
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Big Data Processing Using Hadoop: Survey on
Scheduling

Harshawardhan S. Bhosale1, Devendra P. Gadekar2

1,2Department of Computer Engineering, JSPM’s Imperial College of Engineering and Research, Pune, India

Abstract: The term ‘Big Data’ describes innovative techniques and technologies to capture, store, distribute, manage and analyze
petabyte- or larger-sized datasets with high-velocity and different structures. Big data can be structured, unstructured or semi-
structured, resulting in incapability of conventional data management methods. Big Data is a data whose scale, diversity, and complexity
require new architecture, techniques, algorithms, and analytics to manage it and extract value and hidden knowledge from it. In order to
process large amounts of data in an inexpensive and efficient way, open source software called Hadoop is used. Hadoop enables the
distributed processing of large data sets across clusters of commodity servers. Hadoop uses FIFO as default scheduling algorithm for
execution of jobs. Performance of Hadoop can be increased by using appropriate scheduling algorithms. The objective of the research is
to study and analyze various scheduling algorithms which can be used in Hadoop for better performance.

Keywords: Big data, Hadoop, Map Reduce, Locality, Job Scheduling

1. Introduction

Big Data is data whose scale, diversity, and complexity
require new architecture, techniques, algorithms, and
analytics to manage it and extract value and hidden
knowledge from it. Traditional databases analytics says what
happened and what is happening, however gives the
predictive analysis of what is likely to happen in future.
Infrastructure requirements of big are data acquisition, data
organization and data analysis [1]. Hadoop is the open
source software founded by Apache [2]. It is a software
framework for processing large datasets. Hadoop Distributed
File System (HDFS) for storage and MapReduce for
processing are the two components of Hadoop [2]
[9][10][28]. MapReduce is a programming for processing
large datasets. MapReduce works with 2 functions: Map and
Reduce function. The Map, written by the user, takes an
input pair and produces a set of intermediate key/value pairs.
The MapReduce library groups together all intermediate
values associated with the same intermediate key I and
passes them to the Reduce function. The Reduce function,
also written by the user, accepts an intermediate key I and a
set of values for that key. It merges these values to form a
possibly smaller set of values.

Rest of the paper describes what big data is, how the big
data differ from the traditional data and the infrastructure
management of big data [13][15][26][30]. Then we have
focused on Hadoop, its architecture and information of
scheduling in MapReduce for data processing [22] [24] [26].

2. Big Data

2.1 What is Big Data?

The use of the term “big data” can be traced back to
discussions of handling large groups of datasets in both
academia and industry during the 1980s. However, since big
data is still in its early stages, the industry is still trying to
grasp its core nature and to define it scientifically and
pragmatically. Among several definitions presented in the
literature, the first formal, academic definition appears in a

paper submitted in July 2000 by Francis Diebold of
University of Pennsylvania in his work of econometrics and
statistics (2000)

“Big Data refers to the explosion in the quantity (and
sometimes, quality) of available and potentially relevant
data, largely the result of recent and unprecedented
advancements in data recording and storage technology.
In this new and exciting world, sample sizes are no
longer fruitfully measured in “number of observations,”
but rather in, say, megabytes. Even data accruing at the
rate of several gigabytes per day are not uncommon.”

The most popular definition in recent years is the “Three
V’s”: volume (size of datasets and storage), velocity (speed
of incoming data), and variety (data types). The concept was
first raised by Doug Laney (2001) in his META Group
research note that describes the characteristics of datasets
that cannot be handled by traditional data management tools.
With the development of discussion and increasing interest
in big data [13][18][30], the “Three V’s” have been
expanded to “Five V’s”: volume, velocity, variety, veracity
(integrity of data), value (usefulness of data) and complexity
(degree of interconnection among data structures).

More comprehensive definitions and descriptions have also
emerged. For example, in its report, “Demystifying Big
Data”, the Big Data Commission at the TechAmerica
Foundation offers the following definition:

“Big Data is a term that describes large volumes of high-
velocity, complex, and variable data that require advanced
techniques and technologies to enable the capture, storage,
distribution, management, and analysis of the information”
(TechAmerica Foundation, 2012).

Researchers at McKinsey propose an intentionally subjective
definition:

“Big data refers to datasets whose size is beyond the ability
of typical database software tools to capture, store, manage,
and analyze” (McKinsey Global Institute, May 2011).

Paper ID: SEP14717 272

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Mike Gualtieri, Forrester Analyst, proposes a definition that
attempts to be pragmatic and actionable for IT professionals:

“Big Data is the frontier of a firm’s ability to store, process,
and access (SPA) all the data it needs to operate effectively,
make decisions, reduce risks, and serve customers”
(Gualtieri, December 2012).

A. Vs of Big Data
 Volume of data: Volume refers to amount of data.

Volume of data stored in enterprise repositories have
grown from megabytes and gigabytes to petabytes.

 Variety of data: Different types of data and sources of
data. Data variety exploded from structured and legacy
data stored in enterprise repositories to unstructured, semi
structured, audio, video, XML etc.

 Velocity of data:Velocity refers to the speed of data
processing. For time-sensitive processes such as catching
fraud, big data must be used as it streams into your
enterprise in order to maximize its value.

B. Comparison between Traditional DBMS and

BigData
MapReduce is complementary to DBMS [26], not a
competing technology.
i. Parallel DBMS are for efficient querying of large data

sets.
ii. MR-style systems are for complex analytics and ETL

tasks.
iii. Parallel DBMS require data to fit into the relational

paradigm of rows and columns.
iv. In contrast, the MR model does not require that data files

adhere to a schema defined using the relational data
model. That is, the MR programmer is free to structure
their data in any manner or even to have no structure at
all.

C. BigData Pillars
1) Big Table – Relational, Tabular format – rows &

columns
2) Big Text – All kinds of unstructured data, natural

language, grammatical data, semantic data
3) Big Metadata – Data about data, taxonomies, glossaries,

facets, concepts, entity
4) Big Graphs – object connections, semantic discovery,

degree of separation, linguistic analytic, subject predicate
object

D. Big Data: Infrastructure Requirements

i. Data Acquisition in Big Data
Even though the data will be in distributed environment,
infrastructure must support to carry out very high transaction
volumes and also support flexible data structures. To collect
and store data, NoSQL are often used in Big data. NoSQL
will not have any fixed schema since it supports high variety
of data by capturing all types of data. Keys are used to
identify the data point without designing schema with
relationship between entities.

ii. Data Organization in Big Data
In the classical term of data warehousing, organizing data is
called as data integration. Big data requires good

infrastructure, so that processing and manipulating data in
the original storage location can be done easily. It must also
supports very high throughput to deal with processing steps
of large data and handles large variety of data formats like
structured format, unstructured format etc. Hadoop [10] [28]
is a new technology that allows large data volumes to be
organized and processed while keeping the data on the
original data storage cluster. For example Hadoop
Distributed File System (HDFS) [9], [10] is the long - term
storage system for web logs. These web logs are turned into
browsing behavior (sessions) by running MapReduce
programs on the cluster and generating aggregated results on
the same cluster [19]. These aggregated results are then
loaded into a Relational DBMS system.

iii. Data analysis in Big Data
Since data is not always moved during the organization
phase, the analysis may also be done in a distributed
environment, where some data will stay where it was
originally stored and be transparently accessed from a data
warehouse. The infrastructure required for analyzing big
data must be able to support deeper analytics such as
statistical analysis and data mining, on a wider variety of
data types stored in diverse systems; scale to extreme data
volumes; deliver faster response times driven by changes in
behavior; and automate decisions based on analytical
models. Most importantly, the infrastructure must be able to
integrate analysis on the combination of big data and
traditional enterprise data. New insight comes not just from
analyzing new data, but from analyzing it within the context
of the old to provide new perspectives on old problems. For
example, analyzing inventory data from a smart vending
machine in combination with the events calendar for the
venue in which the vending machine is located, will dictate
the optimal product mix and replenishment schedule for the
vending machine.

3. HADOOP

A. Introduction To Hadoop

Hadoop has been successfully used by many companies
including AOL, Amazon, Facebook, Yahoo and New York
Times for running their applications on clusters. For
example, AOL used it for running an application that
analyzes the behavioral pattern of their users so as to offer
targeted services. Apache Hadoop [2] is an open source
implementation of the Google’s MapReduce parallel
processing framework.

Hadoop hides the details of parallel processing, including
data distribution to processing nodes, restarting failed
subtasks, and consolidation of results after computation.
This framework allows developers to write parallel
processing programs that focus on their computation
problem, rather than parallelization issues. Hadoop includes
1) Hadoop Distributed File System (HDFS) [9] [10] [25]: a
distributed file system that store large amount of data with
high throughput access to data on clusters and 2) Hadoop
Map Reduce: a software framework for distributed
processing of data on clusters.

Paper ID: SEP14717 273

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A .1 HDFS- Distributed file system
Google File System (GFS) [9] [25] is a proprietary
distributed file system developed by Google and specially
designed to provide efficient, reliable access to data using
large clusters of commodity servers. Files are divided into
chunks of 64 MB, and are usually appended to or read and
only extremely rarely overwritten or shrunk. Compared with
traditional file systems, GFS is designed and optimized to
run on data centers to provide extremely high data
throughputs, low latency and survive individual server
failures. Inspired by GFS, the open source Hadoop
Distributed File System (HDFS) stores large files across
multiple machines. It achieves reliability by replicating the
data across multiple servers. Similarly to GFS, multiple
replicas of data are stored on multiple compute nodes to
provide reliable and rapid computations. Data is also
provided over HTTP, allowing access to all content from a
web browser or other types of clients. HDFS has
master/slave architecture.

As shown in figure A.1, HDFS Architecture [9] consists of a
single NameNode and multiple DataNodes in a cluster.
NameNode is responsible for mapping of data blocks to
DataNodes and for managing file system operations like
opening, closing and renaming files and directories. Upon
the instructions of NameNode, DataNodes perform block
creation, deletion and replication of data blocks. The
NameNode also maintains the file system namespace which
records the creation, deletion and modification of files by the
users. NameNode decides about replication of data blocks.
In a typical HDFS, block size is 64MB and replication factor
is 3 (second copy on the local rack and third on the remote
rack).

A .2 Hadoop MapReduce
As shown in figure A.2, Hadoop MapReduce Architecture
[2][9][10] is one of the parallel data processing paradigm
designed for large scale data processing on cluster-based
computing architectures. It was originally proposed by
Google to handle large-scale web search applications. This
approach has been proved to be an effective programming
approach for developing machine learning, data mining, and
search applications in data centers. Its advantage is that it
allows programmers to abstract from the issues of
scheduling [26], parallelization, partitioning, replicationand
focus on developing their applications.

Figure A.1: Hadoop Distributed File System Architecture

Figure A .2: Hadoop MapReduce Architecture

Hadoop MapReduce programming model consists of data
processing functions: Map and Reduce [5][6][7]. Parallel
Map tasks are run on input data which is partitioned into
fixed sized blocks and produce intermediate output as a
collection of <key, value> pairs. These pairs are shuffled
across different reduce tasks based on <key, value>pairs.
Each Reduce task accepts only one key at a time and process
data for that key and outputs the results as <key, value>
pairs. The Hadoop MapReduce architecture consists of one
JobTracker (Master) and many TaskTrackers (Workers).
The JobTracker receives job submitted from user, breaks it
down into map and reduce tasks, assigns the tasks to Task
Trackers, monitors the progress of the Task Trackers, and
finally when all the tasks are complete, reports the user
about the job completion. Each Task Tracker has a fixed
number of map and reduce task slots that determine how
many map and reduce tasks it can run at a time. HDFS
supports reliability and fault tolerance of MapReduce
computation by storing and replicating the inputs and
outputs of a Hadoop job.

4. Scheduling in Hadoop

4.1 Scheduling
The default scheduling algorithm is based on FIFO where
jobs were executed in the order of their submission. Later on
the ability to set the priority of a Job was added. Facebook
and Yahoo contributed significant work in developing
schedulers i.e. Fair Scheduler and Capacity Scheduler
respectively which subsequently released to Hadoop
Community. Research work is being taking place in
scheduling a job in Hadoop [29] [31] [26]. Some of the
researchers have developed scheduling algorithms which are
also discussed in this section.

i. Schedul Fifo er
This is a default scheduler which operates using a FIFO
queue. A job is first partitioned into individual tasks, and
then loaded into the queue and assigned to free slots on
TaskTracker nodes. Each job would use the whole cluster,
so jobs had to wait for their turn. Even though a shared
cluster offers great potential for offering large resources to
many users, the problem of sharing resources fairly between
users requires a better scheduler. Production jobs need to
complete in a timely manner, while allowing users who are
making smaller ad hoc queries to get results back in a
reasonable time.

Paper ID: SEP14717 274

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

ii. Fair Scheduler
The Fair Scheduler was developed at Facebook to manage
access to their Hadoop cluster [3]. The Fair Scheduler
[12][23] aims to give every usera fair share of the cluster
capacity over time. Users may assign jobs to pools, with
each pool allocated a guaranteed minimum number of Map
and Reduce slots [7] [14]. Free slots in idle pools may be
allocated to other pools, while excess capacity within a pool
is shared among jobs. The Fair Scheduler supports
preemption, so if a pool has not received its fair share for a
certain period of time, then the scheduler will kill tasks in
pools running over capacity in order to give the slots to the
pool running under capacity. As jobs have their tasks
allocated to Task Tracker slots for computation, the
scheduler tracks the deficit between the amount of time
actually used and the ideal fair allocation for that job. As
slots become available for scheduling, the next task from the
job with the highest time deficit is assigned to the next free
slot. Over time, this has the effect of ensuring that jobs
receive roughly equal amounts of resources. Shorter jobs are
allocated sufficient resources to finish quickly. At the same
time, longer jobs are guaranteed to not be starved of
resources.

iii. Capacity Scheduler
Capacity Scheduler [11] originally developed at Yahoo
addresses a usage scenario where the number of users is
large, and there is a need to ensure a fair allocation of
computation resources amongst users. The Capacity
Scheduler allocates jobs based on the submitting user to
queues with configurable numbers of Map and Reduce slots
[6] [16]. Queues that contain jobs are given their configured
capacity, while free capacity in a queue is shared among
other queues. Within a queue, scheduling operates on a
modified priority queue basis with specific user limits, with
priorities adjusted based on the time a job was submitted,
and the priority setting allocated to that user and class of job.
When a Task Tracker slot becomes free, the queue with the
lowest load is chosen, from which the oldest remaining job
is chosen. A task is then scheduled from that job. Overall,
this has the effect of enforcing cluster capacity sharing
among users, rather than among jobs, as was the case in the
Fair Scheduler.

iv. Longest Approximate Time to End (LATE) -

Speculative Execution
It is not uncommon for a particular task to continue to
progress slowly. This may be due to several reasons like–
high CPU load on the node, slow background processes etc.
All tasks should befinished for completion of the entire job.
The scheduler tries to detect a slow running task to launch
another equivalent task as a backup which is termed as
speculative execution of tasks. If the backup copy completes
faster, the overall job performance is improved. Speculative
execution is an optimization but not a feature to ensure
reliability of jobs. If bugs cause a task to hang or slow down
then speculative execution is not a solution, since the same
bugs are likely to affect the speculative task also. Bugs
should be fixed so that the task doesn’t hang or slow down.
The default implementation of speculative execution relies
implicitly on certain assumptions: a) Uniform Task progress
on nodes b) Uniform computation at all nodes. That is,
default implementation of speculative execution works well

on homogeneous clusters. These assumptions break down
very easily in the heterogeneous clusters that are found in
real-world production scenarios. Matei Zaharia, proposed a
modified version of speculative execution called Longest
Approximate Time to End (LATE) algorithm that uses a
different metric to schedule tasks for speculative execution.
Instead of considering the progress made by a task so far,
they compute the estimated time remaining, which gives a
more clear assessment of a straggling tasks’ impact on the
overall job response time. They demonstrated significant
improvements by Longest Approximate Time to End
(LATE) algorithm over the default speculative execution.

v. Delay Scheduling
Matei Zaharia, Dhruba Borthakur, have discussed delay
scheduler [21] [22]. Fair scheduler is developed to allocate
fair share of capacity to all the users. Two locality problems
identified when fair sharing is followed are – head-of-line
scheduling and sticky slots. The first locality problem occurs
in small jobs (jobs that have small input files and hence have
a small number of data blocks to read). The problem is that
whenever a job reaches the head of the sorted list for
scheduling, one of its tasks is launched on the next slot that
becomes free irrespective of which node this slot is on. If the
head-of-line job is small, it is unlikely to have data locally
on the node that is given to it. Head-of-line scheduling
problem was observed at Facebook in a version of HFS
without delay scheduling. The other locality problem, sticky
slots, is that there is a tendency for a job to be assigned the
same slot repeatedly. The problems aroused because
following a strict queuing order forces a job with no local
data to be scheduled.

To overcome the Head of line problem, scheduler launches a
task from a job on a node without local data to maintain
fairness, but violates the main objective of MapReduce that
schedule tasks near their input data. Running on a node that
contains the data (node locality) is most efficient, but when
this is not possible, running on a node on the same rack
(rack locality) is faster than running off-rack. Delay
scheduling is a solution that temporarily relaxes fairness to
improve locality by asking jobs to wait for a scheduling
opportunity on a node with local data. When a node requests
a task, if the head-of-line job cannot launch a local task, it is
skipped and looked at subsequent jobs. However, if a job has
been skipped long enough, non-local tasks are allowed to
launch to avoid starvation. The key insight behind delay
scheduling is that although the first slot we consider giving
to a job is unlikely to have data for it, tasks finish so quickly
that some slot with data for it will free up in the next few
seconds.

vi. Dynamic Priority Scheduling
Thomas Sandholmet [27], proposed Dynamic Priority
Scheduler that supports capacity distribution dynamically
among concurrent users based on priorities of the users.
Automated capacity allocation and redistribution is
supported in a regulated task slot resource market. This
approach allows users to get Map or Reduce slot on a
proportional share basis per time unit. These time slots can
be configured and called as allocation interval. It is typically
set to somewhere between 25 seconds and 1 minute. For
example a max capacity of 28 Map slots gets allocated

Paper ID: SEP14717 275

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

proportionally to three users. The central scheduler contains
a Dynamic Priority Allocator and a Priority Enforcer
component responsible for accounting and schedule
enforcement respectively. This model appears to favor users
with small jobs than users with bigger jobs. However
Hadoop MapReduce supports scaling down of big jobs to
small jobs to make sure that fewer concurrent tasks runs by
consuming the same amount of resources [14][16].

To avoid starvation, queue blocking and to respond to user
demand fluctuations more quickly preemption is also
supported. In this mechanism task slots that were allocated
may be preempted and allocated to other users if they were
not used for long time. As a result of variable pricing
mechanism users to get guaranteed slot during demand
periods has to pay more. This scheme discourages the free-
riding and gaming by users. However, the Hadoop
MapReduce scheduling framework allows jobs to be split up
in finer grained tasks that can run and possibly fail and
recover independently. So the only thing the end users
would need to worry about is to get a good enough average
capacity over some time to meet their deadlines. This
introduces the difficulty of making spending rate decisions
to meet the SLA and deadline requirements. Possible
starvation of low-priority (low-spending) tasks can be
mitigated by using the standard approach in Hadoop of
limiting the time each task is allowed to run on a node.
Moreover, this new mechanism also allows administrators to
set budgets for different users and let them individually
decide whether the current price of preempting running tasks
is within their budget or if they should wait until the current
users run out of their budget. The fact that Hadoop uses task
and slot level scheduling and allocation as opposed to job
level scheduling also avoids many starvation scenarios. If
there is no contention, i.e. there are enough slots available to
run all tasks from all jobs submitted, the cost for excess
resources essentially becomes free because of the work
conserving principle of this scheduler. However, the
guarantees of maintaining these excess resources are
reduced. To see why, consider new users deciding whether
to submit jobs or not. If they see that the price is high they
may wait to preempt currently running jobs, but if the
resources are essentially given out for free they are likely to
lay claim on as many resources they can immediately. We
note that the Dynamic Priority scheduler can easily be
configured to mimic the behavior of the other schedulers. If
no queues or users have any credits left the scheduler
reduces to a FIFO scheduler. If all queues are configured
with the same share (spending rate in our case) and the
allocation interval is set to a very large value the scheduler
reduces to the behavior of the static fair-share schedulers.

vii. Deadline Constraint Scheduler
Deadline Constraint Scheduler [17] addresses the issue of
deadlines but focuses more on increasing system utilization.
Dealing with deadline requirements in Hadoop-based data
processing is done by (1) a job execution cost model that
considers various parameters like map and reduce runtimes
[7], input data sizes, data distribution, etc., (2) a Constraint-
Based Hadoop Scheduler that takes user deadlines as part of
its input. Estimation model determines the available slot
based a set of assumptions:
i. All nodes are homogeneous nodes and unit cost of

processing for each map or reduce node is equal
ii. Input data is distributed uniform manner such that each

reduce node gets equal amount of reduce data to
process

iii. Reduce tasks starts after all map tasks have completed;
iv. The input data is already available in HDFS.

Schedulability of a job is determined based on the proposed
job execution cost model independent of the number of jobs
running in the cluster. Jobs are only scheduled if specified
deadlines can be met. After a job is submitted, schedulability
test is performed to determine whether the job can be
finished within the specified deadline or not. Free slots
availability is computed at the given time or in the future
irrespective of all the jobs running in the system. The job is
enlisted for scheduling after it is determined that the job can
be completed within the given deadline. A job is schedulable
if the minimum number of tasks for both map and reduce [8]
[14] is less than or equal to the available slots. This
Scheduler shows that when a deadline for job is different,
then the scheduler assigns different number of tasks to
TaskTrackerand makes sure that the specified deadline is
met.

viii. Resource Aware Scheduling
Resource Aware Scheduling [20] in Hadoop has become one
of the Research Challenges in Cloud Computing [3].
Scheduling in Hadoop is centralized, and worker initiated.
Scheduling decisions are taken by a master node, called the
JobTracker, whereas the worker nodes, called TaskTrackers
are responsible for task execution. The JobTracker maintains
a queue of currently running jobs, states of TaskTrackers in
a cluster, and list of tasks allocated to each TaskTracker.
Each Task Tracker node is currently configured with a
maximum number of available computation slots. Although
this can be configured on a per-node basis to reflect the
actual processing power and disk channel speed, etc
available on cluster machines, there is noonline modification
of this slot capacity available. That is, there is no way to
reduce congestion on a machine by advertising a reduced
capacity. In this mechanism, each Task Tracker node
monitors resources such as CPU utilization, disk channel IO
in bytes/s, and the number of page faults per unit time for
the memory subsystem. Although we anticipate that other
metrics will prove useful, we propose these as the basic
three resources that must be tracked at all times to improve
the load balancing on cluster machines. In particular, disk
channel loading can significantly impact the data loading
and writing portion of Map and Reduce tasks, more so than
the amount of free space available. Likewise, the inherent
opacity of a machine’s virtual memory management state
means that monitoring page faults and virtual memory-
induced disk thrashing is a more useful indicator of machine
load than simply tracking free memory.

5. Conclusion

Now days Big Data (Hadoop) is in huge demand in the
market. There huge amount of data is lying in the industry.
Hadoop can be implemented and used on large number of
dataset. In Hadoop MapReduce is the most important
component. In this paper we have studied many techniques
for making the efficient scheduler for the map reduce so that

Paper ID: SEP14717 276

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

we can speed up our system or data retrieval technique like
quincy, Asynchronous Processing, Speculative Execution,
Job Awareness, Delay Scheduling, Copy Compute Splitting
etc had made the scheduler effective for the faster
processing. There are several research avenues in scheduling
of Hadoop MapReduce for fast and efficient processing of
the job. Future work includes developing Hadoop job
schedulers in terms of meeting workflow deadlines, and
scales up to tens of thousands of concurrent workflows.

References

[1] Andrew Pavlo, “A Comparison of Approaches to

Large-Scale Data Analysis”, SIGMOD, 2009.
[2] Apache Hadoop: http://Hadoop.apache.org

[3] B. Thirmala Rao, N. V. Sridevei, V. Krishna Reddy,

LSS.Reddy, “Performance Issues of Heterogeneous
Hadoop Clusters in Cloud Computing”, Global Journal
Computer Science & Technology Vol. 11, no. 8, May
2011,pp.81-87

[4] B. Thirumala Rao, Associate Professor Dept. of CSE
Lakireddy Bali Reddy College of Engineering Dr. L. S.
S. Reddy, Professor & Director Dept. of CSE
Lakireddy Bali Reddy College of Engineering,
“Survey on Improved Scheduling in Hadoop
MapReduce in Cloud Environments”.

[5] Chen He Ying Lu David Swanson, “Matchmaking: A
New MapReduce Scheduling Technique”, Department
of Computer Science and Engineering, University of
Nebraska-Lincoln Lincoln, U.S.

[6] Dean, J. and Ghemawat, S., “MapReduce: a flexible
data processing tool”, ACM 2010.

[7] DeWitt & Stonebraker, “MapReduce: A major step
backwards”, 2008.

[8] Dongjin Yoo, Kwang Mong Sim, “A Comparative
review of job scheduling for MapReduce,”, Multi-
Agent and Cloud Computing Systems Laboratory,
School of Information and Communication, Gwangju
Institute of Science and Technology (GIST), Gwangju,
Republic of Korea.

[9] Hadoop Distributed File System,
http://hadoop.apache.org/hdfs

[10] Hadoop Tutorial:
http://developer.yahoo.com/hadoop/tutorial/module1.ht
ml

[11] Hadoop’s Capacity Scheduler:
http://hadoop.apache.org/core/docs/current/capacity_sc
heduler

[12] Hadoop’s Fair Scheduler
http://hadoop.apache.org/common/docs/r0.20.2/fair_sc
hedu ler.html

[13] J. Dean and S. Ghemawat, “Data Processing on Large
Cluster”, OSDI ’04, pages 137–150, 2004

[14] J. Dean and S. Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters”, p.10, (2004).

[15] Jean-Pierre Dijcks, “Oracle: Big Data for the
Enterprise”, 2013.

[16] Joel Wolf IBM T.J. Watson Research Hawthorne, NY
10532 jlwolf@us.ibm.com; Andrey Balmin, IBM
Almaden Research; San Jose, CA 95120
abalmin@us.ibm.com; Deepak Rajan, Lawrence
Livermore Labs Livermore, CA 94550,

rdeepak@gmail.com; RaresVernica, Hewlett-Packard
Laboratories Palo Alto, CA 94304
rares.vernica@hp.com; “CIRCUMFLEX: A
Scheduling Optimizer for MapReduce Workloads With
Shared Scans”

[17] K. Kc and K. Anyanwu, "Scheduling Hadoop Jobs to
Meet Deadlines", in Proc. CloudCom, 2010, pp.388-
392.

[18] M. Tim Jones, Micah Nelson, “Moving ahead with
Hadoop YARN: An introduction to Yet Another
Resource Negotiator”, 2013.

[19] M. Zaharia, A. Konwinski, A. Joseph, Y. Zatz, and I.
Stoica, “Improving mapreduce performance in
heterogeneous environments. In OSDI”, 8th USENIX
Symposium on Operating Systems Design and
Implementation, October 2008

[20] Mark Yong, Nitin Garegrat, Shiwali Mohan: “Towards
a Resource Aware Scheduler in Hadoop” in Proc.
ICWS, 2009, pp:102-109

[21] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica.
“Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling in EuroSys
10”, Proceedings of the 5th European conference on
Computer systems, pages 265–278, New York, NY,
USA, 2010. ACM.

[22] Matei Zaharia, Hruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, Ion Stoica, “Job
Scheduling for Multi-User MapReduce Clusters”,
Electrical Engineering and Computer Sciences,
University of California at Berkeley

[23] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi
Wieder, Kunal Talwar and Andrew Goldberg,
“Quincy: Fair Scheduling for Distributed Computing
Clusters”, Microsoft Research, Silicon Valley —
Mountain View, CA, USA

[24] Radheshyam Nanduri, Niteshaheshwari, Reddy Raja,
Vasudeva Varma, “Job Aware Scheduling Algorithm
for MapReduce Framework”, 3rd IEEE International
Conference on Cloud Computing Technology and
Science Athens, Greece.

[25] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung, “The Google file system”, In 19th Symposium
on Operating Systems Principles, pages 29–43, Lake
George, New York, 2003.

[26] Stonebraker, M., “MapReduce and parallel DBMS:
friends or foes?”, ACM, 2010.

[27] Thomas Sandholm and Kevin Lai. “Dynamic
proportional share scheduling in Hadoop in JSSPP”,
15th Workshop on Job Scheduling Strategies for
Parallel Processing, April, 2010

[28] Tom white, “Hadoop Definitive Guide”, Third Edition,
2012

[29] V. Krishna Reddy, B. Thirumala Rao, LSS Reddy,
“Research issues in Cloud Computing”, Global Journal
Computer Science & Technology Vol. 11, no. 11, June
2011,pp.70-76

[30] Xindong Wu, Xingquan Zhu, Gong-Qing Wu, Wei
Ding, “Data Mining with Big Data”, 2013.

[31] Yang XIA†, Lei WANG1, Qiang ZHAO1, Gongxuan
ZHANG2, “Research on Job Scheduling Algorithm in
Hadoop”.

Paper ID: SEP14717 277

