memory
overflow in the sorting process. To address this problem, in
the map phase, instead of using the POI as the key, we
generate the composite key by combining the POI and the
itinerary weight.

In particular, we partition the itineraries into n buckets. The
bucket ID is used as a part of the composite key. In this way,
we split the itineraries of a POI into n groups and each group
can be efficiently sorted in the memory. Each group will
result in an index file. However, it is not necessary to merge
the files, as the files are partitioned based on the weights. By
scanning all files from the nth bucket to the 1th bucket, we
can get a sorted list for all itineraries involving POI.

To simplify the index manipulation, an index manager is
built in our query engine. The index manager only provides
one interfaces can (POI), where POI denotes the owner of the
index. The interface returns an iterator, which can be used to
retrieve all itineraries of the POI. A memory buffer is
established to cache the used itineraries and the LRU strategy
is applied to maintain the buffer.

3.4 Discussion: Why Map Reduce

Although the input data set (POI graph) is small in size, the
partial results of the possible itineraries are extremely large
(more than 100G or even 1T). The computation is also
intensive, which cannot be completed by a single machine.
MapReduce is the solution to partition the partial results and
generate the itineraries in parallel. Its advantages are
twofold:
1) Parallel computing effectively reduces the running time

of pre-processing. The search space explodes, when the
number of POIs and traveling days increases. It is
impractical to generate all possible itineraries. But by
exploiting the power of Map Reduce, we can share and
balance the workload between multiple machines. The
scalability is achieved by adding more nodes into the
cluster. In our experiment, the running time of pre-
processing is significantly reduced with the number of
nodes.

2) Map Reduce algorithms can remove the duplicated
itineraries in a simple way. In Algorithm 2, by leveraging
the framework of Map Reduce, we map all the itineraries
with the same POIs into the same reducer and only keep
one itinerary with the lowest cost. This approach can
prune the low-benefit partial itineraries as early as
possible and lead to less input for the next round of
computation.

Paper ID: 29101402 623

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

4. Related Work

Most existing work on itinerary generation take a two-step
scheme. They first adopt the data mining algorithms to
discover the users’ traveling patterns from their published
images, geolocations and events [11], [12], [13]. Based on
the relationships of those historical data, new itineraries are
generated and recommended to the users [14], [15], [16].This
scheme leverages the user data to retrieve POIs and organize
the POIs into itinerary, which is based on a different
application scenario to ours. We help the traveling agency
provide the customized itinerary service, where all details of
POIs are known and each user prefers different itinerary
instead of adopting the most popular ones. In our case, the
itinerary generation problem is a search problem for the
optimal POI combinations.
In fact, searching for the optimal single-day itinerary has
been well studied. It can be transformed into the traveling
salesman problem (TSP) [5], which is a well-known NP-
complete problem. For example, in [17], given a set of
POIs,the system will generate a shortest itinerary to access
all the POIs. If the distance measure is a metric and
symmetric, the TSP has the polynomial approximate solution
[18], but the approximate solution incurs high overhead for a
large POI graph [19]. Therefore, some heuristic approaches
[1] are adopted to simplify the computation.

Some interactive search algorithms [2], [20] are proposed in
recent years. These algorithms still focus on optimal single-
day itinerary planning. To reduce the computation overhead
and improve the quality of generated itineraries, users’
feedbacks are integrated into the search algorithm. The
search algorithm works iteratively. It proposes new
itineraries for users based on their previous feedbacks and
the users can adjust the weights of POIs in the itinerary or
select new POIs into the itinerary. In the next iteration, the
algorithm will refine its results based on the collected
information. Those works can be considered as variants of
optimal single-day itinerary planning problems, where as our
algorithms focus on generating multi-day itineraries.
Moreover, interactive algorithms pose requirements for the
users, who may be reluctant to provide the feedbacks.

To the best of our knowledge, no previous work studied the
problem of generating multiday itinerary. This problem is
more challenging than the single-day itinerary, because
simply combining multiple optimal single-day itineraries
may result in a suboptimal solution. The multiday itinerary,
as shown in this paper, can be reduced to the team orienting
problem (TOP) [3], which is an NP-complete problem with
no approximate solution. Therefore, many heuristic
approaches are proposed [6], [21], [22]. The heuristic
approaches cannot guarantee the quality of generated
itineraries. The weight ratio is computed between the MR-
Set with adjustment and MR-Set without adjustment. the
Map Reduce framework to generate the single-day
itineraries. The parallel engine of Map Reduce allows us to
solve some NP-complete problems more efficiently. Other
work [23], [24] also try to leverage the power of Map Reduce
to reduce the processing cost of NP-complete problems. The
beauty of our approach is that after the transformation, the
itinerary planning problem is reduced to the weighted set-

packing problem, which has approximate solutions under
some constraints.

5. Conclusion

In this paper, we present an automatic itinerary generation
service for the backpack travellers. The service creates a
customized multiday itinerary based on the user’s preference.
This problem is a famous NP-complete problem, team
orienting problem, which has no polynomial time
approximate algorithm. To search for the optimal solution, a
two-stage scheme is adopted. In the pre-processing stage, we
iterate and index the candidate single-day itineraries using
the Map Reduce framework. The parallel processing engine
allows us to scan the whole dataset and index as many
itineraries as possible. After the pre-processing stage, the
TOP is transformed into the weighted set-packing problem,
which has efficient approximate algorithms. In the next
stage, we simulate the approximate algorithm for the set-
packing problem. The algorithm follows the initialization-
adjustment model and can generate a result, which is at most

worse than the optimal result. Experiments on real data
set from Yahoo’s traveling website show that our proposed
approach can efficiently generate high-quality customized
itineraries.

References

[1] S. Dunstall, M.E. Horn, P. Kilby, M. Krishnamoorthy,

B. Owens,D. Sier, and S. Thiebaux, “An Automated
Itinerary Planning System for Holiday
Travel,”Information Technology and Tourism,vol. 6, no.
3, pp. 195-210, 2004.

[2] S.B. Roy, G. Das, S. Amer-Yahia, and C. Yu,
“Interactive ItineraryPlanning,”Proc. IEEE 27th Int’l
Conf. Data Eng. (ICDE),pp. 15-26,2011.

[3] I.-M. Chao, B.L. Golden, and E.A. Wasil, “The Team
OrienteeringProblem,”European J. Operational
Research,vol. 88, no. 3, pp. 464-474, Feb. 1996.

[4] J. Dean and S. Ghemawat, “MapReduce: A Flexible
DataProcessing Tool,”Com

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C.
Stein,Introductionto Algorithms, second ed. The MIT
Press and McGraw-Hill BookCompany, 2001.

[6] C. Archetti, A. Hertz, and M.G. Speranza,
“Metaheuristics for theTeam Orienteering Problem,”J.
Heuristics,vol. 13, pp. 49-76, Feb.2007.

[7] P. Vansteenwegen, W. Souffriau, and D.V. Oudheusden,
“TheOrienteering Problem: A Survey,”European J.
Operational Research, vol. 209, pp. 1-10, Feb. 2011.

[8] M.M. Halldo´rsson and B. Chandra, “Greedy Local
Improvementand Weighted Set Packing
Approximation,”J. Algorithms,vol. 39,pp. 223-240, May
2001.

[9] E.M. Arkin and R. Hassin, “On Local Search for
Weighted K-SetPacking,”Math. Operations
Research,vol. 23, pp. 640-648, Mar.1998.

[10] http://hadoop.apache.org/, 2013.
[11] T. Rattenbury, N. Good, and M. Naaman, “Toward

AutomaticExtraction of Event and Place Semantics from
Flickr Tags,”Proc.30th Ann. Int’l ACM SIGIR Conf.

Paper ID: 29101402 624

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Research and Development in Information Retrieval
(SIGIR ’07),pp. 103-110, 2007.

[12] D.J. Crandall, L. Backstrom, D.P. Huttenlocher, and
J.M.Kleinberg, “Mapping the World’s Photos,” Proc.
18th Int’lConf. World Wide Web (WWW),pp. 761-770,
2009.

[13] M. Clements, P. Serdyukov, A.P. de Vries, and M.J.
Reinders,“Using Flickr Geotags to Predict User Travel
Behaviour,”Proc.33rd Int’l ACM SIGIR Conf. Research
and Development in Information Retrieval
(SIGIR),2010.

[14] C.-H. Tai, D.-N. Yang, L.-T. Lin, and M.-S. Chen,
“RecommendingPersonalized Scenic Itinerary with Geo-
Tagged Photos,”Proc.IEEE Int’l Conf. Multimedia and
Expo (ICME),pp. 1209-1212, 2008.

[15] M.D. Choudhury, M. Feldman, S. Amer-Yahia, N.
Golbandi, R.Lempel, and C. Yu, “Automatic
Construction of Travel ItinerariesUsing Social
Breadcrumbs,”Proc. 21st ACM Conf. Hypertext and
Hypermedia (HT),pp. 35-44, 2010.

[16] H. Yoon, Y. Zheng, X. Xie, and W. Woo, “Smart
ItineraryRecommendation Based on User-Generated
GPS Trajectories,”Proc. Seventh Int’l Conf. Ubiquitous
Intelligence and Computing (UIC),pp. 19-34, 2010.

[17] I. Hefez, Y. Kanza, and R. Levin, “TARSIUS: A System
for Traffic-Aware Route Search under Conditions of
Uncertainty,”Proc. 19thACM SIGSPATIAL Int’l Conf.
Advances in Geographic InformationSystems (GIS),pp.
517-520, 2011.

[18] N. Christofides, “Worst-Case Analysis of a New
Heuristic for theTraveling Salesman Problem,”
Technical Report 388, GraduateSchool of Industrial
Administration, Carnegie-Mellon Univ., 1976.

[19] G. Laporte, “The Traveling Salesman Problem: An
Overview ofExact and Approximate Algorithms,”
European J. OperationalResearch,vol. 59, no. 2, pp. 231-
247, June 1992.

[20] R. Levin, Y. Kanza, E. Safra, and Y. Sagiv, “Interactive
RouteSearch in thePresenceofOrder Constraints,” Proc.
VLDBEndowment,vol. 3, no. 1, pp. 117-128, 2010.

[21] W. Souffriau, P. Vansteenwegen, G.V. Berghe, and
D.V.Oudheusden, “A Path Relinking Approach for the
TeamOrienteering Problem,” Computers and Operations
Research,vol. 37, pp. 1853-1859, 2010.

[22] M.V.S.P. de Aragao, H. Viana, and E. Uchoa, “The
TeamOrienteering Problem: Formulations and Branch-
Cut and Price,”Proc. Algorithmic Approaches for
Transportation Modeling, Optimiza-tion, and Systems
(ATMOS), vol. 14, pp. 142-155, 2010.

[23] F. Chierichetti, R. Kumar, and A. Tomkins, “Max-Cover
in Map-Reduce,”Proc. 19th Int’l Conf. World Wide Web
(WWW),pp. 231-240, 2010.

[24] Z. Zhao, G. Wang, A.R. Butt, M. Khan, V.A. Kumar,
and M.V.Marathe, “SAHAD: Subgraph Analysis in
Massive NetworksUsing Hadoop,”IEEE Int’l Parallel
and Distributed Processing Symp.(IPDPS),2012

Author Profile

Bonuguntla Saranya obtained degree in B. Sc
computers from Ahyudaya Mahila College, Guntur
and obtained MCA in Acharya Nagarjuna University,
Guntur. At present persuing M. Tech in computer

science and engineering in Guntur Engineering college, Guntur.

Miryala Venkatesh obtained B. Tech in Computer
science and Engineering in Narasaraopet Engineering
College in 2003.MS in latrob university, Australia in
2005, He has Industrial experience for 3Yrs and
teaching experience for 7yrs and presently working at

Guntur Engineering College, Guntur.

Paper ID: 29101402 625

