
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Design and Implementation of Galios Field Based
AES-256 Algorithm for Optimized Cryptosystem

Veerendra Babu Dara1, P. Sankara Rao2

1 M.Tech (VLSI & SD) Student, Department of Electronics and Communication Engineering, Sri Vasavi Institute of Engineering and

Technology, Nandamuru, Machilipatnam, JNTUK, Kakinada, A.P., India

2 Associate Professor, Department of Electronics and Communication Engineering, Sri Vasavi Institute of Engineering and
Technology, Nandamuru, Machilipatnam, JNTUK, Kakinada, A.P., India

Abstract: All of the cryptographic algorithms we have looked at so far have some problem. The earlier ciphers can be broken with
ease on modern computation systems. As a result of technology scaling and higher integration densities there may be variations in
parameters and noise levels which will lead to larger error rates at various levels of the computations. As far as memory applications
are concerned the soft errors and single event upsets are always a matter of problem. In this paper presents an optimized composite field
arithmetic based S-Box implemented in four stage pipeline. In traditional look up table (LUT) approaches, the unbreakable delay is
longer than the total delay of the rest of operations in each round. LUT approach consumes a large area. It is more efficient to apply
composite field arithmetic in the SubBytes transformation of the AES algorithm. It not only reduces the complexity but also enables
deep sub pipelining such that higher speed can be achieved. Isomorphic mapping can be employed to convert GF(28) to GF(22)2)2), so
that multiplicative inverse can be easily obtained. SubBytes and InvSubBytes transformations are merged using composite field
arithmetic. It is most important responsible for the implementation of low cost and high throughput AES architecture. As compared to
the typical ROM based lookup table, the presented implementation is both capable of higher speeds since it can be pipelined and small
in terms of area occupancy (1609/29504 Slices on a Spartan 3 XC3S1600E-4, fg484).

Keywords: Advanced Encryption Standard (AES) [4], Composite Field Arithmetic [3], Cryptography, Galios Field [1], [13], Memory, Xilinx
ISE 12.1 Design suite and Verilog.

1. Introduction

Cryptography is very much important in the field of data
transmission with the rapid growing number of Internet and
wireless communication users. Advanced Encryption
Standard, (AES) is proposed by National Institute of
Standards and Technology, (NIST). The AES is a Federal
Information Processing Standard, (FIPS). It is a
cryptographic algorithm that is used to protect data. The AES
algorithm can be used for both encryption and decryption of
data. Encryption converts data or plaintext to cipher text.
Decryption converts cipher text back to its original form,
which is called plaintext. Cryptographic keys of 128, 192,
and 256 bits can be used to encrypt and decrypt data in
blocks of 128 bits.

The main idea is to employ composite field arithmetic in the
computation of the multiplicative inversion in the
SubByte/InvSubBytes transformation of the AES algorithm.
So that deep sub pipelining is applied, and hardware
complexity is reduced. This paper adopts alternative
architecture to achieve small area. High throughput can be
achieved without using LUT and memory so that no
unbreakable delay is introduced in the architecture. In
traditional look up table (LUT) approaches, the unbreakable
delay is longer than the total delay of the rest of operations in
each round. Pipelining and Subpipeling cannot be applied to
LUT approaches. The LUT approach is not suitable for
resource constrained use as it consumes a large area.
Composite field arithmetic can be used to solve the problem.

The process of finding multiplicative inverse in GF(28) is
very complicated by direct method. But, two fields of the

same order are said to be isomorphic. So that we can use an
isomorphic transform to convert GF(28) to GF((24)2) and
further to GF(((22)2)2).

The algorithm takes a plaintext block size of 128 bits, or 16
bytes as input. The key length can be 16, 24, or 32 bytes
(128, 192, or 256 bits). The algorithm is referred to as AES-
128, AES-192, or AES-256, depending on the key length.
The input to the encryption and decryption algorithms is a
single 128-bit block. In FIPS PUB 197 (FIPS 197) on
November 26, 2001[4] this block is depicted as a 4x4 square
matrix of bytes. This block is copied into the state array,
which is transformed at each stage of encryption or
decryption. After the final stage, state is copied to an output
matrix. Similarly, the key is considered as a square matrix of
bytes. This key is then expanded into an array of key
schedule words. Each byte in the state matrix is an element in
Galois Field GF (28) which is constructed with the
irreducible polynomial p(x) = x8 + x4 + x3 + x + 1.

2. Cryptography

The branch of cryptology dealing with the design of
algorithms for encryption and decryption, intended to ensure
the secrecy and/or authenticity of messages. An original
message is known as the plain text, while the coded message
is called the cipher text. The process of converting the plain
text to cipher text is known as enciphering or encryption;
restoring the plain text from the cipher text is deciphering or
decryption. The many schemes used for enciphering
constitute the area of study known as cryptography. Such a
scheme is known as a cryptographic system or a cipher.
Techniques used for deciphering a message without any

Paper ID: 20111402 2600

http://creativecommons.org/licenses/by/4.0/�
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

knowledge of the enciphering details fall into the area of
cryptanalysis. The cryptanalysis is what the lay person’s calls
breaking the code. The areas of cryptography and
cryptanalyst is together are called cryptology.

2.1 Encryption

The original intelligible message or data that is fed into the
algorithm is the input. Encryption algorithm performs varies
substitutions and transformations on the plain text. Secret key
is also given as input to encryption algorithm. The key is a
value independent of the plain text. The algorithm reproduces
the different output depending on the specific key being used
at the time. The exact substitutions and transformation
performed by the algorithm depend on the key. The output
depends on the plain text and the secret key. For a given
message, two different keys will produce two different cipher
texts. The cipher text is an apparently random stream of data,
as it stands, is unintelligible.

2.2 Decryption

This is essentially the encryption algorithm run in reverse. It
takes the cipher text and the secret key and produces the
original plain text. The remaining part of this paper as
follow: Section 3 describes the AES Algorithm operation.
The S-Box construction method was described in Section 4.
Section 5 contains the Galios Field GF (28). Section 6
contains Proposed S-Box architecture. The Synthesis,
Simulation result & conclusion are drawn from Section 7, 8
& Section 9 respectively.

3. AES Algorithm

The algorithm consists of N rounds, where the number of
rounds depends on the key length: 10 rounds for a 16-byte
key, 12 rounds for a 24-byte key, and 14 rounds for a 32-byte
key. The first N-1 rounds consist of four distinct
transformation functions:
1. SubByte,
2. ShiftRows,
3. MixColumns and
4. AddRoundKey.

The final round contains only three transformations there is
no MixColumns transformation. Initially there is a single
transformation (AddRoundKey) before the first round.

Each transformation takes one or more 4x4 matrices as input
and produces a 4x4 matrix as output.

Figure 1: The Basic AES Flow Chart

3.1 SubByte

The SubByte is a non-linear operation where one byte is
substituted for another based on the algorithm we have to use
fixed 8-bit lookup table, S; bᵢ = S(aᵢ).

Figure 2: SubBytes Transformation

3.2 ShiftRows

In the ShiftRows step, bytes in each row of the state are
shifted cyclically to the left. The number of places each byte
is shifted differs for each row by a certain offset. Row0 is left
unchanged, Row1 is shifted 1 byte. Similarly, the Row2 and
Row3 are shifted by offsets of two and three respectively.

Figure 3: ShiftRows Operation

Paper ID: 20111402 2601

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3.3 MixColumns

In the MixColumns step, the four bytes of each column of the
state are combined using an invertible linear transformation.
The MixColumns function takes four bytes as input and
outputs four bytes, where each input byte affects all four
output bytes.

Figure 4: MixColumns Operation

3.4 AddRoundKey

In the AddRoundKey [9] step, the subkey is combined with
the state. For each round, a subkey is derived from the main
key using Rijndael’s key schedule; each subkey is the same
size as the state. The subkey is added by combining each byte
of the state with the corresponding byte of the subkey using
bitwise XOR.

Figure 5: AddRoundKey Operation

The AES process can be defined in three types based on
length of the key used for the generating cipher text which
are AES-128, AES-192 and AES-256.

In this operation, the AES cipher maintains an internally
(4X4) matrix of bytes called states. The state consists of four
rows of bytes, each row containing Nb bytes, where N is the
number of byte and b is the block length divided by 32 (4 for
128-bit key, 6 for 192-bit key, 8 for 256-bit key). At the same
time key length and number of rounds differ from key to key,
i.e. we have to use 10 rounds for 128-bit key, 12 rounds for
192-bit key and 14 rounds for 256-bit key.

Table 1: Comparison of AES Algorithm
 Key length

(Nk)
Block size (Nb) Number of

rounds (Nr)
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

4. S-Box Transformation Using Look Up

Table (LUT)

The S-Box by using look up table, all the values is
predefined based on the ROM so the area and memory
access & latency is high. S-Box stands for Substitution Box;
SubBytes transformation is a nonlinear byte substitution that
operates independently on each byte of the State using a
substitution table (S-box) [4].

Figure 6: Application of S-box to the Each Byte of the State

Table 2: S-Box Values for all 256 Combinations in

Hexadecimal Format

For example, if =S1,1= {f0}, then the substitution value
would be determined by the intersection of the row with
index ‘f’ and the column with index ‘0’ in figure. This would
result in S'1, 1 having a value of {8c}.

Inverse Byte Substitution Transformation is the inverse of the
byte substitution transformation, in which the inverse S-Box
is applied to each byte of the State. This is obtained by first
applying the inverse of the affine transformation to the
equation and then taking the multiplicative inverse in GF(28).

Paper ID: 20111402 2602

http://creativecommons.org/licenses/by/4.0/�
https://en.wikipedia.org/wiki/Key_(cryptography)�
https://en.wikipedia.org/wiki/Key_(cryptography)�
https://en.wikipedia.org/wiki/Key_(cryptography)�
https://en.wikipedia.org/wiki/Exclusive_or�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Table 2: Inverse S-Box Values for all 256 Combinations in
Hexadecimal Format

 Figure7: Application of the Inverse S-box to Each Byte

of the State

Most common method of implementation of the S-Box for
the SubByte operation is that the pre-computed values are
stored in a ROM as lookup table. All 256 values are stored in
a ROM, and the input byte would be wired to the ROM’s
address bus. However, this method has the disadvantage that
the unbreakable delay is very large since ROMs have a fixed
access time for its read and write operation. Such
implementation is expensive in terms of hardware and
consumes large area. So a better way of implementing the S-
Box is to use composite field arithmetic. This S Box has the
Advantage that it occupies small area and pipelining can also
be applied to improve the performance.

5. Proposed S-Box Transformation Using

Galios Field (GF)

To optimize the area, our method is based on the Composite
Field Arithmetic which involves Galios Field GF (28) it
contains two main operations as follows:

Figure 8: SubByte & Inv SubByte Transformations in S-

BOX

This section says that the multiplicative inverse computation
will first be covered and the affine transformation will then
follow to complete the methodology involved for
constructing the S-BOX for the SubByte operation. For the
Inverse SubByte operation, that can reuse multiplicative
inversion module and combine it with the inverse affine
transformation. So the multiplicative inverse can be
constructed in GF (28).

5.1 Galois Field (GF)

Galois Field, named after Evariste Galois, also known as
finite field, which has a finite number of members. Galois
fields having 2m members are used in error-control coding
and are denoted GF(2m). Fields can have 2m members, where
m is an integer between 1 and 16.It is particularly useful in
translating computer data as they are represented in binary
forms. That is, computer data consist of combination of two
numbers, 0 and 1, which are the components in Galois field
whose number of elements is two. Representing data as a
vector in a Galois Field allows mathematical operations to
scramble data easily and effectively.

Computation of the multiplicative inverse in composite fields
cannot be directly applied to an element which is based on
GF(28) .So for that we have to decomposing the more
complex GF(28) to lower order fields of GF(21), GF(22),
GF(22)2). To accomplish this, the following irreducible
polynomials are used:

GF (22) GF (2): 𝑥𝑥2 + 𝑥𝑥 + 1
GF ((22)2) GF (22): 𝑥𝑥2 + 𝑥𝑥 +φ
GF ((22)2)2) GF ((22)2): 𝑥𝑥2 + 𝑥𝑥 +λ
Where φ = {10}2 and λ = {1100}2.

Figure 9: Multiplicative Inverse Module

The notations for the modules within the multiplicative
inversion module are below [4].

5.2 Affine Transform

The affine transform is normally should improve our result.
It’s the second building for the composite field arithmetic

Paper ID: 20111402 2603

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

based S-Box. Our proposed affine transform & Inverse affine
transform as follows Equation 1 & 2:

δ = 𝑏𝑏𝑖𝑖 ⊕ 𝑏𝑏((𝑖𝑖+4)𝑚𝑚𝑜𝑜𝑑𝑑 8) ⊕ 𝑏𝑏((𝑖𝑖+5)𝑚𝑚𝑜𝑜𝑑𝑑 8) ⊕ 𝑏𝑏((𝑖𝑖+6) 𝑚𝑚𝑜𝑜𝑑𝑑 8) ⊕

 𝑏𝑏((𝑖𝑖+7)𝑚𝑚𝑜𝑜𝑑𝑑 8) ⊕ 𝑑𝑑𝑖𝑖 (1)
Where d = {01100011} & i = 0 to 7

δ −1 =𝑏𝑏((𝑖𝑖+2)𝑚𝑚𝑜𝑜𝑑𝑑8)⊕ 𝑏𝑏((𝑖𝑖+5)𝑚𝑚𝑜𝑜𝑑𝑑8)⊕ 𝑏𝑏((𝑖𝑖+7)𝑚𝑚𝑜𝑜𝑑𝑑8)⊕ 𝑑𝑑𝑖𝑖 (2)

Where d = {00000101} & i = 0 to 7.

5.3 Isomorphic and Inverse Isomorphic mapping

The element in GF (28) has to be mapped to its composite
field representation via an isomorphic function, δ. After
performing the multiplicative inversion, the result will also
have to be mapped to its equivalent in GF (28) via the inverse
isomorphic function δ -1.

Let q be the element in GF (28), in that δ & δ−1 can be
represented as 8x8 matrixes, where q7 is the most significant
bit, q0 is the least significant bit. The equation is given as
below,

Figure 10: Implementation of Isomorphic and Inverse

Isomorphic mapping

5.4 Addition in GF(24)

Addition of two elements in Galois Field can be translated to
simple bitwise XOR operation between the two elements.

5.5 Squaring in GF(24)

Figure11: Implementation of Squarer in GF (24)

5.6 Multiplication with constant λ

Figure 12: Implementation of multiplication with constant

In that we take k=qλ
Where k= {k3 k2 k1 k0}2,
 q= {q3 q2 q1 q0}2 and

λ= {1100}2 are element in GF(24)
We can apply the same procedure as seen in Addition we get,

k3 = q3
k2= q3⊕q2
k1=q2⊕q1
k0=q3⊕q1⊕q0

5.7 Multiplicative Inversion in GF(24)

Figure 13: Implementation of Multiplicative Inversion

The multiplicative inverse of q (where q is an element of GF
(24)) such that q-1 = {q3

-1, q2-1, q1-1, q0-1} [10].The inverse
of the individual bits can be computed as below,

From the above discussion is the operation for the composite
field arithmetic based S-Box .Our proposed method is the
implementation of this S-Box in the four stage pipeline. So
that the area, delay, power will be reduced. The diagram will
show below for proposed pipelined implemented S-Box.

Figure 14: Proposed Pipelined implemented S-Box

6. Comparison Result

We design the S-Box is based on composite field arithmetic
method. In this paper proposed method coding can be written
using verilog language. The XC5S1600E device of Xilinx
FPGA is used to validate the power with Verilog code for the
proposed architecture also the power is analyzed using Xilinx
ISE 12.1 Xpower analyzer. Table IV shows the comparison
of power, delay and slices for conventional & proposed

Paper ID: 20111402 2604

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

method. Waveform3 shows power report for the proposed
method.

Table 4: Comparison of S-Box Using LUT and Without

LUT
Parameter Without LUT Using LUT
No of slices 2859/14752 5892/14752

No of slice flip flops 1609/29504 3308/29504
Power(W) 0.203w 1.007w
Delay(ns) 4.496ns 6.042ns

7. Synthesis Report From Xilinx Tool

7.1 RTL Schematic of AES-256

7.2 CPLD Report of AES-256

7.3 XPower Analyser Report of AES-256

8. Simulation Result From ModelSIM

8.1 Encryption of AES-256

8.2 Decryption of AES-256

Figure 15: Simulation of S-BOX using Galios Field for

encryption & decryption of AES-256.

The above two figures shows the simulation results of S-
BOX and inverse S-BOX for encryption and decryption

Paper ID: 20111402 2605

http://creativecommons.org/licenses/by/4.0/�

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 11, November 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

using composite field arithmetic. There are three input clock,
8 bit input value and ‘1’ or ‘0’ which determines encryption
or decryption.’0’ stands for encryption and ‘1’ for
decryption. FPGA implementation is done for both LUT and
non LUT SubByte/inverse SubByte and the synthesis report
for both are analyzed and compared.

9. Conclusion

In traditional look up table (LUT) approaches, the
unbreakable delay is longer than the total delay of the rest of
operations in each round. LUT approach is not suitable for
resource constrained use for it costs a large area. Composite
field arithmetic has been introduced to solve the problem.
The multiplicative inverse in GF (28) is very complicated by
direct computation. Merging also reduces the area and
increases the throughput.

Presented implementation is capable of higher speeds as
compared to the typical ROM based lookup table. It can be
pipelined and small in terms of area occupancy (2859/14752
slices on a Spartan III XC3S1600E-4FPGA). The design is
coded using Verilog language. The design is simulated on
ModelSim simulation tool and synthesized on Xilinx ISE
12.1 software.

10. Future Scope

After the implementation of this system we came to notice
that this system can be applicable to any type of system
where we have regular observation in needed and it makes
maintenance so simple and cost effective. In future any new
compact and high speed architecture allows the S-Box to be
used in both areas limited and demanding throughput AES
chips for various applications, ranging from small smart
cards to high speed servers can simply increase data security
without making a lot of effort.

11. Acknowledgement

I sincerely thank my guide P. Sankara Rao, Associate
Professor in ECE Department of Sri Vasavi Institute of
Engineering and Technology for his kind advice, support,
encouragement as well as guidance for the preparation of
research manuscript. I’m really grateful to acknowledge the
support provided by my Mom & Dad.

References

[1] Hoang Trang & Nguyen Van Loi “An efficient FPGA

Implementation of Advanced Encryption standard
Algorithm”. IEEE-2012.

[2] Chong Hee Kim “Improved Differential Fault Analysis
on AES Key Schedule”. IEEE Transactions on
Information Forensics and Security, Vol. 7, No. 1,
February 2012.

[3] N.Shanthini, P.Rajasekar, Dr. H.Mangalam “Design of
low power S-Box in Architecture Level using GF”
International Journal of Engineering Research and
General Science Volume 2, Issue 3, April-May 2014.

[4] “Announcing the Advanced Encryption Standard
(AES)". Federal Information Processing Standards
Publication [FIPS]-197. United States National Institute
of Standards and Technology (NIST). November 26,
2001. Retrieved October 2, 2012.

[5] Daemen, Joan; Rijmen, Vincent (9/04/2003). “AES
Proposal: Rijndael”. National Institute of Standards and
Technology. p. 1. Retrieved 21 February 2013.

[6] John Schwartz “U.S. Selects a New Encryption
Technique”. New York Times (October 3, 2000).

[7] Westlund, Harold B. (2002). “NIST reports measurable
success of Advanced Encryption Standard”. Journal of
Research of the National Institute of Standards and
Technology.

[8] Daemen J., and Rijmen V, "The Design of Rijndael:
AES-the Advanced Encryption Standard", Springer-
Verlag, 2002.

[9] “Efficient software implementation of AES on 32-bit
platforms”. Lecture Notes in Computer Science: 2523.
2003.

[10] “Practical Implementation of Rijndael S-Box Using
Combinational Logic” Edwin NC Mui Custom R & D
Engineer, Texco Enterprise Ptd. Ltd.

[11] “A High-Throughput Cost-Effective ASIC
Implementation of the AES Algorithm”-978-1-4244-
3870-9/09/$25.00 ©2009 IEEE.

[12] The Advanced Encryption Standard Algorithm (AES),
http://en.wikipedia.org/wiki/Advanced_Encryption_Sta
ndard.

[13] Finite Field (or) Galios Field - Wikipedia,Free
Encyclopedia, http://en.wikipedia.org/wiki/Finite_field.

Paper ID: 20111402 2606

http://creativecommons.org/licenses/by/4.0/�

	Introduction
	Cryptography
	Encryption

	AES Algorithm
	SubByte
	ShiftRows
	MixColumns
	AddRoundKey

	S-Box Transformation Using Look Up Table (LUT)
	Proposed S-Box Transformation Using Galios Field (GF)
	Galois Field (GF)
	Affine Transform
	Isomorphic and Inverse Isomorphic mapping
	Addition in GF(24)
	Squaring in GF(24)
	Multiplication with constant 
	Multiplicative Inversion in GF(24)

	Comparison Result
	RTL Schematic of AES-256
	CPLD Report of AES-256
	XPower Analyser Report of AES-256
	Encryption of AES-256
	Decryption of AES-256

