A Note on a Subcode of a Linear Q – Ary Code of Length N and an Algorithm for Calculating Minimum Distance

Dr. M. Mary Jansi Rani^{1,} M.Manikandan²

^{1, 2}Thanthai Hans Roever College, Perambalur, India

Abstract: This Paper Deals with The Calculation Of Minimum Distance Of A Q-Ary Linear Code Of Length N. The Set Of Code Words Having The Left Most Coordinate Position O Forms A Subcode. If C Is An [N, K, D] Code, The Subcode Co So Considered Is Of Dimensions K-1. The Coset Leaders In C/Co Give The Method Calculating Minimum Distance. The Method Does Not Make Use Of The Known Techniques Using A Parity Check Matrix H. In Phillipe Delsarte "Four Fundametal Parameters Of A Code And Their

Combinatorial Significance, Information And Control 23, 407 – 438 (1973), The Inner Product Of Two Vectors A And B In F_{α}^{n} Is

Considered Using Group Characters Of A Finite Abelian Group (F, +) Of Order Q Over [, The Cyclotomic Field Of Complex Vth Roots

Of Unity. The Dual Code Is Defined Via The Inner Product $\langle A, B \rangle$ Of $A, B \in \mathbb{F}^N$, If Reduces To The Classical Concept For Linear Codes Over Finite Fields. However, If $A = A_0 A_1 \dots A_m$

 $B = B_0 B_1 \dots B_{n-1} \in F_q^n$. The Inner Product A, $B = \sum_{i=0}^{n-1} a_i b_i$ Could Be Interpreted Using A Cyclotomic Extension $F_q(\xi)$ Of F_q Via

Trace Of An Element In $F_q(\xi)$. This Give Get Another Interpretation Of The Inner Product A. B.

Keywords: Cyclotomic Cosets, Minimum Distance, Co Ordinate Position, Coset Leader, Subcode, Inner Product.

1. Introduction

In [1], Phillipe Delsarte Give An Interesting Account Of The Form Fundamental Parameters Of A Code (Linear Or Not) And Their Combinatorial Significance. While Discussing The Distance Distribution (Which Reduces To Weight Distribution In The Case Of A Linear Code) Of An [N, M] Code $1 \le M \le Q^n$ The Author Introduces An Inner Product Of Vectors In Fⁿ Where F Is A Finite Abelian Group Of Order Q \geq 2, Via A Group Character ψ Of F Over $\Gamma \gamma$, The Cyclotomic Field Of Complex Vth Roots Of Unity. The Inner Product $\langle A, B \rangle$ Of N-Tuples A = (A₀ A₁ ... A_{n-1}), B = $(B_0 \; B_1 \; ... \; B_{n\text{-}1})$ Is Given Interms Of $\psi.$ When The Additive Code C Is A Subgroup Of Fⁿ, The Dual Code C¹ Is Also An Code Additive And Is Defined By, $C^1 = \{a \in F^n(a, b) = 1 \text{ for all } b \in F^n\}$

This Duality Is An Involution (In The Sense That $(E^1)' = C$) And C^1 Is Such That C^1 Is Isomorphic To The Quotient Group $\frac{F^n}{C}$. That Is $C^1 \cong \frac{F^n}{C}$ As Mentioned In [1] The

Finite Fields. Moreover, For Every A, B, $C \in F^{N}$ One Has

(A, B + C) = (A, B) (A, C) More Over, Any Character Of (F^n, T) Can Be Represented In This Manner.

As We Are Handling A Finite Field F_q , It Will Be Nice If We Arrive At An Inner Product Using The Field Structure Of F_q , Instead Of The Character ψ Of A Finite Abelian Group. The Following Approach To An Inner Product Via A Cyclotomic Extension Of A Finite Field Agrees With The Known Definition Of An Inner Product Of Vectors $A = (A_0 A \dots A_{n-1})$, $B = (B_0 B_1 \dots B_{n-1})$ Belonging To F_q^n . Details Are Given In 1 Preliminary. The Aim Of This Note Is To Propose An Algorithm For The Calculation Of The Minimum Weight Of A Q-Ary Linear Code C Using Partition Of The Set Of Code Words Of C. The Method, Believed To Be New, Does Not Make Use Of The Known Techniques Using A Parity Check Matrix H. A New Interpretation Of The Inner Product Of Vectors A And B In

 F_{a}^{n} Is Also Investigated.

2. Preliminaries

Definition: 1.1 The Trace T $(A_1a_2 \ ... \ A_n)$ Of $(A_1a_2...A_n)$ Is Defined To Be

$$T (A_0a_1..., A_{n-1}) = \sum_{i=0}^{n-1} T(ai)$$

$$= N (A_0 + A_1 + A_{n-1})$$
Example: 1
If F4 = {0, 1, α , β } 1 + 1 = α , 1 + α = β Etc.
T (β 0 α $\alpha\beta$) Where β 0 α $\alpha\beta \in F_4^5$ Is Given By
T (β 0 α $\alpha\beta$) = 5 (β + α + α + β)
= 5 (α + β + α + β)
= 5 (α + α^2 + α + α^2)
= 5 (1 + α + 1 + α)
= 5 × 0 = 0
This Makes Eligible For Defining The Inner Product (A, B)
Of Vectors A, B $\in F_a^n$ As Follows.

Definition: 1.2 The Inner Product A, B Of A, $B \in F_q^n$ Is

Given By

(A, B) =
$$\frac{1}{n^2} \sum_{i=0}^{n-1} T(ai) T(bi)$$

This Agrees With The Usual Inner Product Consider In The Context Of Q-Ary Linear Codes. For Each $A_i \in F_q$, $T(A_i) = N A_i$ (I = 0, 1, 2 N). It Is Obvious That This Is Not The Type Of Inner Product Considered Using Group Characters In Phillipe Del Sarte [1].

Let $[T_i]$ Be The Coset Of C Consisting Of All Vectors In F_q^n With Syndrome \overrightarrow{ti} . Suppose That A Code Word \overrightarrow{y} Sent Over A Communication Channel Is Received As Vector. In Nearest Neighbour Decoding, We Find Out The Vector E Of Smallest Weight Such That $T - E \in C$. It Amounts To Finding A Vector E Of Smallest Weight In The Coset Containing R Such That $R - E \in C$ Ie The Coset Leader Of Smallest Weight In The Coset Containing R. This

First Choose A Fixed Parity Check Matrix H.

Leads To 'Syndrome Decoding' Algorithm.

Step: 1 For Each Syndrome $T \in F_q^{n-12}$ Choosen A Coset Leader E_t Of The Coset [T]. Create A Table Pairing The Syndrome With The Coset Leader.

Step:2 After Receiving A Vector R, Compute Its Syndrome S Using The Parity Check Matrix H.

Step:3 R Is Decoded As The Codeword R – E. For Details See Huffman And Pless [2]. Our Aim Is To Apply A Similar Techniques For Obtaining The Minimum Distanced Of A Q-Ary Code Of Length N .

2. *Main Theorem* In View Of Sylows First Theorem It Is Possible To Pick An [N, K-1] Q-Ary Sub Code Of A Q-Ary Code Of Length N And Dimension K.

Definition: 2.1 Let C Be A Q-Ary Code Of Length N (N \geq 2) And Dimension K. A Code Words C = C₀ C₁...... C_{n-1} (Where C_i \in F_q, I = 0, 1, 2 ... N-1) Is Said To Have The Left Mostcoordinatepositionl₀.

For Example: α 01 α $\beta \in F_4^5$ Has Left-Most Coordinate Position α , (O, 1, α , β) Denoting Elements Of F₄.

Definition: 2.2 Let $A = A_0 A_1 \dots A_{n-1}$, $B = B_0 B_1 \dots B_{n-1}$ Be Two Code Words In C (Of Dimension K) A And B Are Said To Be Equivalent. Written $A \sim B$, α If And Only If A And B Agree On The Left-Most Coordinate Position.

Theorem: 1 The Equivalence Class Of Code Words Having O In The Left-Most Coordinate Position Forms A Subcode C_0 Of C And C_0 Has Dimension K – 1 Over F_q .

Proof When
$$Fq = \{0, 1, \alpha, \alpha^2 \dots \alpha^{\varepsilon^{-2}}\}$$
 Where $\alpha = Exp$

 $\left(\frac{t_1}{1}\right)$ The Equivalence Relation Given In Definition 2.2

Partitions C Into Q Classes. In Fact $C \cong F_q^k$, Each Equivalence Class Contains Q^{k-1} Code Words. Since When The Left Most Coordinate Position Is Fixed, We Get Q Classes Due To The Partition. In Partition The Class [0] Has Q^{k-1} Elements Following The Addition Rule F_q , If $\overrightarrow{a_0} = O A_1 A_2 \dots A_{n-1}$ And $B_0 = O B_1 B_2 \dots B_{n-1}$, $A_0 + B_0 \in [0]$. Also When A Is In [0], -A Is Also In [0]. $0 = 0 \ 0 \ 0 \dots \in [0]$.Therefore

([0], +) Is An Abelian Group Of Order
$$\mathbf{q}^{\mathbf{K}-1}$$
, For $\boldsymbol{\alpha}^{t} \in \mathbf{F}_{q}$,
 $\boldsymbol{\alpha}^{t} \mathbf{A}_{0} = \boldsymbol{\alpha}^{t} (0 \mathbf{A}_{1} \mathbf{A}_{2} \dots \mathbf{A}_{n-1})$
= $\left(\mathbf{0} \mathbf{a}_{1}^{'} \mathbf{a}_{2}^{'} \dots \mathbf{a}_{n+1}^{'}\right)$ Where $\mathbf{a}_{j}^{'} = \alpha_{J} \mathbf{A}_{j} \in \mathbf{F}_{q}$.

So, [0] Is Closed Under Scalar Multiplication. Thus [0] Is A Subspace Of F_q^n And Its Dimension Is (K-1). For A Basis Of [0] Can Be Put In 1 – 1 Correspondence With The Basis Vectors Of A (K-1)-Dimensional Space. This Complets The Proof Of Theorem 1.

Definition: 2.3 We Define By C(T) The Set Of Codewords Of C For Which The Coordinates Are Zero An T. C(T) Is A Subcode Of C, That Is When

T = {1} In Theorem 1. Puncturing C(T) On T Gives A Code Of Length N – T Called The Code Shortened On T. If Is Denoted By C_T .

Example: 1 A Binary Code Of Length 7 And Having $2^3 = 8$ Code Words Is Given By, $G = 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 0$ 01110101001110 00111011010011 01001111101001 When $T = \{1\},\$ $C_{1}(T) = 0.0000000$ 0111010 0100111 0011101 It Is A Subcode Of C1, C1 (T) Has A Basis {0011101, 0100111} C1 $= \cong \{0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0, \ 111 \ 0 \ 1 \ 0 \ 0 \}.$ C1 (T) C_1 Is A Binary [7, 3. 4] Code Whereas C_1 (T) Is A [7, 2, 4] Subcode Of C_1 . Example: 2 A Ternary [4, 2, 3] Code Is A Linear Code Over $\mathbf{F}_3 = \{0, 1, 2\}$ Where $2^2 \equiv (Mod 3)$. It Is Denoted By C₂ And Its Code Words Are 000010112210 011211202022 0 2 2 1 1 2 0 2 2 1 0 1 When $T = \{1\},\$ $C_2 \{T\} = 0000, 0112, 0221.$ $C_2(T)$ Is A Subcode Of C_2 And Having Dimension 1 As 0 1 1 2 + 0 1 1 2 = 0 2 2 10 1 1 2 + 0 2 2 1 = 0 0 0 0. $\frac{C_2}{C_2} \cong \{0\ 0\ 0\ 0,\ 1\ 0\ 1\ 1,\ 2\ 0\ 2\ 2\}$ $C_{2}(T)$

Let A_i Denote The Number Of Code Words Having Weight I In C_3 . The Weight Enumerator Of C_3 Is The Polynomial

Volume 3 Issue 10, October 2014

<u>www.ijsr.net</u>

$$W(X, Y) = \sum_{i=0}^{6} A_i x^{6-i} y^i \dots (1)$$

Here, $A_0 = 1$, $A_1 = A_2 = 0$, $A_3 = 12$, $A_4 = 18$, $A_5 = 24$ And $A_6 = 9$ Substituting These Values In 1 We Obtain. W(X, Y) = $X^6 + 12x^3 Y^3 + 18 X^2 Y^4 + 24xy^5 + 9y^6$ We Observe That C₃ Is A [6, 3, 3] Quaternary Code.

Theorem: 2 Given A Q-Ary Code Of The Type [N, K, D]There Always Exists A Q-Ary $[2n, K, D^1]$ Code With A Computable Minimum Distance $\mathbf{d}^{"}$.

Proof Let C Be A Q-Ary [N, K, D] Code, Suppose That Co Denotes The Subcode Of C Having Codewords In Which The Left Most Position O. By Theorem 1, Co Is An [N, K-1, D_0] Code Where $D_0 \le D$. Then The Orthogonal Complement

C/ Co Is An [N, 1, $d_0^{'}$] Code Which Is Isomorphic To F_q.

The Minimum Distance d_0 Is Computable. Then $C_0 \oplus C/C_0$ Is A [2n, (K-1)+1, D'] Code. Where

 $D' = Min [D_o, d_0] D'$ Is Computable. Therefore Given A Q-Ary [N, K, D] Code, It Is Always Possible To Find A Q-Ary [2n, K, D'] Code With Computable D'.

Example When C Is A [6, 3, 3] Quaternary Code, C_0 Is A [6, 2, 3] Quaternary Code. C/ Co Is A [6, 1, 3] Quaternary Code. So $Co \oplus C/C_0$ Is A [12, 3, 3] Quaternary Code.

3. An Algorithm To Find Minimum Weight Of An [N, K] Code

Theorem: 3 The Algorithm For Calculating The Minimum Weight D Of A Q-Ary [N, K] Code Of Length N Consists Of The Following Steps.

Step: 1 Determine The Subcode C_0 Of Dimension (K-1) Containing Codewords With Left Most Coordinates Position O. That Is Lies The Codewords In C_0 In A Row.

Step: 2 Determine The Coset Of C_0 By Writing $[A] = [C_0 + A]$ Where A Will Serve As The Element Containing 1's And 0's For The Abelian Group Of Cosets Of C_0 Isomorphic To $(F_{q_2} +)$. List The Elements Of The Coset [A] In A Row.

Step: 3 Determine The Minimum Weight Do Of The Code Words In C_0 .

Step: 4 Determine The Min Weight d_0 Of The Code Words In $\lceil \alpha \rceil$.

Step: 5 Determine The Minimum Of The Values D_0 , d_0 Found Out In Steps 3 And 4. The Minimum Valued Gives The Minimum Weight D. (Or Minimum Distance D) Of The Code C.

Proof C_0 Is A Subspace Of Dimension K-1 Of The Code C. The Quotient Space C/C_0 Has Dimension And So It Is Isomorphic To F_q . For Non Zero Vector $V \in F_q^n$ If $\alpha \in F_q$ $(\alpha \neq 0)$ Wt $(\alpha V) =$ Wt (V) And So We Have Only To Determine The Minimum Weights Code Word In C_0 And $[\alpha]$. This Completes The Proof Of The Algorithm.

References

- [1] Carry Huffman And Veva Pless:Fundamentals Of Errors –Correctingcodes, Cambridge Universitypress(2004)
- [2] Chapter. 1 And 7 Sections 1.2, 1.4, 1.5 And Sections 7.1, 7.2, 7.3, 7.5 And 7.6. Pp. 2-18 And 252-272.
- [3] T.W. Hungerford: Algebra, Holt, Rinchart And Winston Inc 1974.Chap. V, PP. 230 – 306.
- [4] Hill. R (1986) A First Course In Coding Theory Oxford University Press.
- [5] F.J.Mawilliams, A.M. Odlyzko, And N.J.A. Sloane : Self-Dual Codes Over GF(4)Journalofcombinatorial Theory, Series A25, 288-318 (1978).
- [6] Phillipe Delsarte: Four Foundamental Parameters Of A Code And Their Combinatorial Significance Information & Control 23, 407 – 438 (1973).