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Abstract: The term ‘Big Data’ describes innovative techniques and technologies to capture, store, distribute, manage and analyze 
petabyte- or larger-sized datasets with high-velocity and different structures. Big data can be structured, unstructured or semi-
structured, resulting in incapability of conventional data management methods. Big Data is a data whose scale, diversity, and complexity 
require new architecture, techniques, algorithms, and analytics to manage it and extract value and hidden knowledge from it. In order to 
process large amounts of data in an inexpensive and efficient way, open source software called Hadoop is used. Hadoop enables the 
distributed processing of large data sets across clusters of commodity servers. Hadoop uses FIFO as default scheduling algorithm for 
execution of jobs. Performance of Hadoop can be increased by using appropriate scheduling algorithms. The objective of the research is 
to study and analyze various scheduling algorithms which can be used in Hadoop for better performance.  
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1. Introduction 
 
Big Data is data whose scale, diversity, and complexity 
require new architecture, techniques, algorithms, and 
analytics to manage it and extract value and hidden 
knowledge from it. Traditional databases analytics says what 
happened and what is happening, however gives the 
predictive analysis of what is likely to happen in future. 
Infrastructure requirements of big are data acquisition, data 
organization and data analysis [1]. Hadoop is the open 
source software founded by Apache [2]. It is a software 
framework for processing large datasets. Hadoop Distributed 
File System (HDFS) for storage and MapReduce for 
processing are the two components of Hadoop [2] 
[9][10][28]. MapReduce is a programming for processing 
large datasets. MapReduce works with 2 functions: Map and 
Reduce function. The Map, written by the user, takes an 
input pair and produces a set of intermediate key/value pairs. 
The MapReduce library groups together all intermediate 
values associated with the same intermediate key I and 
passes them to the Reduce function. The Reduce function, 
also written by the user, accepts an intermediate key I and a 
set of values for that key. It merges these values to form a 
possibly smaller set of values.  
 
Rest of the paper describes what big data is, how the big 
data differ from the traditional data and the infrastructure 
management of big data [13][15][26][30]. Then we have 
focused on Hadoop, its architecture and information of 
scheduling in MapReduce for data processing [22] [24] [26]. 
 
2. Big Data 
 
2.1 What is Big Data? 
 
The use of the term “big data” can be traced back to 
discussions of handling large groups of datasets in both 
academia and industry during the 1980s. However, since big 
data is still in its early stages, the industry is still trying to 
grasp its core nature and to define it scientifically and 
pragmatically. Among several definitions presented in the 
literature, the first formal, academic definition appears in a 

paper submitted in July 2000 by Francis Diebold of 
University of Pennsylvania in his work of econometrics and 
statistics (2000) 
 

“Big Data refers to the explosion in the quantity (and 
sometimes, quality) of available and potentially relevant 
data, largely the result of recent and unprecedented 
advancements in data recording and storage technology. 
In this new and exciting world, sample sizes are no 
longer fruitfully measured in “number of observations,” 
but rather in, say, megabytes. Even data accruing at the 
rate of several gigabytes per day are not uncommon.” 

 
The most popular definition in recent years is the “Three 
V’s”: volume (size of datasets and storage), velocity (speed 
of incoming data), and variety (data types). The concept was 
first raised by Doug Laney (2001) in his META Group 
research note that describes the characteristics of datasets 
that cannot be handled by traditional data management tools. 
With the development of discussion and increasing interest 
in big data [13][18][30], the “Three V’s” have been 
expanded to “Five V’s”: volume, velocity, variety, veracity 
(integrity of data), value (usefulness of data) and complexity 
(degree of interconnection among data structures). 
 
More comprehensive definitions and descriptions have also 
emerged. For example, in its report, “Demystifying Big 
Data”, the Big Data Commission at the TechAmerica 
Foundation offers the following definition: 
  
“Big Data is a term that describes large volumes of high-
velocity, complex, and variable data that require advanced 
techniques and technologies to enable the capture, storage, 
distribution, management, and analysis of the information” 
(TechAmerica Foundation, 2012).  
 
Researchers at McKinsey propose an intentionally subjective 
definition:  
 
“Big data refers to datasets whose size is beyond the ability 
of typical database software tools to capture, store, manage, 
and analyze” (McKinsey Global Institute, May 2011). 
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Mike Gualtieri, Forrester Analyst, proposes a definition that 
attempts to be pragmatic and actionable for IT professionals:  
 
“Big Data is the frontier of a firm’s ability to store, process, 
and access (SPA) all the data it needs to operate effectively, 
make decisions, reduce risks, and serve customers” 
(Gualtieri, December 2012). 

 
A.  Vs of Big Data 
 Volume of data: Volume refers to amount of data. 

Volume of data stored in enterprise repositories have 
grown from megabytes and gigabytes to petabytes.  

 Variety of data: Different types of data and sources of 
data. Data variety exploded from structured and legacy 
data stored in enterprise repositories to unstructured, semi 
structured, audio, video, XML etc.  

 Velocity of data:Velocity refers to the speed of data 
processing. For time-sensitive processes such as catching 
fraud, big data must be used as it streams into your 
enterprise in order to maximize its value. 

 
B. Comparison between Traditional DBMS and 

BigData 
MapReduce is complementary to DBMS [26], not a 
competing technology.  
i. Parallel DBMS are for efficient querying of large data 

sets.  
ii. MR-style systems are for complex analytics and ETL 

tasks.  
iii. Parallel DBMS require data to fit into the relational 

paradigm of rows and columns.  
iv. In contrast, the MR model does not require that data files 

adhere to a schema defined using the relational data 
model. That is, the MR programmer is free to structure 
their data in any manner or even to have no structure at 
all.  

 
C. BigData Pillars 
1) Big Table – Relational, Tabular format – rows & 

columns 
2) Big Text – All kinds of unstructured data, natural 

language, grammatical data, semantic data 
3) Big Metadata – Data about data, taxonomies, glossaries, 

facets, concepts, entity 
4) Big Graphs – object connections, semantic discovery, 

degree of separation, linguistic analytic, subject predicate 
object 

 
D. Big Data: Infrastructure Requirements  
 
i. Data Acquisition in Big Data  
Even though the data will be in distributed environment, 
infrastructure must support to carry out very high transaction 
volumes and also support flexible data structures. To collect 
and store data, NoSQL are often used in Big data. NoSQL 
will not have any fixed schema since it supports high variety 
of data by capturing all types of data. Keys are used to 
identify the data point without designing schema with 
relationship between entities.  
 
ii. Data Organization in Big Data  
In the classical term of data warehousing, organizing data is 
called as data integration. Big data requires good 

infrastructure, so that processing and manipulating data in 
the original storage location can be done easily. It must also 
supports very high throughput to deal with processing steps 
of large data and handles large variety of data formats like 
structured format, unstructured format etc. Hadoop [10] [28] 
is a new technology that allows large data volumes to be 
organized and processed while keeping the data on the 
original data storage cluster. For example Hadoop 
Distributed File System (HDFS) [9], [10] is the long - term 
storage system for web logs. These web logs are turned into 
browsing behavior (sessions) by running MapReduce 
programs on the cluster and generating aggregated results on 
the same cluster [19]. These aggregated results are then 
loaded into a Relational DBMS system.  
 
iii. Data analysis in Big Data  
Since data is not always moved during the organization 
phase, the analysis may also be done in a distributed 
environment, where some data will stay where it was 
originally stored and be transparently accessed from a data 
warehouse. The infrastructure required for analyzing big 
data must be able to support deeper analytics such as 
statistical analysis and data mining, on a wider variety of 
data types stored in diverse systems; scale to extreme data 
volumes; deliver faster response times driven by changes in 
behavior; and automate decisions based on analytical 
models. Most importantly, the infrastructure must be able to 
integrate analysis on the combination of big data and 
traditional enterprise data. New insight comes not just from 
analyzing new data, but from analyzing it within the context 
of the old to provide new perspectives on old problems. For 
example, analyzing inventory data from a smart vending 
machine in combination with the events calendar for the 
venue in which the vending machine is located, will dictate 
the optimal product mix and replenishment schedule for the 
vending machine. 
 
3. HADOOP 

 
A. Introduction To Hadoop 
 
Hadoop has been successfully used by many companies 
including AOL, Amazon, Facebook, Yahoo and New York 
Times for running their applications on clusters. For 
example, AOL used it for running an application that 
analyzes the behavioral pattern of their users so as to offer 
targeted services. Apache Hadoop [2] is an open source 
implementation of the Google’s MapReduce parallel 
processing framework. 
 
Hadoop hides the details of parallel processing, including 
data distribution to processing nodes, restarting failed 
subtasks, and consolidation of results after computation. 
This framework allows developers to write parallel 
processing programs that focus on their computation 
problem, rather than parallelization issues. Hadoop includes 
1) Hadoop Distributed File System (HDFS) [9] [10] [25]: a 
distributed file system that store large amount of data with 
high throughput access to data on clusters and 2) Hadoop 
Map Reduce: a software framework for distributed 
processing of data on clusters. 
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A .1 HDFS- Distributed file system 
Google File System (GFS) [9] [25] is a proprietary 
distributed file system developed by Google and specially 
designed to provide efficient, reliable access to data using 
large clusters of commodity servers. Files are divided into 
chunks of 64 MB, and are usually appended to or read and 
only extremely rarely overwritten or shrunk. Compared with 
traditional file systems, GFS is designed and optimized to 
run on data centers to provide extremely high data 
throughputs, low latency and survive individual server 
failures. Inspired by GFS, the open source Hadoop 
Distributed File System (HDFS) stores large files across 
multiple machines. It achieves reliability by replicating the 
data across multiple servers. Similarly to GFS, multiple 
replicas of data are stored on multiple compute nodes to 
provide reliable and rapid computations. Data is also 
provided over HTTP, allowing access to all content from a 
web browser or other types of clients. HDFS has 
master/slave architecture. 
 
As shown in figure A.1, HDFS Architecture [9] consists of a 
single NameNode and multiple DataNodes in a cluster. 
NameNode is responsible for mapping of data blocks to 
DataNodes and for managing file system operations like 
opening, closing and renaming files and directories. Upon 
the instructions of NameNode, DataNodes perform block 
creation, deletion and replication of data blocks. The 
NameNode also maintains the file system namespace which 
records the creation, deletion and modification of files by the 
users. NameNode decides about replication of data blocks. 
In a typical HDFS, block size is 64MB and replication factor 
is 3 (second copy on the local rack and third on the remote 
rack). 

 
A .2 Hadoop MapReduce 
As shown in figure A.2, Hadoop MapReduce Architecture 
[2][9][10] is one of the parallel data processing paradigm 
designed for large scale data processing on cluster-based 
computing architectures. It was originally proposed by 
Google to handle large-scale web search applications. This 
approach has been proved to be an effective programming 
approach for developing machine learning, data mining, and 
search applications in data centers. Its advantage is that it 
allows programmers to abstract from the issues of 
scheduling [26], parallelization, partitioning, replicationand 
focus on developing their applications. 

 
Figure A.1: Hadoop Distributed File System Architecture 

 
Figure A .2: Hadoop MapReduce Architecture 

 
Hadoop MapReduce programming model consists of data 
processing functions: Map and Reduce [5][6][7]. Parallel 
Map tasks are run on input data which is partitioned into 
fixed sized blocks and produce intermediate output as a 
collection of <key, value> pairs. These pairs are shuffled 
across different reduce tasks based on <key, value>pairs. 
Each Reduce task accepts only one key at a time and process 
data for that key and outputs the results as <key, value> 
pairs. The Hadoop MapReduce architecture consists of one 
JobTracker (Master) and many TaskTrackers (Workers). 
The JobTracker receives job submitted from user, breaks it 
down into map and reduce tasks, assigns the tasks to Task 
Trackers, monitors the progress of the Task Trackers, and 
finally when all the tasks are complete, reports the user 
about the job completion. Each Task Tracker has a fixed 
number of map and reduce task slots that determine how 
many map and reduce tasks it can run at a time. HDFS 
supports reliability and fault tolerance of MapReduce 
computation by storing and replicating the inputs and 
outputs of a Hadoop job. 

 
4. Scheduling in Hadoop 
 
4.1 Scheduling  
The default scheduling algorithm is based on FIFO where 
jobs were executed in the order of their submission. Later on 
the ability to set the priority of a Job was added. Facebook 
and Yahoo contributed significant work in developing 
schedulers i.e. Fair Scheduler and Capacity Scheduler 
respectively which subsequently released to Hadoop 
Community. Research work is being taking place in 
scheduling a job in Hadoop [29] [31] [26]. Some of the 
researchers have developed scheduling algorithms which are 
also discussed in this section.  
 
i. Schedul Fifo er 
This is a default scheduler which operates using a FIFO 
queue. A job is first partitioned into individual tasks, and 
then loaded into the queue and assigned to free slots on 
TaskTracker nodes. Each job would use the whole cluster, 
so jobs had to wait for their turn. Even though a shared 
cluster offers great potential for offering large resources to 
many users, the problem of sharing resources fairly between 
users requires a better scheduler. Production jobs need to 
complete in a timely manner, while allowing users who are 
making smaller ad hoc queries to get results back in a 
reasonable time. 
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ii. Fair Scheduler 
The Fair Scheduler was developed at Facebook to manage 
access to their Hadoop cluster [3]. The Fair Scheduler 
[12][23] aims to give every usera fair share of the cluster 
capacity over time. Users may assign jobs to pools, with 
each pool allocated a guaranteed minimum number of Map 
and Reduce slots [7] [14]. Free slots in idle pools may be 
allocated to other pools, while excess capacity within a pool 
is shared among jobs. The Fair Scheduler supports 
preemption, so if a pool has not received its fair share for a 
certain period of time, then the scheduler will kill tasks in 
pools running over capacity in order to give the slots to the 
pool running under capacity. As jobs have their tasks 
allocated to Task Tracker slots for computation, the 
scheduler tracks the deficit between the amount of time 
actually used and the ideal fair allocation for that job. As 
slots become available for scheduling, the next task from the 
job with the highest time deficit is assigned to the next free 
slot. Over time, this has the effect of ensuring that jobs 
receive roughly equal amounts of resources. Shorter jobs are 
allocated sufficient resources to finish quickly. At the same 
time, longer jobs are guaranteed to not be starved of 
resources. 
 
iii. Capacity Scheduler 
Capacity Scheduler [11] originally developed at Yahoo 
addresses a usage scenario where the number of users is 
large, and there is a need to ensure a fair allocation of 
computation resources amongst users. The Capacity 
Scheduler allocates jobs based on the submitting user to 
queues with configurable numbers of Map and Reduce slots 
[6] [16]. Queues that contain jobs are given their configured 
capacity, while free capacity in a queue is shared among 
other queues. Within a queue, scheduling operates on a 
modified priority queue basis with specific user limits, with 
priorities adjusted based on the time a job was submitted, 
and the priority setting allocated to that user and class of job. 
When a Task Tracker slot becomes free, the queue with the 
lowest load is chosen, from which the oldest remaining job 
is chosen. A task is then scheduled from that job. Overall, 
this has the effect of enforcing cluster capacity sharing 
among users, rather than among jobs, as was the case in the 
Fair Scheduler. 
 
iv. Longest Approximate Time to End (LATE) - 

Speculative Execution 
It is not uncommon for a particular task to continue to 
progress slowly. This may be due to several reasons like–
high CPU load on the node, slow background processes etc. 
All tasks should befinished for completion of the entire job. 
The scheduler tries to detect a slow running task to launch 
another equivalent task as a backup which is termed as 
speculative execution of tasks. If the backup copy completes 
faster, the overall job performance is improved. Speculative 
execution is an optimization but not a feature to ensure 
reliability of jobs. If bugs cause a task to hang or slow down 
then speculative execution is not a solution, since the same 
bugs are likely to affect the speculative task also. Bugs 
should be fixed so that the task doesn’t hang or slow down. 
The default implementation of speculative execution relies 
implicitly on certain assumptions: a) Uniform Task progress 
on nodes b) Uniform computation at all nodes. That is, 
default implementation of speculative execution works well 

on homogeneous clusters. These assumptions break down 
very easily in the heterogeneous clusters that are found in 
real-world production scenarios. Matei Zaharia, proposed a 
modified version of speculative execution called Longest 
Approximate Time to End (LATE) algorithm that uses a 
different metric to schedule tasks for speculative execution. 
Instead of considering the progress made by a task so far, 
they compute the estimated time remaining, which gives a 
more clear assessment of a straggling tasks’ impact on the 
overall job response time. They demonstrated significant 
improvements by Longest Approximate Time to End 
(LATE) algorithm over the default speculative execution. 
 
v. Delay Scheduling 
Matei Zaharia, Dhruba Borthakur, have discussed delay 
scheduler [21] [22]. Fair scheduler is developed to allocate 
fair share of capacity to all the users. Two locality problems 
identified when fair sharing is followed are – head-of-line 
scheduling and sticky slots. The first locality problem occurs 
in small jobs (jobs that have small input files and hence have 
a small number of data blocks to read). The problem is that 
whenever a job reaches the head of the sorted list for 
scheduling, one of its tasks is launched on the next slot that 
becomes free irrespective of which node this slot is on. If the 
head-of-line job is small, it is unlikely to have data locally 
on the node that is given to it. Head-of-line scheduling 
problem was observed at Facebook in a version of HFS 
without delay scheduling. The other locality problem, sticky 
slots, is that there is a tendency for a job to be assigned the 
same slot repeatedly. The problems aroused because 
following a strict queuing order forces a job with no local 
data to be scheduled. 
 
To overcome the Head of line problem, scheduler launches a 
task from a job on a node without local data to maintain 
fairness, but violates the main objective of MapReduce that 
schedule tasks near their input data. Running on a node that 
contains the data (node locality) is most efficient, but when 
this is not possible, running on a node on the same rack 
(rack locality) is faster than running off-rack. Delay 
scheduling is a solution that temporarily relaxes fairness to 
improve locality by asking jobs to wait for a scheduling 
opportunity on a node with local data. When a node requests 
a task, if the head-of-line job cannot launch a local task, it is 
skipped and looked at subsequent jobs. However, if a job has 
been skipped long enough, non-local tasks are allowed to 
launch to avoid starvation. The key insight behind delay 
scheduling is that although the first slot we consider giving 
to a job is unlikely to have data for it, tasks finish so quickly 
that some slot with data for it will free up in the next few 
seconds. 

 
vi. Dynamic Priority Scheduling 
Thomas Sandholmet [27], proposed Dynamic Priority 
Scheduler that supports capacity distribution dynamically 
among concurrent users based on priorities of the users. 
Automated capacity allocation and redistribution is 
supported in a regulated task slot resource market. This 
approach allows users to get Map or Reduce slot on a 
proportional share basis per time unit. These time slots can 
be configured and called as allocation interval. It is typically 
set to somewhere between 25 seconds and 1 minute. For 
example a max capacity of 28 Map slots gets allocated 
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proportionally to three users. The central scheduler contains 
a Dynamic Priority Allocator and a Priority Enforcer 
component responsible for accounting and schedule 
enforcement respectively. This model appears to favor users 
with small jobs than users with bigger jobs. However 
Hadoop MapReduce supports scaling down of big jobs to 
small jobs to make sure that fewer concurrent tasks runs by 
consuming the same amount of resources [14][16]. 
 
To avoid starvation, queue blocking and to respond to user 
demand fluctuations more quickly preemption is also 
supported. In this mechanism task slots that were allocated 
may be preempted and allocated to other users if they were 
not used for long time. As a result of variable pricing 
mechanism users to get guaranteed slot during demand 
periods has to pay more. This scheme discourages the free-
riding and gaming by users. However, the Hadoop 
MapReduce scheduling framework allows jobs to be split up 
in finer grained tasks that can run and possibly fail and 
recover independently. So the only thing the end users 
would need to worry about is to get a good enough average 
capacity over some time to meet their deadlines. This 
introduces the difficulty of making spending rate decisions 
to meet the SLA and deadline requirements. Possible 
starvation of low-priority (low-spending) tasks can be 
mitigated by using the standard approach in Hadoop of 
limiting the time each task is allowed to run on a node. 
Moreover, this new mechanism also allows administrators to 
set budgets for different users and let them individually 
decide whether the current price of preempting running tasks 
is within their budget or if they should wait until the current 
users run out of their budget. The fact that Hadoop uses task 
and slot level scheduling and allocation as opposed to job 
level scheduling also avoids many starvation scenarios. If 
there is no contention, i.e. there are enough slots available to 
run all tasks from all jobs submitted, the cost for excess 
resources essentially becomes free because of the work 
conserving principle of this scheduler. However, the 
guarantees of maintaining these excess resources are 
reduced. To see why, consider new users deciding whether 
to submit jobs or not. If they see that the price is high they 
may wait to preempt currently running jobs, but if the 
resources are essentially given out for free they are likely to 
lay claim on as many resources they can immediately. We 
note that the Dynamic Priority scheduler can easily be 
configured to mimic the behavior of the other schedulers. If 
no queues or users have any credits left the scheduler 
reduces to a FIFO scheduler. If all queues are configured 
with the same share (spending rate in our case) and the 
allocation interval is set to a very large value the scheduler 
reduces to the behavior of the static fair-share schedulers. 
 
vii. Deadline Constraint Scheduler 
Deadline Constraint Scheduler [17] addresses the issue of 
deadlines but focuses more on increasing system utilization. 
Dealing with deadline requirements in Hadoop-based data 
processing is done by (1) a job execution cost model that 
considers various parameters like map and reduce runtimes 
[7], input data sizes, data distribution, etc., (2) a Constraint-
Based Hadoop Scheduler that takes user deadlines as part of 
its input. Estimation model determines the available slot 
based a set of assumptions: 
i. All nodes are homogeneous nodes and unit cost of 

processing for each map or reduce node is equal  
ii. Input data is distributed uniform manner such that each 

reduce node gets equal amount of reduce data to 
process  

iii. Reduce tasks starts after all map tasks have completed;  
iv. The input data is already available in HDFS.  
 
Schedulability of a job is determined based on the proposed 
job execution cost model independent of the number of jobs 
running in the cluster. Jobs are only scheduled if specified 
deadlines can be met. After a job is submitted, schedulability 
test is performed to determine whether the job can be 
finished within the specified deadline or not. Free slots 
availability is computed at the given time or in the future 
irrespective of all the jobs running in the system. The job is 
enlisted for scheduling after it is determined that the job can 
be completed within the given deadline. A job is schedulable 
if the minimum number of tasks for both map and reduce [8] 
[14] is less than or equal to the available slots. This 
Scheduler shows that when a deadline for job is different, 
then the scheduler assigns different number of tasks to 
TaskTrackerand makes sure that the specified deadline is 
met. 
 
viii. Resource Aware Scheduling 
Resource Aware Scheduling [20] in Hadoop has become one 
of the Research Challenges in Cloud Computing [3]. 
Scheduling in Hadoop is centralized, and worker initiated. 
Scheduling decisions are taken by a master node, called the 
JobTracker, whereas the worker nodes, called TaskTrackers 
are responsible for task execution. The JobTracker maintains 
a queue of currently running jobs, states of TaskTrackers in 
a cluster, and list of tasks allocated to each TaskTracker. 
Each Task Tracker node is currently configured with a 
maximum number of available computation slots. Although 
this can be configured on a per-node basis to reflect the 
actual processing power and disk channel speed, etc 
available on cluster machines, there is noonline modification 
of this slot capacity available. That is, there is no way to 
reduce congestion on a machine by advertising a reduced 
capacity. In this mechanism, each Task Tracker node 
monitors resources such as CPU utilization, disk channel IO 
in bytes/s, and the number of page faults per unit time for 
the memory subsystem. Although we anticipate that other 
metrics will prove useful, we propose these as the basic 
three resources that must be tracked at all times to improve 
the load balancing on cluster machines. In particular, disk 
channel loading can significantly impact the data loading 
and writing portion of Map and Reduce tasks, more so than 
the amount of free space available. Likewise, the inherent 
opacity of a machine’s virtual memory management state 
means that monitoring page faults and virtual memory-
induced disk thrashing is a more useful indicator of machine 
load than simply tracking free memory. 
 
5. Conclusion 
 
Now days Big Data (Hadoop) is in huge demand in the 
market. There huge amount of data is lying in the industry. 
Hadoop can be implemented and used on large number of 
dataset. In Hadoop MapReduce is the most important 
component. In this paper we have studied many techniques 
for making the efficient scheduler for the map reduce so that 
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we can speed up our system or data retrieval technique like 
quincy, Asynchronous Processing, Speculative Execution, 
Job Awareness, Delay Scheduling, Copy Compute Splitting 
etc had made the scheduler effective for the faster 
processing. There are several research avenues in scheduling 
of Hadoop MapReduce for fast and efficient processing of 
the job. Future work includes developing Hadoop job 
schedulers in terms of meeting workflow deadlines, and 
scales up to tens of thousands of concurrent workflows.  
 
References 
 
[1] Andrew Pavlo, “A Comparison of Approaches to 

Large-Scale Data Analysis”, SIGMOD, 2009.  
[2] Apache Hadoop: http://Hadoop.apache.org 

 
[3] B. Thirmala Rao, N. V. Sridevei, V. Krishna Reddy, 

LSS.Reddy, “Performance Issues of Heterogeneous 
Hadoop Clusters in Cloud Computing”, Global Journal 
Computer Science & Technology Vol. 11, no. 8, May 
2011,pp.81-87  

[4] B. Thirumala Rao, Associate Professor Dept. of CSE 
Lakireddy Bali Reddy College of Engineering Dr. L. S. 
S. Reddy, Professor & Director Dept. of CSE 
Lakireddy Bali Reddy College of Engineering, 
“Survey on Improved Scheduling in Hadoop 
MapReduce in Cloud Environments”. 

[5] Chen He Ying Lu David Swanson, “Matchmaking: A 
New MapReduce Scheduling Technique”, Department 
of Computer Science and Engineering, University of 
Nebraska-Lincoln Lincoln, U.S.  

[6] Dean, J. and Ghemawat, S., “MapReduce: a flexible 
data processing tool”, ACM 2010. 

[7] DeWitt & Stonebraker, “MapReduce: A major step 
backwards”, 2008.  

[8] Dongjin Yoo, Kwang Mong Sim, “A Comparative 
review of job scheduling for MapReduce,”, Multi-
Agent and Cloud Computing Systems Laboratory, 
School of Information and Communication, Gwangju 
Institute of Science and Technology (GIST), Gwangju, 
Republic of Korea. 

[9] Hadoop Distributed File System, 
http://hadoop.apache.org/hdfs  

[10] Hadoop Tutorial: 
http://developer.yahoo.com/hadoop/tutorial/module1.ht
ml 

[11] Hadoop’s Capacity Scheduler: 
http://hadoop.apache.org/core/docs/current/capacity_sc
heduler 

[12] Hadoop’s Fair Scheduler 
http://hadoop.apache.org/common/docs/r0.20.2/fair_sc
hedu ler.html  

[13] J. Dean and S. Ghemawat, “Data Processing on Large 
Cluster”, OSDI ’04, pages 137–150, 2004  

[14] J. Dean and S. Ghemawat, “MapReduce: Simplified 
Data Processing on Large Clusters”, p.10, (2004).  

[15] Jean-Pierre Dijcks, “Oracle: Big Data for the 
Enterprise”, 2013.  

[16] Joel Wolf IBM T.J. Watson Research Hawthorne, NY 
10532 jlwolf@us.ibm.com; Andrey Balmin, IBM 
Almaden Research; San Jose, CA 95120 
abalmin@us.ibm.com; Deepak Rajan, Lawrence 
Livermore Labs Livermore, CA 94550, 

rdeepak@gmail.com; RaresVernica, Hewlett-Packard 
Laboratories Palo Alto, CA 94304 
rares.vernica@hp.com; “CIRCUMFLEX: A 
Scheduling Optimizer for MapReduce Workloads With 
Shared Scans” 

[17] K. Kc and K. Anyanwu, "Scheduling Hadoop Jobs to 
Meet Deadlines", in Proc. CloudCom, 2010, pp.388-
392.  

[18] M. Tim Jones, Micah Nelson, “Moving ahead with 
Hadoop YARN: An introduction to Yet Another 
Resource Negotiator”, 2013. 

[19] M. Zaharia, A. Konwinski, A. Joseph, Y. Zatz, and I. 
Stoica, “Improving mapreduce performance in 
heterogeneous environments. In OSDI”, 8th USENIX 
Symposium on Operating Systems Design and 
Implementation, October 2008  

[20] Mark Yong, Nitin Garegrat, Shiwali Mohan: “Towards 
a Resource Aware Scheduler in Hadoop” in Proc. 
ICWS, 2009, pp:102-109  

[21] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, 
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. 
“Delay scheduling: a simple technique for achieving 
locality and fairness in cluster scheduling in EuroSys 
10”, Proceedings of the 5th European conference on 
Computer systems, pages 265–278, New York, NY, 
USA, 2010. ACM.  

[22] Matei Zaharia, Hruba Borthakur, Joydeep Sen Sarma, 
Khaled Elmeleegy, Scott Shenker, Ion Stoica, “Job 
Scheduling for Multi-User MapReduce Clusters”, 
Electrical Engineering and Computer Sciences, 
University of California at Berkeley 

[23] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi 
Wieder, Kunal Talwar and Andrew Goldberg, 
“Quincy: Fair Scheduling for Distributed Computing 
Clusters”, Microsoft Research, Silicon Valley — 
Mountain View, CA, USA 

[24] Radheshyam Nanduri, Niteshaheshwari, Reddy Raja, 
Vasudeva Varma, “Job Aware Scheduling Algorithm 
for MapReduce Framework”, 3rd IEEE International 
Conference on Cloud Computing Technology and 
Science Athens, Greece.  

[25] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak 
Leung, “The Google file system”, In 19th Symposium 
on Operating Systems Principles, pages 29–43, Lake 
George, New York, 2003.  

[26] Stonebraker, M., “MapReduce and parallel DBMS: 
friends or foes?”, ACM, 2010.  

[27] Thomas Sandholm and Kevin Lai. “Dynamic 
proportional share scheduling in Hadoop in JSSPP”, 
15th Workshop on Job Scheduling Strategies for 
Parallel Processing, April, 2010 

[28] Tom white, “Hadoop Definitive Guide”, Third Edition, 
2012  

[29] V. Krishna Reddy, B. Thirumala Rao, LSS Reddy, 
“Research issues in Cloud Computing”, Global Journal 
Computer Science & Technology Vol. 11, no. 11, June 
2011,pp.70-76  

[30] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, Wei 
Ding, “Data Mining with Big Data”, 2013.  

[31] Yang XIA†, Lei WANG1, Qiang ZHAO1, Gongxuan 
ZHANG2, “Research on Job Scheduling Algorithm in 
Hadoop”. 

Paper ID: SEP14717 277




