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Abstract: We consider here the application of orthogonal collocation and finite difference approximation to simulator design for a 
reservoir with surfactant mixture in enhanced oil recovery process to the solution of the applicable equations for the multidimensional, 
multicomponent and multiphase system. In this work, we report on the effect of significant reservoir parameters and the amount or 
nature of surfactant mixture on reservoir simulator design. Some of the novel aspects of this study stem from the actual formulation of 
the development of the simulator, in particular, the choice of dependent variables, and the treatment of boundary conditions. Numerical 
results obtained using orthogonal collocation and finite difference computations are used to control oscillatory overshoot. In both 
orthogonal collocation and finite difference method, general multi-dimensional schemes were applied in the flow simulations. Matlab 
computer programs were used for the numerical solution of the model equations. The results of the orthogonal collocation solution were 
compared with those of finite difference solutions. The results indicate that the concentration profiles of surfactants for orthogonal 
collocation showed more features than the predictions of the finite difference, offering more opportunities for further understanding of 
the physical nature of this complex problem. Also, comparison of the orthogonal collocation solution with computations based on finite 
difference method offers possible explanation for the observed differences especially between the methods and the two reservoirs. We 
found that the effect of surfactant in enhanced oil recovery process in surfactant flooding is in fact the dominant factor in reservoir 
simulator design. 
 
Keywords: Reservoir Simulator Design; Multidimensional, Multicomponent and Multiphase Systems; Surfactant Mixture; Orthogonal 
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1. Introduction 
 
The development of a simulator of a reservoir in a surfactant 
assisted water flood required the understanding of the porous 
formation of complex reservoir and multiphase and 
multicomponent flow taking place in the reservoir. The 
understanding of the multiphase, multicomponent flow 
taking place in any displacement process is essential for 
successful design of simulator in a reservoir. The world 
energy demand continues to increase significantly and crude 
oil still remains the major source. 
 
It is very important to at least, maintain or indeed, increase 
the current production levels of crude oil. These objectives 
can be accomplished by further investing in exploration and 
production of new fields or optimizing production from 
existing fields. Bringing new fields online is very expensive, 
while recovery from existing fields by conventional methods 
(i.e. primary and secondary recovery) will not fully provide 
the necessary relief for global oil demand. 
 
On an average, only about a third of the original oil in place 
can be recovered by primary and secondary recovery 
processes. The rest of the oil is trapped in reservoir pores 
due to surface and interfacial forces. This trapped oil can be 
recovered by reducing the capillary forces that prevent oil 
from flowing within the pores of reservoir rock and into the 
well bores.Due to high oil prices and declining production in 
many regions around the globe, the application of advance 

technologies called "Enhanced Oil Recovery"(EOR) has 
become very attractive for exploration and production of the 
trapped oil.This technology requires the injection of a fluid 
or fluids or materials into a reservoir to supplement the 
natural energy present in a reservoir, where the injected 
fluids interact with the reservoir rock /oil /brine system to 
create favourable conditions for maximum oil recovery. 
Surfactants are injected to decrease the interfacial tension 
between oil and water in order to mobilize the oil trapped 
after secondary recovery by water flooding. 
 
In a surfactant flood, a multi-component multiphase system 
is involved. The theory of multi- component, multiphase 
flow has been presented by several authors[1].The surfactant 
flooding is a form of chemical flooding and is represented 
by a system of nonlinear partial differential equations: the 
continuity equation for the transport of the components and 
Darcy’s equation for the phase flow. The system of 
equations is completed by the equations representing 
physical properties of the fluids and the rock. From a 
physico-chemical point of view, there are three components 
- water, petroleum and chemical. They are in fact, pseudo-
components, since each one consists of several pure 
components. Petroleum is a complex mixture of many 
hydrocarbons. Water is actually brine, and contains 
dissolved salts. Finally, the chemical contains different kinds 
of surfactants. These components are distributed between 
two phases –the oleic phase and the aqueous phase. The 
chemical has an amphiphilic character. It makes the oleic 
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phase at least partially miscible with water or the aqueous 
phase, partially miscible with petroleum. 
 
Interfacial tension depends on the surfactant partition 
between the two phases. Residual phase saturation decrease 
as interfacial tension decreases. Relative permeability 
parameters depend on residual phase saturations. In addition, 
phase viscosities are functions of the volume fraction of the 
components in each fluid phase. Therefore, the success or 
failure of surfactant flooding processes depends on phase 
behaviour. Phase behaviour influences all other physical 
properties, and each of them, in turn influences oil recovery.  
 
The two different mathematical techniques are to be utilized 
in identifying a particular type of physical behaviour and 
thus enabling the understanding of the propagation 
phenomena. More so, the techniques will in particular be 
utilized to predict what happens in EOR process and show 
how the complexity of the problem can be reduced. Systems 
of coupled, first-order, nonlinear hyperbolic partial 
differential equations (p.d.e.s) govern the transient evolution 
of a chemical flooding process for enhanced recovery. The 
method of characteristics (MOC) provides a way in which 
such systems of hyperbolic p.d.e.s can be solved by 
converting them to an equivalent system of ordinary 
differential equations. In some cases, the characteristic 
solution has been used to track the flood-front in two-
dimensional reservoir problems [2]. Besides, another 
approach combines the characteristic method with a finite 
element approach [3]. The MOC and an adjustable number 
of moving particles to track three-dimensional solute fronts 
has been used in groundwater systems; adjusting the number 
of particles serves to maintain an accurate material balance 
and save computational time [4]. This front-tracking 
approach has been used in the present work to trace the 
movement of coherent waves, of both the diffuse and shock 
variety. 
 
At the simple level, the results of simulation using the two 
techniques are analogous to the Buckley-Leverett theory for 
water flooding, the latter being evident in the case of 
polymer flooding [5], Also for dilute surfactant flooding[6], 
For carbonated water flooding, [7] and For miscible [8] and 
immiscible surfactant flooding[9]. For isothermal, 
multiphase, multicomponent fluid Flow in permeable media 
[10].While Case studies for the feasibility of sweep 
improvement in surfactant-assisted water flooding.[11] 
 
High oil prices and declining production in many regions 
around the globe make enhanced oil recovery (EOR) 
increasingly attractive. As evident in the work for a new 
class of viscoelastic surfactants for EOR[12], For 
microbially enhanced oil recovery at simulated reservoir 
conditions by use of engineered bacteria[13], for co-
optimization of enhanced oil recovery and carbon 
sequestration[14],while for development of improved 
surfactants and EOR methods for small operators[15] and 
many others. 
 
The present work describes the design of a simulator for an 
Enhanced Oil Recovery process using surfactant assisted 
water flooding by applying two different mathematical 
methods, orthogonal collocation and finite difference 

method, to solve the basic model transport equations. The 
approach is multidimensional and involves at least three 
independent variables for mapping the composition routes of 
the system components. 
 
2. Methodology 
 
This work considered the solution of a multidimensional, 
multicomponent and multiphase flow problem associated 
with enhanced oil recovery process in petroleum 
engineering. The process of interest involves the injection of 
surfactant of different concentrations and pore volume to 
displace oil from the reservoir. 
 
The methodology used here is illustrated by the steps 
utilized in executing the solution using the developed 
mathematical models describing the physics of reservoir 
depletion and fluid flow in which one of the main aims is the 
determination of the areal distribution of fluids in the 
flooded reservoir. The system is for two or three dimensions, 
two fluid phases (aqueous, oleic) and one adsorbent phase, 
four components (oil, water, surfactants 1 and 2). 
 
The reservoir may be divided into discrete grid blocks which 
may each be characterized by having different reservoir 
properties. The flow of fluids from a block is governed by 
the principle of mass conservation coupled with Darcy’s 
law. The following are taken into consideration in the 
modeling effort: 
 
(i) The simultaneous flow of oil, gas, and water in three 

dimensions 
(ii) The effects of natural water influx, fluid 

compressibility, mass transfer between gas and liquid 
phases and  

(iii) The variation of such parameters as porosity and 
permeability, as functions of pressure.  

 
The model is developed from the basic law of conservation 
of mass with assumptions[16] . 
 
The developed partial differential equation is converted to 
ordinary differential equation using finite difference and 
orthogonal collocation methods.  
 
The finite difference method is a technique that converts 
partial differential equations into a system of linear 
equations. There are essentially three finite difference 
techniques. The explicit, finite difference method converts 
the partial differential equations into an algebraic equation 
which can be solved by stepping forward (forward 
difference), backward (backward difference) or centrally 
(central difference).  
 
The orthogonal collocation method converts partial 
differential equations into a system of ordinary differential 
equations using the Lagrangian polynomial method. This set 
of ordinary differential equations generated is then solved 
with appropriate numerical technique such as the Runge 
Kutta. 
 
The rock and fluid properties such as density, porosity, 
viscosity, oil and water etc, and other parameters are listed 
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in Tables 1, 2, 3 and 4. Table 1 is the reservoir 
characteristics from previous work [16]. Table 2 is the 
reservoir characteristics used for the simulation work [17]. 
Parameter values used in Trogus adsorption model and for 
verification runs are shown in Table 3[17], while Table 4 
contains additional reservoir parameters presented for the 
work [16]. 
 
In considering the more general form of the multiphase, 
multicomponent problem, the explicit Runge-Kutta method 
is chosen for the solution of the problem. The motivation for 
this explicit method is its simplicity and computational 
efficiency with regard to the reduction of truncation errors 
more effectively than other methods. The MATLAB 
computer program was used to obtain the solutions. 
 

The model encompasses two fluid phases (aqueous and 
oleic), one adsorbent phase (rock), and four components (oil, 
water, surfactants 1 and 2). The oil is displaced by water 
flooding. In-situ interaction of surfactant slugs may occur, 
with consequent phase separation and local permeability 
reduction. The model accommodates two (or three) physical 
dimensions and an arbitrary, nonisotropic description of 
absolute permeability variation and porosity. 
 
For most of the simulated cases in the work, the reservoir 
consisted of a rectangular composite of horizontal oil 
bearing strata, sandwiched above and below by two 
impervious rocks [16]. Oil is produced from the reservoir by 
means of water injection at one end and a production well at 
the other. Data for the hypothetical reservoir simulated are 
given in Table 1and the model developed [16] is  
 

( ) ( ), , ,1 1, 2i w i w i wi
w x w y w i

C C CCS v f v f r i
t t x y

φ ρ φ φ φ
−

∂ ∂ ∂∂
+ − + + = − =

∂ ∂ ∂ ∂
                                  (1)

The term ir  represents the rate of loss of surfactant due to 
precipitation: for a one-to-one reaction stoichiometry, 

1 2r r= . Since reaction occurs instantaneously at a sharp 
interface, this term may be ignored away from the singular 
region of the interface. 
 
2.5 Adsorption Model 
 
It is possible to approximate the adsorption isotherm of a 
pure surfactant on a mineral oxide by use of a simple model. 
At low concentration the adsorption obeys Henry’s law, 
while above the critical micelle concentration (CMC), the 
total adsorption remains constant. The Trogus adsorption 

model [18], [19] is used in this work. The following 
assumptions are made: 
 
3. Application of Finite Difference to 

Solution of Model Equations 
 
First-order, finite-difference expressions for the spatial 
derivatives were substituted into the hyperbolic 
chromatographic transport equations (Eq. 1), yielding 2 x m 
coupled ordinary differential equations which may then be 
integrated simultaneously (also known as the ‘numerical 
method of lines’). 
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where i  = 1,2 and h  = 1,2,. .. m .  
 
Eqn.2 is the finite-difference form of Eqn.1written for one 
spatial dimensionε , where ijm  are the adsorption 
coefficients,τ  is dimensionless time (injected volume/ pore 
volume), and ε  is dimensionless distance (pore volumes 
travelled). In two dimensions, the finite-difference terms are 
multiplied by dimensionless velocities. The distortion of the 
solution in the τ direction may be neglected by using a 4th 
order Runge-Kutta method and a sufficiently small time 
step. 
 
The above equation is now transformed to the original form 
of Eqns. 1 using the following defined variables: 
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Again, recall that differentiation of a function of another 
function (chain rule) is of the form 
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Applying the chain rule above, Eqn.2 becomes  
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Eliminating the primes (') and bars (-) and introducing jim ,  
terms yield 
 

( ) 0,1,2
12

,1
11 =

∂

∂
+

∂

∂
+

∂

∂
+

εττ
w

w
ww

w

C
f

C
m

C
mS

      (8) 
 

( ) 0,2,1
21

,2
22 =

∂

∂
+

∂

∂
+

∂

∂
+

εττ
w

w
ww

w

C
f

C
m

C
mS

      (9)
 

 
Applying the method of lines, a partial transformation to a 
difference equation, to the equations above yield: 
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This can also be written as follows 
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Since we have a set of simultaneous ODE’s, we will attempt 
to solve the equations 
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where 

 

Substitution of these terms in Eqs.14 and 15 yield 
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These on simplification yield 
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(19) 
 
From the Trogus model, 
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A final substitution results in the equation below: 
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3.2 Application of Orthogonal Collocation to Solution of 
Model Equations  
 
Equation7can be written as: 
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Now, from the Trogus model, 
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Let 
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The above equations now become: 
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where C is a function of both ԑ (dimensionless distance) and 
τ (dimensionless time). 
 
Using the method of orthogonal collocation, let C be 
approximated by the expression 
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Equation 31 can now be expressed as follows: 
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For I = 1, 2, 3, 4… N+1 
 
Therefore, 
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Again J = 1, 2, 3, 4… N+1 
 
Therefore the following system of ODE’s can be generated 
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In matrix form, we have the following expression: 
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Similarly, the following expression defines aJI[20], [21] 
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where 
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Recall that the elements of the matrix can be generated from 
the following Lagrange polynomial 
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For i = j, the elements here refer to the leading diagonal of 
the matrix to be generated 
 
For i ≠ j, the elements here refer to all other elements of the 
matrix 
 
 
 

Also, the following recurrence relations are defined below. 
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For j = 2, 3, 4, ..., N+1 
 
The following substitutions and manipulations will now be 
made to redefine Eqn.44. Substituting the recurrence 
relations into Eqn.44 yields: 
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Now, some terms will be cancelled out. 
Since j = i, 
(xi – xj) = 0 
and 
(xj – xj)=0 
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The above becomes: 
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This becomes: 
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For J = I 

For I ≠ J 
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Rewriting the above in terms of epsilon, (ε): 
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The matrix now looks like this: 
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The recurrence relations below will again be used to 

evaluate the terms of the matrix. 
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Let ԑ assume the range: 
ԑ = [0:0.01:0.09] 
where 
 
ԑ1 = 0 (53) 
ԑ2 = 0.01 (54) 
ԑ3 = 0.02 (55) 

4. Results  
 
The reservoir response, as predicted by the simulation on the 
basis of orthogonal collocation is compared with the 
numerical predictions obtained using traditional finite 
difference method. The case studies are chosen to be both 
hypothetical and using of existing Nigerian well data with 
simple representative of the important elements of the 
simulator. The main objective of these case studies has been 
to demonstrate that the mathematical techniques of 
orthogonal collocation and finite difference in the context of 
application of the simulator can be used to obtain wave 
behaviour in a reservoir. A gradually increasing level of 
complexity is introduced, representing a range of systems 
from aqueous phase flow, to surfactant chromatography in 
two phase flow, to surfactant chromatography in two 
dimensional porous medium. The initial and injected 
surfactant compositions corresponding to cases 1,2 and3 are 
shown in Table 5. The rock and fluid properties are listed in 
Table 1, 2, 3 and4. These were taken as uniform for 
convenience. 
 
The two fluid phases consisted of a water phase and an oil 
phase, which, for convenience are considered 
incompressible. The density of oil, the viscosity of oil, the 
salinity of water, and the formation volume factor of oil and 
water are listed in Table 2. All cases mentioned above were 
run by using anionic sodium dodecyl sulfate (SDS) and 
cationic dodecyl pyridinium chloride (DPC) as surfactants. 
 
The system of equations is complete with the equations 
representing physical properties of the fluids and the rock. 
Physical properties described here are: (i) phase behaviour 
(ii) interfacial tension between fluid phases, (iii) residual 
phase saturations, (iv) relative permeabilities, (v) rock 
wettabiliy, (vi) phase viscosities, (vii) capillary pressure, 
(viii) adsorption and (ix) dispersion. From a physico-
chemical point of view, there are three components: water, 
petroleum and chemical. As stated earlier on, these are all 
pseudo-components, since each one consists of several pure 
components. Petroleum is a complex mixture of many 
hydrocarbons. Water is actually brine, and contains 
dissolved salts. Finally, the chemical contains different kinds 
of surfactants.  
 
These three pseudo-components are distributed between two 
phases –the oleic phase and the aqueous phase. The 
chemical has an amphiphilic character. It makes the oleic 
phase at least partially miscible with water or the aqueous 
phase at partially miscible with petroleum. 
 
Interfacial tension depends on the surfactant partition 
between the two phases. Residual phase saturation decreases 
as interfacial tension decreases. Relative permeability 
parameters depend on residual phase saturations. Phase 
viscosities are functions of the volume fraction of the 
components in each fluid phase. Therefore, the success or 
failure of surfactant flooding processes depends on phase 
behaviour. Phase behaviour influences all other physical 
properties, and each of them, in turn influences oil recovery.  
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4.1Results of Reservoir Prediction in an Aqueous Phase 
Chromatographic Flow in One Dimension 
 
Figure 1a is the result obtained for solving Equation 2 using 
the numerical technique for both orthogonal collocation and 
finite difference. The graph is for the bed composition 
profile for one dimensional aqueous-phase chromatography 
(case 1) at one half pore volume injected.  
 
If a one-dimensional, adsorbing porous medium is initially 
equilibrated with an aqueous composition C1 = 0.21, C2 = 
0.181 ( concentrations normalized as moles in solution per 
m3 off bed) and is then injected with a composition C1 = 
0.17, C2 = 0.013 (Riemann-type problem: case 1, refer to 
Table 5 ), the composition upstream of this injected fluid 
and composition downstream of the initial or previously 
injected fluid follows the slow “path” from the injected 
composition to the junction with the “fast path” from the 
final composition, where it switches to this “fast” path. In 
Figure 1a, the profile C1 of finite difference (FD)shows a 
steady rise from C1 = 0.17 to C1 = 0.21 and then attainecd a 
constant state. Also the profile C1 of the orthogonal 
collocation (OC) increased steadily from C1 = 0.17 to C1 = 
0.21 after which it started depressing from C1= 0.2 at 
distance 0.3 epsilon to C1 = 0.07 at distance 0.5 epsilon 
before rising back to attain a constant state with the finite 
difference method. Similarly, the C2 of finite difference (FD) 
increased steadily from C2 =0.017 to a constant state as for 
C1.The constant state is at C2 = 0.18. The orthogonal 
collocation (OC) for C2first moves at constant state before 
rising steadily to C2 = 0.18 and then declined from C2 = 0.18 
to a minimum of C2 = 0.08 before rising to a constant state. 
The profiles for finite difference (FD) and that of orhogonal 
collocation (OC) agree except for the depressions of the 
orthogonal collocation profiles. 
 
Figure 1b shows the results obtained for solving Eqn.2 by 
the use of orthogonal collocation (OC) and finite difference 
(FD) methods. The graph is for the bed composition profile 
for one dimensional aqueous phase chromatography for case 
1 at one pore volume injected.In this case also, the adsorbing 
porous medium is initially equibrated with an aqueous 
composition concentrations.C1 = 0.21, C2 = 0.181( 
concentrations normalized as moles in solution per m3 off 
bed) and is then injected with a composition C1 = 0.17, C2 = 
0.013 (Riemann-type problem: case 1,( refer to Table 5)). 
The profile C1 of finite difference (FD) indicates rise in 
concentration fromC1 = 0.17 to 0.21 after which the 
concentration maintained a constant state. The profile of C1 
of the orthogonal collocation (OC) also rise from C1 = 0.17 
to C1 = 0.21 but falls to 0.03 at distance 0.4 epsilon and then 
increased steadily to constant state as for C1 finite difference 
(FD). The C2 of finite difference increased steadily from C2 
= 0.02 to attain constant state at 0.18. Also the profile of C2 
of the orthogonal collocation (OC) increase gradually from 
C2 = 0.02 to C1 = 0.18 at distance 0.2 epsilon for short 
constant state and thendecline to C2 = 0.02 at distance 0.4 
epsilon before rising back to reach constant state with the 
finite difference. 
 
The bed composition profile for one dimensional aqueous 
phase chromatography for case 1 at two pore volume 
injected is shown in Figure 1c. This is the result obtained for 

solving Eqn.2by using orthogonal collocation (OC) and 
finite difference (FD) methods. The adsorbing porous 
medium is initially equibrated with an aqueous composition 
concentrations. C1 = 0.21, C2 = 0.181 (concentrations 
normalized as moles in solution per m3 off bed) and is then 
injected with a composition C1 = 0.17, C2 = 0.013 
(Riemann-type problem: case 1,( refer to Table 5) ). The 
profile C1 of finite difference (FD) and the profile C1 of 
orthogonal collocation (OC) indicate that there is steady 
increase from C1 = 0.17 to C1 = 0.21 at distance 0.1 epsilon 
and then attained a constant state for both profiles. Similarly, 
the profile C2 of finite difference (FD) shows a steady rise 
from C2 = 0.02 to C2 = 0.18 and then maintained a constant 
state. Also, the profile C2 for orthogonal collocation (OC), 
follows the same pattern, which indicate an increase from C2 
= 0.02 to C2 = 0.18 and then attained a constant state. The 
orthogonal collocation (OC) profiles match the finite 
difference (FD) profiles. 
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Figure 1a: CASE 1 C1,C2 vs epsilon at τ= 0.5. Bed 
composition profile for one-dimensional aqueous-phase 

chromatography; case 1, at one-half pore volume injected. 
The plots are for two methods: Orthogonal collocation (OC), 

and finite difference (FD). 
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Figure 1b:. CASE 1 C1,C2 vs epsilon at τ = 1.0. Bed 

composition profile for one-dimensional aqueous-phase 
chromatography; case 1, at one pore volume injected. The 

plots are for two methods: Orthogonal collocation (OC), and 
finite difference (FD). 
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Figure 1c: CASE 1 C1,C2 vs epsilon at τ = 2.0. Bed 

composition profile for one-dimensional aqueous-phase 
chromatography; case 1, at two pore volumes injected. The 

plots are for two methods: Orthogonal collocation (OC), and 
finite difference (FD). 

 
Figure 2a shows the bed concentration profiles for one 
dimensional aqueous phase chromatography for case 2 at 
one-half pore volume injected in the adsorbing porous 
medium initially devoid of surfactant and then injected with 
a mixture C1 = 0.042, C2 = 0.115 (Riemann-type problem: 
case 2 (refer to Table 5)),with the numerical result obtained 
for solving Eqn.2 by using orthogonal collocation (OC) and 
finite difference (FD) as the numerical technique.The profile 
C1 of finite difference (FD) indicates a steady fall from in 
concentration from C1 = 0.04 to a constant state of zero. The 
profile of C1 of the orthogonal collocation (OC) falls 
steadily from C1 = 0.04 but however oscillatesbetween 0.01 
and 0.04 jumping to its injection value before attaining 
constant state with the finite difference (FD). Similarly the 
C2 of finite difference (FD) decreased steadily from C2 = 
0.119 to a constant state as for C1. Also the profile C2 of 
orthogonal collocation (OC) decreases steadily from C2 
=0.119 but however gives a more pronounced oscillation 
from C2 = 0.02 and C2 = 0.119 jumping to its injection value 
before attaining constant state with the finite difference(FD). 
 
Figures 2b and 2c compare the bed concentration profiles 
expected at one and two pore volume injected with a mixture 
C1 = 0.042, C2 = 0.115 in the adsorbing porous medium 
initially devoid of surfactant (Riemann-type problem: case 
2,( refer to Table 5)). The graph shows the results obtained 
using the numerical technique; finite difference (FD) and 
orthogonal collocation (OC) 
 
In Figure 2b, the profile C1 of finite difference (FD) shows 
steady decline from from C1 = 0.04 to a constant state. Also 
the C1 of orthogponal collocation falls steadily from C1= 
0.04 to a constant state as for finite difference (FD). The 
profile C2 of finite difference decreased steadily from C2 = 
0.119 to a constant state as for C1. Similarly, the C2 of 
orthogonal collocation (OC) falls steadily from C2 = 0.119 to 
a constant state. 

In Figure 2c, the profiles C1 of orthogonal collocation (OC) 
follow the same pattern as that in Figure 2b. Similarly, the 
profiles C2 of finite difference (FD) and orthogonal 
collocation (OC) have the same pattern as in Figure 2b. 
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Figure 2a: CASE 2. C1,C2 vs epsilon at τ = 0.5. Bed 

composition profile for one-dimensional aqueous-phase 
chromatography; case 2, at one-half pore volume injected. 

The plots are for two methods:Orthogonal collocation (OC), 
and finite difference (FD). 
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Figure 2b: CASE 2: C1,C2 vs epsilon at τ = 1.0. Bed 

composition profile for one-dimensional aqueous-phase 
chromatography; case 2, at one pore volume injected. The 

plots are for two methods:Orthogonal collocation (OC), and 
finite difference (FD). 
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Figure 2c: CASE 2. C1,C2 vs epsilon at τ = 2.0. Bed 

composition profile for one-dimensional aqueous-phase 
chromatography; case 2, at two pore volumes injected. The 
plots are for two methods:Orthogonal collocation (OC) and 

finite difference (FD). 
 
Figure 3a is the result obtained for solving equation 2 using 
finite difference (FD) and orthogonal collocation numerical 
technique. The graph shows the bed concentration profiles 
expected at one-half pore volume injected for a one 
dimensional aqueous phase chromatography. The response 
is as a result of injecting a mixture C1 = 0.66, C2 =0.875 into 
a bed equilibrated with C1 =0.35, C2 = 0.15 (Riemann type 
problem, case 3( refer to Table 5) ).The profile C1 of finite 
difference decline steadily from C1 = 0.67 to C1 = 0.35 and 
maintained a constant state at this concentration, while the 
profile C1 of orthogonal collocation decreases steadily from 
C1= 0.67 to C1 = 0.05 and then declined further with little 
oscillation before rising to C1 = 0.35 at distance of 0.6 for it 
to remain at a region of constant state with the finite 
difference technique, For the initial C1 concentration in the 
reservoir. Similarly, the C2 of finite difference decreases 
steadily from C2 = 0.88 to C2 = 0.15, it then declines further 
with oscillation before rising back to C2 = 0.15 to attain 
constant state of initial C2 reservoir concentration. 
 
Figure 3b shows the plots for two methods; finite 
difference(FD) and orthogonal collocation (OC) for one 
dimensional aqueous phase chromatography for injecting a 
mixture C1 = 0.66, C2 = 0.875 into a bed equilibrated with 
C1 = 0.35 C2 = 0.15 (Riemann type problem, case 3(refer to 
Table 5)) at one pore volume injected. The profile C1 of 
finite difference decreases gradually from C1 = 0.67 to C1 = 
0.35 and continued with a constant concentration. The 
profile C1 of orthogonal collocation declines gradually from 
C1 = 0.67 to C1 = 0.01. It then increased steadily to C1 = 0.35 
with small depression and then later remain constant after 
attaining C1 = 0.35 again. Also the C2 of finite difference 
decreases steadily from C2 = 0.88 to C2 = 0.15 to attain 
constant state. The C2 of orthogonal collocation decreases 
steadily from C2 = 0.88 to C2 = 0.15 then short constant 
statebut with a small depression before continuing the region 
of constant state again with the finite difference.  
 

Figure 3c indicates the plots for two numerical technique; 
finite difference and orthogonal collocation for one 
dimensional aqueous phase chromatography for injecting a 
mixture C1 = 0.66, C2 = 0.875 into a bed equilibrated with 
C1 = 0.35, C2 = 0.15 ( Riemann type problem, case 3,(refer 
to Table 5)) at two pore volume injected.The profile C1 of 
finite difference decreases steadily from C1 = 0.67 to C1 = 
0.35 at distance 0.1epsilon and maintained a constant state at 
this concentration while the profile C1 of orthogonal 
collocation decreases from C1 = 0.67 to C1 = 0.35 at a 
distance 0.2 epsilon to attain a constant state with the finite 
difference. Similarly, the C2 of finite difference decreases 
steadily from C2 = 0.88 to C2 = 0.15 at distance 0.1epsilon 
and then continues with the constant concentration. The 
profile of orthogonal collocation falls from C2 = 0.88 to C2 = 
0.05 and then attain a constant state with the finite 
difference. 
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Figure 3a: CASE 3: C1,C2 vs epsilon at τ = 0.5. Bed 

composition profile for one-dimensional aqueous-phase 
chromatography; case 3, at one-half pore volume injected. 

The plots are for two methods: Orthogonal collocation(OC), 
and finite difference(FD). 
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Figure 3b: CASE 3: C1,C2 vs epsilon at τ = 1.0. Bed 

composition profile for one-dimensional aqueous-phase 
chromatography; case 3, at one pore volume injected. The 

plots are for two methods: Orthogonal collocation(OC), and 
finite difference(FD). 
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Figure 3c: CASE 3: C1,C2 vs epsilon at τ = 2.0. Bed 

composition profile for one-dimensional aqueous-phase 
chromatography; case 3 at two pore volumes injected The 

plots are for two methods:Orthogonal collocation(OC), and 
finite difference(FD). 

 
5. Discussion of Results 
 
The ultimate objective of the simulator designed here is the 
prediction of the appropriate surfactant concentration 
necessary for the required enhanced oil recovery from a 
chosen reservoir. 
 
The basic physical principle employed by the simulator is 
that of mass conservation. Usually those quantities are 
conserved at stock tank conditions and related to reservoir 
fluid quantities through the pressure dependent parameters. 
The profiles of two cases, 2 and 3, one dimensional aqueous 
phase chromatography and two-phase chromatography for 
one, one-half, and two pore volume injected were developed 
using simulated solutions to model equations. These 
equations are solved by finite difference (FD),and 
orthogonal collocation .The use of these methods permit the 
determination of the relative efficiency of the methods and 
how well they predicts the complex characteristics of the 
enhanced oil recovery process. We will now discuss the 
significant results of this work. 
 
We did find out that: 
 
(i) For the situation where a mixtureof low concentration 

aqueous surfactant composition is injected into adsorbing 
porous medium that is initially injected with high 
concentration aqueous surfactant composition a variation 
may exist in the initial profile or be generated by the 
injection. The initial fluid or previously injected fluid has 
the composition downstream of the change in amount 
while the newly injected fluid has the composition 
upstream of the original variation.The composition route 
along the bed follows the slow path from the injected 
composition and then switches to the fast path which 
leads to the previously injected compòsition. The route 
passes along paths and follows the paths in the sequence 
of increasing wave velocities. 

(ii) Injecting a mixture of an aqueous composition into a 
porous medium, initially devoid of surfactant, the 

expected composition is a self sharpening shock wave. 
The steepness in all the profiles generated by finite 
difference (FD), andorthogonal collocation confirms the 
self sharpening behaviour.It may be noted in all cases of 
these nature the waves trajectories gradually fall, as a 
result of a gradual increase in the associated eigenvalues 
of the waves as salinity increases. The finite difference 
(FD) and orthogonal collocation (OC) response 
essentially agrees.The consequence of this steepening is 
that the flows are sharpening, so that they break through 
both earlier and over a smaller injected volume. For the 
dependent variables such as component concentration, 
common velocity exists at each point in the wave, and 
the associated composition route remains unchanged and 
the same during relative shifts of waves associated with 
other dependent variable waves as shown in all the 
methods. This is in agreement with was obtained 
previous author [22]. 

 
Injecting a mixture of high concentration of surfactant into 
adsorbing porous medium that is initially injected with low 
concentration aqueous surfactant composition yield two 
types of path. The slow and fast paths. The slow paths 
eigenvalues are closed to the fast path that has eigenvalues 
of 1 and the effect of dispersion results in the merging of the 
two waves. This is due to their spatial position, and loss of 
intermediate region of constant state. This region later 
reappear with less dispersion.  
 
6. Conclusions 
 
The applicability of the simulator for the solution of the 
model equations of multiphase, multicomponent flow and 
transport in a reservoir has been demonstrated using 
orthogonal collocation solution. The results of the 
orthogonal collocation solution were compared with those of 
finite difference. The results obtained using this 
methodology revealed certain features unobserved by 
previous investigators [16]. The results indicate that the 
concentration of surfactants (C1, C2) for orthogonal 
collocation appear to show more features than the 
predictions of finite difference. The reason for the difference 
is the subject of continuing study. 
 
It is obvious that the routes for the compositions of 
adsorbing surfactants correspond to the simpler case of 
aqueous phase chromatography, with modified eigenvalues. 
This observation also holds for “shock” waves. The spatial 
position of waves and loss of intermediate region of constant 
state resulted in mild dispersion. Therein lays the possibility 
of the differences in the concentration profiles predicted by 
the numerical techniques. Again, the use of the orthogonal 
collocation and finite difference solution provide easier 
solution to future possible problems that may arise as the 
simulator is being used. The future scope of this study is 
extending to experimental investigation and application to 
unconventional reservoirs. 
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Table 1: Reservoir characteristics from the previous work 
[16] 

Parameter Value 
Rock density 2.65 g/cm3 
Porosity 0.2 
Oil viscosity 5.0 cp 
Water viscosity 1.0 cp 
Injection pressure gradient 
( maintained constant ) 

1.5 psi/ft 

Fluid densities 1.0 g/cm3 
Width of injection face 50 ft 
Width of central high permeability streak 10 ft 
Length of reservoir 100 or 5000 ft 
Residual oil saturation 0.2 
Connate water saturation 0.1 
First injected surfactant SDS 
Second injected surfactant DPC 
Henry’s law constant 
 SDS 
 DPC 

 
2.71×10-4 l/g 
8.30×10-5 l/g 

CMC Values 
 SDS 
 DPC 

 
800 μmol/l 
4000 μmoll/l 

Injected concentration 
 SDS 
 DPC 

 
10 CMC 
10 CMC 

Brine spacer (typical) ≈ 0.05 pore volumes 
Slug volumes ≈ 0.10 pore volumes 

 
Table 2: Reservoir Characteristics used for the Simulation 

work [17] 
Parameter Value 

Rock density 2.65 g/cm3 
Porosity 0.2 
Oil viscosity 0.40 cp 
Water viscosity 0.30 cp 
Injection pressure gradient 
( maintained constant ) 

1.5 psi/ft 

Fluid densities 1.0 g/cm3 
Width of injection face 50 ft 
Width of central high permeability 
streak 

10 ft 

Length of reservoir 100 or 5000 ft 
Residual oil saturation 0.2 
Connate water saturation 0.2 
First injected surfactant SDS 
Second injected surfactant DPC 
Henry’s law constant 
 SDS 
 DPC 

 
2.71×10-4 l/g 
8.30×10-5 l/g 

CMC Values 
 SDS 
 DPC 

 
800 μmol/l 
4000 μmoll/l 

Injected concentration 
 SDS 
 DPC 

 
10 CMC 
10 CMC 

Brine spacer (typical)  ≈ 0.05 pore volumes 
Slug volumes  ≈ 0.10 pore volumes 

 
 
 
 
 
 
 
 

Table 3: Parameter values used in Trogus adsorption model 
for verification runs 

Parameter Value 
Pure component 
CMCs 

C1*=1.0 mol/m3 
C2*=0.35 mol/m3 

Phase separation 
model parameter 

θ=1.8 

Henry’s law 
constants for 
adsorption 

,i i i wC k C
−

=
 

( ,i wC = aqueous monomer concentration) 

k1 =0.21×10-3 m3/kg 
k2= 0.80×10-3 m3/kg 

Henry’s law constant 
for oleic partitioning , ,i o i i wC q C=  

( ,i wC = aqueous monomer concentration) 

q1=7.1 
q2=1.3 

Adsorbent properties ρs =2.1× 10+3 m3/kg 
∅ =0.2 

 
Table 4: Additional Reservoir Parameters for the coherence 

work [16] 
Model designation A B 
Grid points in the horizontal direction ( m+1) 21 21 
Grid points in the vertical direction (n+1) 11 21 
Coherent waves of water saturation 28 28 
Initial number of points per coherent wave 
 Water 
 Surfactant 

 
41 
81 

 
41 
81 

Maximum number of points required per coherent 
wave 

≈ 300 ≈300 

Average time step size (days) 
 Short reservoir (100 ft) 
 200 mD streak 
 1000 mD streak  
 Long reservoir (5000ft) 
 200 mD streak 
 1000 mDsreak 

 
 
3.47 
0.69 
 
174.0 
34.7 

 
 
3.47 
0.69 
 
174.0 
34.7 

Typical number of time steps required to inject 
first pore volume 
 Short reservoir  
 Long reservoir  

 
 
33 
75 

 
 
33 
75 

 
Table 5: Conditions for case studies of surfactant 

chromatography [16] 
Case Injected 

composition: 
C1(mol/m3 
bed) 

Injected 
composition: 
C2(mol/m3bed) 

Initial 
composition: 
C1(mol/m3bed) 

Initial 
composition: 
C2(mol/m3bed) 

1 0.17 0.013 0.21 0.181 
2 0.042 0.115 0 0 
3 0.66 0.875 0.35 0.15 
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