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Abstract: All of the cryptographic algorithms we have looked at so far have some problem. The earlier ciphers can be broken with 
ease on modern computation systems. As a result of technology scaling and higher integration densities there may be variations in 
parameters and noise levels which will lead to larger error rates at various levels of the computations. As far as memory applications 
are concerned the soft errors and single event upsets are always a matter of problem. In this paper presents an optimized composite field 
arithmetic based S-Box implemented in four stage pipeline. In traditional look up table (LUT) approaches, the unbreakable delay is 
longer than the total delay of the rest of operations in each round. LUT approach consumes a large area. It is more efficient to apply 
composite field arithmetic in the SubBytes transformation of the AES algorithm. It not only reduces the complexity but also enables 
deep sub pipelining such that higher speed can be achieved. Isomorphic mapping can be employed to convert GF(28) to GF(22)2)2), so 
that multiplicative inverse can be easily obtained. SubBytes and InvSubBytes transformations are merged using composite field 
arithmetic. It is most important responsible for the implementation of low cost and high throughput AES architecture. As compared to 
the typical ROM based lookup table, the presented implementation is both capable of higher speeds since it can be pipelined and small 
in terms of area occupancy (1609/29504 Slices on a Spartan 3 XC3S1600E-4, fg484). 
 
Keywords: Advanced Encryption Standard (AES) [4], Composite Field Arithmetic [3], Cryptography, Galios Field [1], [13], Memory, Xilinx 
ISE 12.1 Design suite and Verilog.  
 
1. Introduction 
 
Cryptography is very much important in the field of data 
transmission with the rapid growing number of Internet and 
wireless communication users. Advanced Encryption 
Standard, (AES) is proposed by National Institute of 
Standards and Technology, (NIST). The AES is a Federal 
Information Processing Standard, (FIPS). It is a 
cryptographic algorithm that is used to protect data. The AES 
algorithm can be used for both encryption and decryption of 
data. Encryption converts data or plaintext to cipher text. 
Decryption converts cipher text back to its original form, 
which is called plaintext. Cryptographic keys of 128, 192, 
and 256 bits can be used to encrypt and decrypt data in 
blocks of 128 bits.  
 
The main idea is to employ composite field arithmetic in the 
computation of the multiplicative inversion in the 
SubByte/InvSubBytes transformation of the AES algorithm. 
So that deep sub pipelining is applied, and hardware 
complexity is reduced. This paper adopts alternative 
architecture to achieve small area. High throughput can be 
achieved without using LUT and memory so that no 
unbreakable delay is introduced in the architecture. In 
traditional look up table (LUT) approaches, the unbreakable 
delay is longer than the total delay of the rest of operations in 
each round. Pipelining and Subpipeling cannot be applied to 
LUT approaches. The LUT approach is not suitable for 
resource constrained use as it consumes a large area. 
Composite field arithmetic can be used to solve the problem. 
 
The process of finding multiplicative inverse in GF(28) is 
very complicated by direct method. But, two fields of the 

same order are said to be isomorphic. So that we can use an 
isomorphic transform to convert GF(28) to GF((24)2) and 
further to GF( ((22)2)2). 
 
The algorithm takes a plaintext block size of 128 bits, or 16 
bytes as input. The key length can be 16, 24, or 32 bytes 
(128, 192, or 256 bits). The algorithm is referred to as AES-
128, AES-192, or AES-256, depending on the key length. 
The input to the encryption and decryption algorithms is a 
single 128-bit block. In FIPS PUB 197 (FIPS 197) on 
November 26, 2001[4] this block is depicted as a 4x4 square 
matrix of bytes. This block is copied into the state array, 
which is transformed at each stage of encryption or 
decryption. After the final stage, state is copied to an output 
matrix. Similarly, the key is considered as a square matrix of 
bytes. This key is then expanded into an array of key 
schedule words. Each byte in the state matrix is an element in 
Galois Field GF (28) which is constructed with the 
irreducible polynomial p(x) = x8 + x4 + x3 + x + 1. 
 
2. Cryptography 
 
The branch of cryptology dealing with the design of 
algorithms for encryption and decryption, intended to ensure 
the secrecy and/or authenticity of messages. An original 
message is known as the plain text, while the coded message 
is called the cipher text. The process of converting the plain 
text to cipher text is known as enciphering or encryption; 
restoring the plain text from the cipher text is deciphering or 
decryption. The many schemes used for enciphering 
constitute the area of study known as cryptography. Such a 
scheme is known as a cryptographic system or a cipher. 
Techniques used for deciphering a message without any 
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knowledge of the enciphering details fall into the area of 
cryptanalysis. The cryptanalysis is what the lay person’s calls 
breaking the code. The areas of cryptography and 
cryptanalyst is together are called cryptology. 

 
2.1 Encryption 
 
The original intelligible message or data that is fed into the 
algorithm is the input. Encryption algorithm performs varies 
substitutions and transformations on the plain text. Secret key 
is also given as input to encryption algorithm. The key is a 
value independent of the plain text. The algorithm reproduces 
the different output depending on the specific key being used 
at the time. The exact substitutions and transformation 
performed by the algorithm depend on the key. The output 
depends on the plain text and the secret key. For a given 
message, two different keys will produce two different cipher 
texts. The cipher text is an apparently random stream of data, 
as it stands, is unintelligible. 
 
2.2 Decryption 
 
This is essentially the encryption algorithm run in reverse. It 
takes the cipher text and the secret key and produces the 
original plain text. The remaining part of this paper as 
follow: Section 3 describes the AES Algorithm operation. 
The S-Box construction method was described in Section 4. 
Section 5 contains the Galios Field GF (28). Section 6 
contains Proposed S-Box architecture. The Synthesis, 
Simulation result & conclusion are drawn from Section 7, 8 
& Section 9 respectively.  
 
3. AES Algorithm 
 
The algorithm consists of N rounds, where the number of 
rounds depends on the key length: 10 rounds for a 16-byte 
key, 12 rounds for a 24-byte key, and 14 rounds for a 32-byte 
key. The first N-1 rounds consist of four distinct 
transformation functions:  
1. SubByte, 
2. ShiftRows, 
3. MixColumns and 
4. AddRoundKey. 
 
The final round contains only three transformations there is 
no MixColumns transformation. Initially there is a single 
transformation (AddRoundKey) before the first round.  
 
Each transformation takes one or more 4x4 matrices as input 
and produces a 4x4 matrix as output. 

 

 
Figure 1: The Basic AES Flow Chart 

 
3.1 SubByte 
 
The SubByte is a non-linear operation where one byte is 
substituted for another based on the algorithm we have to use 
fixed 8-bit lookup table, S; bᵢ = S(aᵢ ). 
 

 
Figure 2: SubBytes Transformation 

 
3.2 ShiftRows 
 
In the ShiftRows step, bytes in each row of the state are 
shifted cyclically to the left. The number of places each byte 
is shifted differs for each row by a certain offset. Row0 is left 
unchanged, Row1 is shifted 1 byte. Similarly, the Row2 and 
Row3 are shifted by offsets of two and three respectively. 
  

 
 

Figure 3: ShiftRows Operation 
 
 
 

Paper ID: 20111402 2601

http://creativecommons.org/licenses/by/4.0/�


International Journal of Science and Research (IJSR) 
ISSN (Online): 2319-7064 

Impact Factor (2012): 3.358 

Volume 3 Issue 11, November 2014 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

3.3 MixColumns 
 
In the MixColumns step, the four bytes of each column of the 
state are combined using an invertible linear transformation. 
The MixColumns function takes four bytes as input and 
outputs four bytes, where each input byte affects all four 
output bytes. 
 

 
Figure 4: MixColumns Operation 

 
3.4 AddRoundKey 
 
In the AddRoundKey [9] step, the subkey is combined with 
the state. For each round, a subkey is derived from the main 
key using Rijndael’s key schedule; each subkey is the same 
size as the state. The subkey is added by combining each byte 
of the state with the corresponding byte of the subkey using 
bitwise  XOR. 
 

 
Figure 5: AddRoundKey Operation 

 
The AES process can be defined in three types based on 
length of the key used for the generating cipher text which 
are AES-128, AES-192 and AES-256.  
 
In this operation, the AES cipher maintains an internally 
(4X4) matrix of bytes called states. The state consists of four 
rows of bytes, each row containing Nb bytes, where N is the 
number of byte and b is the block length divided by 32 (4 for 
128-bit key, 6 for 192-bit key, 8 for 256-bit key). At the same 
time key length and number of rounds differ from key to key, 
i.e. we have to use 10 rounds for 128-bit key, 12 rounds for 
192-bit key and 14 rounds for 256-bit key. 

 

 

Table 1: Comparison of AES Algorithm 
 Key length 

(Nk) 
Block size (Nb) Number of 

rounds (Nr) 
AES-128 4 4 10 
AES-192 6 4 12 
AES-256 8 4 14 

 
4. S-Box Transformation Using Look Up 

Table (LUT) 
 
The S-Box by using look up table, all the values is 
predefined based on the ROM so the area and memory 
access &  latency is high. S-Box stands for Substitution Box; 
SubBytes transformation is a nonlinear byte substitution that 
operates independently on each byte of the State using a 
substitution table (S-box) [4].  

 
Figure 6: Application of S-box to the Each Byte of the State 

 
Table 2: S-Box Values for all 256 Combinations in 

Hexadecimal Format 

 
For example, if =S1,1= {f0}, then the substitution value 
would be determined by the intersection of the row with 
index ‘f’ and the column with index ‘0’ in figure. This would 
result in S'1, 1 having a value of {8c}. 
 
Inverse Byte Substitution Transformation is the inverse of the 
byte substitution transformation, in which the inverse S-Box 
is applied to each byte of the State. This is obtained by first 
applying the inverse of the affine transformation to the 
equation and then taking the multiplicative inverse in GF(28). 
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Table 2: Inverse S-Box Values for all 256 Combinations in 
Hexadecimal Format  

 
 

 
 Figure7: Application of the Inverse S-box to Each Byte 

of the State 
 
Most common method of implementation of the S-Box for 
the SubByte operation is that the pre-computed values are 
stored in a ROM as lookup table. All 256 values are stored in 
a ROM, and the input byte would be wired to the ROM’s 
address bus. However, this method has the disadvantage that 
the unbreakable delay is very large since ROMs have a fixed 
access time for its read and write operation. Such 
implementation is expensive in terms of hardware and 
consumes large area. So a better way of implementing the S-
Box is to use composite field arithmetic. This S Box has the 
Advantage that it occupies small area and pipelining can also 
be applied to improve the performance. 
 
5. Proposed S-Box Transformation Using 

Galios Field (GF) 
 
To optimize the area, our method is based on the Composite 
Field Arithmetic which involves Galios Field GF (28) it 
contains two main operations as follows: 

 

 
Figure 8: SubByte & Inv SubByte Transformations in S-

BOX 
 

This section says that the multiplicative inverse computation 
will first be covered and the affine transformation will then 
follow to complete the methodology involved for 
constructing the S-BOX for the SubByte operation. For the 
Inverse SubByte operation, that can reuse multiplicative 
inversion module and combine it with the inverse affine 
transformation. So the multiplicative inverse can be 
constructed in GF (28). 
 
5.1 Galois Field (GF) 
 
Galois Field, named after Evariste Galois, also known as 
finite field, which has a finite number of members. Galois 
fields having 2m members are used in error-control coding 
and are denoted GF(2m). Fields can have 2m members, where 
m is an integer between 1 and 16.It is particularly useful in 
translating computer data as they are represented in binary 
forms. That is, computer data consist of combination of two 
numbers, 0 and 1, which are the components in Galois field 
whose number of elements is two. Representing data as a 
vector in a Galois Field allows mathematical operations to 
scramble data easily and effectively. 
 
Computation of the multiplicative inverse in composite fields 
cannot be directly applied to an element which is based on 
GF(28) .So for that we have to decomposing the more 
complex GF(28) to lower order fields of GF(21), GF(22), 
GF(22)2). To accomplish this, the following irreducible 
polynomials are used: 

 
GF (22) GF (2): 𝑥𝑥2 + 𝑥𝑥 + 1 
GF ((22)2) GF (22): 𝑥𝑥2 + 𝑥𝑥 +φ 
GF ((22)2)2) GF ((22)2): 𝑥𝑥2 + 𝑥𝑥 +λ 
Where φ = {10}2 and λ = {1100}2. 

 
Figure 9: Multiplicative Inverse Module 

 
The notations for the modules within the multiplicative 
inversion module are below [4]. 

 
 

5.2 Affine Transform 
 
The affine transform is normally should improve our result. 
It’s the second building for the composite field arithmetic 
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based S-Box. Our proposed affine transform & Inverse affine 
transform as follows Equation 1 & 2: 
 
δ = 𝑏𝑏𝑖𝑖 ⊕ 𝑏𝑏(( 𝑖𝑖+4)𝑚𝑚𝑜𝑜𝑑𝑑 8) ⊕ 𝑏𝑏(( 𝑖𝑖+5)𝑚𝑚𝑜𝑜𝑑𝑑 8) ⊕ 𝑏𝑏(( 𝑖𝑖+6) 𝑚𝑚𝑜𝑜𝑑𝑑 8) ⊕  

      𝑏𝑏(( 𝑖𝑖+7)𝑚𝑚𝑜𝑜𝑑𝑑 8) ⊕ 𝑑𝑑𝑖𝑖 (1)  
Where d = {01100011} & i = 0 to 7 

δ −1 =𝑏𝑏((𝑖𝑖+2)𝑚𝑚𝑜𝑜𝑑𝑑8)⊕ 𝑏𝑏((𝑖𝑖+5)𝑚𝑚𝑜𝑜𝑑𝑑8)⊕ 𝑏𝑏((𝑖𝑖+7)𝑚𝑚𝑜𝑜𝑑𝑑8)⊕ 𝑑𝑑𝑖𝑖 (2) 
 
Where d = {00000101} & i = 0 to 7. 
 
5.3 Isomorphic and Inverse Isomorphic mapping 
 
The element in GF (28) has to be mapped to its composite 
field representation via an isomorphic function, δ. After 
performing the multiplicative inversion, the result will also 
have to be mapped to its equivalent in GF (28) via the inverse 
isomorphic function δ -1.  
 
Let q be the element in GF (28), in that δ & δ−1 can be 
represented as 8x8 matrixes, where q7 is the most significant 
bit, q0 is the least significant bit. The equation is given as 
below, 

 
Figure 10: Implementation of Isomorphic and Inverse 

Isomorphic mapping 
 
5.4 Addition in GF(24) 
 
Addition of two elements in Galois Field can be translated to 
simple bitwise XOR operation between the two elements. 
 
5.5 Squaring in GF(24) 

 

 
Figure11: Implementation of Squarer in GF (24) 

 
5.6 Multiplication with constant λ 

 

 
Figure 12: Implementation of multiplication with constant 

 
In that we take k=qλ  
Where k= {k3 k2 k1 k0}2, 
 q= {q3 q2 q1 q0}2 and  

λ= {1100}2 are element in GF(24)  
We can apply the same procedure as seen in Addition we get, 

k3 = q3 
k2= q3⊕q2 
k1=q2⊕q1  
k0=q3⊕q1⊕q0 
 

5.7 Multiplicative Inversion in GF(24) 
 

 
Figure 13: Implementation of Multiplicative Inversion 

 
The multiplicative inverse of q (where q is an element of GF 
(24)) such that q-1 = {q3

-1, q2-1, q1-1, q0-1} [10].The inverse 
of the individual bits can be computed as below, 

 

 
From the above discussion is the operation for the composite 
field arithmetic based S-Box .Our proposed method is the 
implementation of this S-Box in the four stage pipeline. So 
that the area, delay, power will be reduced. The diagram will 
show below for proposed pipelined implemented S-Box. 

 
Figure 14: Proposed Pipelined implemented S-Box 

 
6. Comparison Result 
 
We design the S-Box is based on composite field arithmetic 
method. In this paper proposed method coding can be written 
using verilog language. The XC5S1600E device of Xilinx 
FPGA is used to validate the power with Verilog code for the 
proposed architecture also the power is analyzed using Xilinx 
ISE 12.1 Xpower analyzer. Table IV shows the comparison 
of power, delay and slices for conventional & proposed 
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method. Waveform3 shows power report for the proposed 
method. 

 
Table 4: Comparison of S-Box Using LUT and Without 

LUT 
Parameter Without LUT Using LUT 
No of slices 2859/14752 5892/14752 

No of slice flip flops 1609/29504 3308/29504 
Power(W) 0.203w 1.007w 
Delay(ns) 4.496ns 6.042ns 

 
 
7. Synthesis Report From Xilinx Tool 

 
7.1 RTL Schematic of AES-256 

 

 
 

7.2 CPLD Report of AES-256 
 

 
 

7.3 XPower Analyser Report of AES-256 
 

 
 

8. Simulation Result From ModelSIM 
 
8.1 Encryption of AES-256 

 

 
 

8.2 Decryption of AES-256 
 

 
Figure 15: Simulation of S-BOX using Galios Field for 

encryption & decryption of AES-256. 
 

The above two figures shows the simulation results of S-
BOX and inverse S-BOX for encryption and decryption 
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using composite field arithmetic. There are three input clock, 
8 bit input value and ‘1’ or ‘0’ which determines encryption 
or decryption.’0’ stands for encryption and ‘1’ for 
decryption. FPGA implementation is done for both LUT and 
non LUT SubByte/inverse SubByte and the synthesis report 
for both are analyzed and compared. 
 
9. Conclusion 
 
In traditional look up table (LUT) approaches, the 
unbreakable delay is longer than the total delay of the rest of 
operations in each round. LUT approach is not suitable for 
resource constrained use for it costs a large area. Composite 
field arithmetic has been introduced to solve the problem. 
The multiplicative inverse in GF (28) is very complicated by 
direct computation. Merging also reduces the area and 
increases the throughput. 
 
Presented implementation is capable of higher speeds as 
compared to the typical ROM based lookup table. It can be 
pipelined and small in terms of area occupancy (2859/14752 
slices on a Spartan III XC3S1600E-4FPGA). The design is 
coded using Verilog language. The design is simulated on 
ModelSim simulation tool and synthesized on Xilinx ISE 
12.1 software. 

 
10. Future Scope  
 
After the implementation of this system we came to notice 
that this system can be applicable to any type of system 
where we have regular observation in needed and it makes 
maintenance so simple and cost effective. In future any new 
compact and high speed architecture allows the S-Box to be 
used in both areas limited and demanding throughput AES 
chips for various applications, ranging from small smart 
cards to high speed servers can simply increase data security 
without making a lot of effort. 
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