The Singular and Combined Effects of Entomopathogenic Fungi \textit{Beauveria brongniartii} and the Insecticide Imidaclorprid against Corn Pests under Laboratory and Field Conditions in Egypt

Sabbour M.M.1, Hussein, M.M.2

1Pests and Plant Prot., Department
2Water and Irrigation Relationship Department, National Research Centre, Cairo Egypt

Abstract: Under laboratory conditions the LC\textsubscript{50} obtained was 132 \times 104, 144 \times 104, 170 \times 104 conidia/ml after \textit{Ostrinia nubilalis}, \textit{Sesamia cretica} and \textit{Chilo agamemnon}, respectively. When the two tested pathogens combined at the sublethal dose the LC\textsubscript{50} for the corresponding insect pests recorded were significantly decreased to 46, 69 and 75 g/L for \textit{O. nubilalis}, \textit{S. cretica} and \textit{C. agamemnon}, respectively. At the harvest time the corn weight obtained 3922\pm54.6 and 3110\pm60.4 kg/Feddan during seasons 2012 and 2013, respectively. Mortality ranged between 69 and 78\% after bioinsecticides treatments.

Keywords: \textit{Beauveria brongniartii}, \textit{Ostrinia nubilalis}, \textit{Chilo agamemnon}, \textit{Sesamia cretica}, Imidaclorprid

1. Introduction

Maize (\textit{Zea mays}) is an important crop all over the world and also in Egypt. Its demand continuously increases. Corn is subjected to attack by many insect pests that affect the yield quality and quantity. Among the most common pest species surveyed in Egypt are: \textit{Ostrinia nubilalis}, \textit{Sesamia cretica} and \textit{Chilo agamemnon}. \textit{O. nubilalis} is one of the key pest damaging corn in Egypt (Eid, 2003). \textit{O. nubilalis} is native to Mediterranean countries which has 98\% of the world’s cultivated corn (Montiel and Jones, 2002). \textit{Beauveria brongniartii} (B.b) proved highly pathogenic to aphids and whiteflies (Espinel et al., 2008). The fungus (\textit{B. brongniartii}) exhibit host preferential infections in lepidopterous larvae, the fungi penetrate the integuments, spread rapidly blocked the respiratory pores lead to pest death (Ignoffo et al, 1976).

Imidaclorprid is a chloronicotinoid insecticide. Chemical name: 1-[[6-chloro-3-pyridinyl]methyl]-N-nitro-2-imidazolidinimine. Imidaclorprid is a systemic, chloronicotinoid insecticide, which kills insects via ingestion or contact. It is effective by disrupting the nervous system of an insect pest. It is used for controlling sucking insects, soil insects, termites, and some chewing insects. It is supplied as a seed and soil treatment, crop and structural treatment, and a topical flea control treatment on domestic pets (Imidaclorprid, 1998). Imidaclorpridis a broad-spectrum, organic insecticide. It is, however, relatively non-toxic to mammals and beneficial insects. If used carefully only against insects that actually eat something that has been treated, such as a leaf, are affected. This is different than a lot of other broad-spectrum insecticides that are toxic if the insect merely comes in contact with dry insecticide residues Sabbour et al. (2012). The entomopathogenic \textit{P. carneus} is found on a wide range of material, and especially in soil. It is sometimes isolated from insects, though it appears to be a weak insect pathogen. Some isolates produce several metabolites of the antibiotic group cephalosporins. \textit{P. farinosus} is also commonly isolated from soil. It is a well-known insect pathogen, and there has been interest in its use as an agent of biological control. Sabbour and Abdel-Rahman, 2013, Sabbour et al, 2011, Sabbour, 2002, Sahab et al, 2014 control the corn borers by different entomopathogenic fungi under laboratory and field conditions. Entomopathogenic fungi are found worldwide associated to insects and phytophagous mite populations, contributing to biological control of these arthropods on several economically important crops (Sabbour and Sahab, 2007). Commercial products have been developed with entomopathogenic fungi (Alves and Pereira, 1998). Quintela and McCoy (1998) reported that fungal concentrations of 10^6 and 10^7 conidia/ml of \textit{B. bassiana} and \textit{B. brongniartii} affected the larval development, movement and mobility of corn borers larvae during the seedlings and vegetative stages of corn plant under laboratory; greenhouse and field conditions. Success of a pest control program using \textit{B. bassiana} however depends on conidia survival in the field environment (Benz, 1987). Conidia survival may be affected either by environmental factors (Furlong and Pell, 1997) or chemical products used to protect plants (Sabbour and Abd-El-Rahman, 2007) controlled the cereal aphids with the fungus \textit{B. bassiana} and found that the infestation was reduced after fungal applications under laboratory and field conditions. Sabbour,(2013 a & b) found that the seed oils control many insect pests in the laboratory and semi field conditions.Sabbour et al 2014 used the Jatropha seeds and leaves oil against the corn insect pests.
The present study aims to evaluate the pathogenicity of the isolates of entomopathogenic fungus, *B. broganitii* and imidaclorprid against corn insect pests under laboratory and field conditions. It is necessary to find alternative safe insecticides to reduce the heavy doses of chemical insecticides which is using for the control of corn pests Sabbour and Abel-Rahman (2007).

2. Materials and Methods

2.1 Tested Insects

Sesamia cretica; Ostrinia nubilalis; Chilo agamemnon reared on corn leaves under laboratory conditions 26 ± 2°C and 60± 5 RH. leaves changed every two days.

2.2 Entomopathogenic Fungi

The fungus, *Beauveria brongniartii* isolated from the Egyptian soil from Ismailia governorate. They were reproduced on potato dextrose agar (PDA) plus 0.4% yeast extracts (PDAY) and poured onto sterilized Petri-dishes (Alves et al., 1998). Plating was performed according to the full dish method. The conidia were transferred from the Eppendorf vial to dish containing medium by platinum loop and then streaked. Plates were incubated at 25°C with 12 hours photo phase for fungus growth and sporulation. After ten days, conidia were scraped and transferred to conical flasks (200 ml) containing 200 ml sterilized distilled water with 0.02% the speeder sticker (tween, 80). Conidial concentrations in the suspensions were quantified directly under the optical microscope with a haemacytometer. Then the suspensions were standardized until the direct concentration 1x10^7 conidia/ml was obtained.

2.3 Efficacy of Entomopathogenic Fungi against Pests Larvae

Spores of the entomopathogenic fungi, *Beauveria brongniartii*, collected from the surface of mycelium growth and spore suspensions with 2 drops of tween 80 were prepared and adjusted at 1x10^7 conidia/ml. Conidial viability was determined by counting germ tubes produced on PDAY medium after 18 hrs, using light microscope at 400 x. Conidial viability was 95-100%. The surface of cultures was gently brushed in the presence of 20ml of sterilized water in order to free the spores and the suspension was filtered through muslin. Six concentrations of spore suspensions were prepared i.e., 10^9, 10^8, 10^7, 10^6, 10^5, and 10^4 conidia/ml. Piece of corn leaves were dipped in the prepared suspensions and left for drying under laboratory conditions then placed in Petri-dishes (one/dish). For each concentration (4 replicates/each), ten L3 larvae of each of the tested insects were transferred into each Petri-dish. Control larvae were fed on untreated castor leaves. Percentages of mortality were calculated according to Abbot, while LC_{50} was calculated throughout probit analysis. The experiment was carried out under laboratory conditions at 26°C± 2 and 60-70% RH. Physiological and metabolic characteristics of *Beauveria brongniartii*.

2.4 Efficacy of imidaclorprid against the target insect pests

The insecticide imidaclorprid were tested at the 6 concentrations: 6 g, 5g ,4g,3g, 2g,1g. The insecticide, prepared 6 concentrations (prepared according Sameh et al., 2009) Percentages of mortality were calculated according to Abbott’s formula (Abbott, 1925), while the LC_{50} values was calculated throughout probit analysis (Finney, 1971). The experiment was carried out under laboratory conditions at 26±2°C and 60-70% RH.

2.5 Effect of the combined imidaclorprid+B. broganitii at the sub-lethal doses

The sub-lethal dose for the fungi *B. broganitii* at 6 spores/ml + 2% Imidaclorprid were tested against the three corn borers under laboratory conditions.

2.6 Field Trials

Field trials were carried out at Nobaria region (Behera Governorate), Egypt during the two successive corn seasons 2012 and 2013 to study the effectiveness of the tested fungi on corn borers. Corn (variety Giza 2) was cultivated by end of May during the two seasons in an area of about half feddan. Fungi were applied at the concentrations of 16.5X10^4 conidia/ml . Fungi were applied as single treatments in randomize plots. The combined effects aof the fungi at 4.25X10^4 conidia/ml + 5g for imidaclorprid. Regular agricultural practices were performed and no chemical control was used during the study period. Weeds were removed by hand. Five plots were sprayed with water as control. Samples from each treatment were collected weekly and transferred to the laboratory for investigation. Percentages of infection were estimated.

2.7 Yield Assessment

Yield data in treated and untreated plots in the corn harvest seasons (2012 and 2013), represented by weight in kgs were determined. Yield loss was estimated according to the following equation:

\[\text{Yield loss} = \frac{\text{Potential yield} - \text{Actual yield}}{\text{Potential yield}} \times 100 \]

Potential yield is Imidaclorprid+B. broganitii treatment (the best result among the tested pathogens) was considered the standard for comparison with the other ones (Actual yield).

3. Results and Discussion

3.1 In-vitro effect of Entomopathogenic fungi on the target insects

Data in table (1), show that under laboratory conditions the LC_{50} obtained was 132 x10^4, 144 x10^4, 170 x10^4 conidia/ml after *O. nubilalis, S. cretica* and *C. agamemnon* treated with different concentrations of *Beauveria brongniartii* respectively. When the corresponding pests treated with imidaclorprid the corresponding LC_{50} 176, 189 and 195 g/l;
respectively (Table2). When the two tested pathogens combined at the sub-lethal does the LC50 for the corresponding insect pests recorded were significantly decreased to 46, 69 and 75 g/L for O. nubilalis, S. cretica and C. agamemon., respectively (Tabe3). The same results obtained by Sabbour and Abdel-Rahman (2007) reported that under laboratory conditions results showed that the LC50 of Phyllotreta cruciferae f. Pegomyia hyoscamii and C. littoralis under laboratory conditions. Data in Table 4 show that the application of the bioinsecticides which affected on decreasing the infestation. The number of infestations of O. nubilalis significantly decreased to 23±2.2 and 26±2.1 individuals after treatment with B. brongniartii after 50 day as compared to 69±4.3 and 72±3.1 individual in the control during both two seasons 2012 and 2013. In all treatments the number of corn pests were significantly decreased. Chiloagamemnon infestation decreased to 48±1.3 and 36±3.3 individuals after 90 days as compared to 96±3.3 and 98±1.3 in the control plots in both two seasons. When combined the two pathogens tested against the target pests the results showed that, after 90 days the infestations recorded24±6.2, 23±2.4 and 27±5.3 individuals for O. nubilalis, S. cretica and C. agamemon., respectively during season 2012. During season 2013 the corresponding infestations for the these pests recorded18±1.2, 24±2.5, and 27±5.5 individuals, respectively (Table 4). In all treatments B. brongniartii + imidaclorprid gave the pest results for controlling the target pests. The same results obtained by Sabbour 2003,(2001a&b), 2013, Magda Mahmoud Sabbour and Shadia El-Sayed Abad-El-Aziz, 2014, Magda Sabbour, 2001, Sabbour (2002 a &b), Magda Sabbour and Ismail2002, Sabbour and Sahab 2005 &2007, 20011. The obtained results are similar to other studies carried out by Castillo et al. (2000) and Espinet et al. (1989) on their work on C. Capitata and increased the yield. These results agree with Sabbour &Shadia Abad El-Aziz, (2002 and 2010) who proved that the application with bioinsecticides increased the yield and decreased the infestation of insect pests. Also, results were in accordance with Castillo et al. (2000) who reported that the virulence of B. bassiana against C. capitata ranged between 8 to 30% and decrease the infestation among the olive fruits. Espinet et al. (1989) recorded that C. capitata mortality ranged between 69 and 78% after bioinsecticides treatments. The same findings obtained by Sabbour (2002 a &b), Magda Sabbour and Ismail2002, Sabbour and Sahab 2005 &2007, 20011. The same results obtained Sabbour 2006, Sabbour and Abd el Aziz 2007, Sabbour, 2007, Sabbour and Abbas, 2007. Sabbour and Hany, 2007, Sabbour,2008. Asmaa et al 2009. Sabbour 2014 control Tuta absoluta by three microbial control agents Bacillus thuringiensis(B.t) var kurstaki; Beauveria bassiana(B.b) which increase the yied. Sabbour 2014 control T. absoluta by fungi under laboratory and field conditions. The same obtained by Sabbour & Singer2014, Sabbour & Soliman 2014, Sabbour and Abdel-Raheem 2014. The same findings obtained by Sabbour, 2013(a,b,c,d,e,f,g,h,l,j).

At the harvest time the corn weight obtained 3922±54.6 and 3110±60.4 kg/Feddan among the harvested plots treated with B. brongniartii and imidaclorprid plots as compared to 2710±40.9 and 2511±73.2 kg/Feddan during seasons 2012 and 2013 respectively. The same results controlled cereal aphids with entomopathogenic fungi. They found that the infestation was reduced after fungi applications under laboratory and field conditions(Sabbour & Sahab 2005, 2007, and Sahab and Sabbour 2011) found that the fungi B. bassiana, M. anisopliae, Paecilomyces fumosoroseus Verticillium lecanii reduced insect infestations of cabbage and tomato pests under laboratory and field conditions. Sabbour and Abdel-Rahman 2013 found that, in all treatments the number of corn pests were significantly decreased. Loss of the yield by Sabbour & Shadia Abad El-Aziz, (2002 and 2010), proved that applications with bioinsecticides increased the yield and decreased the infestations. They found that the infestation was reduced after fungi applications under laboratory and field conditions. Sabbour & Sahab (2005, 2007 and 2011) found that the fungi reduced insect infestations of cabbage and tomato pests under laboratory and field conditions. These results agree with Sabbour & Shadia Abad El-Aziz, (2002 and 2010), proved that applications with bioinsecticides increased the yield and decreased the infestation with insect pests.

Table 1: Effect of the entomopathogenic fungi, B. brongniartii against the target insect pests larvae under laboratory conditions.

<table>
<thead>
<tr>
<th>Insects</th>
<th>LC50</th>
<th>slope</th>
<th>variance</th>
<th>95% confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostrinia nubilalis</td>
<td>132X10^4</td>
<td>0.1</td>
<td>1.01</td>
<td>99-166</td>
</tr>
<tr>
<td>Sesamia cretica</td>
<td>144X10^4</td>
<td>0.2</td>
<td>1.00</td>
<td>110-189</td>
</tr>
<tr>
<td>Chilo agamemon</td>
<td>170 X10^4</td>
<td>1.03</td>
<td>1.01</td>
<td>135-199</td>
</tr>
</tbody>
</table>

Table 2: Effect of Imidaclorprid against target insect pests under laboratory conditions.

<table>
<thead>
<tr>
<th>Insects</th>
<th>LC50</th>
<th>slope</th>
<th>variance</th>
<th>95% confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostrinia nubilalis</td>
<td>76</td>
<td>1.01</td>
<td>0.02</td>
<td>111-79</td>
</tr>
<tr>
<td>Sesamia cretica</td>
<td>89</td>
<td>0.1</td>
<td>1.01</td>
<td>134-97</td>
</tr>
<tr>
<td>Chilo agamemon</td>
<td>95</td>
<td>0.1</td>
<td>1.01</td>
<td>145-99</td>
</tr>
</tbody>
</table>

3.2 Acknowledgements

This research was supported by Agric. Department, National Research Centre, Cairo, Egypt. Project No (10120601).

International Journal of Science and Research (IJSR)

ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Volume 3 Issue 10, October 2014
Table 3: Effect of Imidaclorprid+B. broganitii against target insect pests under laboratory conditions.

<table>
<thead>
<tr>
<th>Insect</th>
<th>LC50</th>
<th>slope</th>
<th>variance</th>
<th>95% confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ostrinia nubilalis</td>
<td>46</td>
<td>1.01</td>
<td>0.02</td>
<td>11.89</td>
</tr>
<tr>
<td>Sesamia ceratca</td>
<td>69</td>
<td>0.1</td>
<td>1.01</td>
<td>34.95</td>
</tr>
<tr>
<td>Chilo agamennon</td>
<td>75</td>
<td>0.1</td>
<td>1.01</td>
<td>45.93</td>
</tr>
</tbody>
</table>

Table 4: Effect of different treatments on the target insect pests under field conditions.

<table>
<thead>
<tr>
<th>Post treatments</th>
<th>Number of infestation (means)±s.e during both two seasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>60±2.5 71±2.3</td>
</tr>
<tr>
<td>20</td>
<td>41±3.2 49±3.1</td>
</tr>
<tr>
<td>50</td>
<td>69±4.3 72±3.1</td>
</tr>
<tr>
<td>90</td>
<td>79±2.3 88±2.1</td>
</tr>
<tr>
<td>B. brongniarti</td>
<td>15±3.1 18±2.1</td>
</tr>
<tr>
<td>20</td>
<td>23±2.2 26±2.1</td>
</tr>
<tr>
<td>50</td>
<td>26±3.2 18±1.2</td>
</tr>
<tr>
<td>90</td>
<td>Imidaclorprid</td>
</tr>
<tr>
<td>20</td>
<td>46±4.2 36±1.2</td>
</tr>
<tr>
<td>50</td>
<td>39±4.2 30±1.3</td>
</tr>
<tr>
<td>90</td>
<td>B. broganitii</td>
</tr>
<tr>
<td>20</td>
<td>20±6.2 18±1.2</td>
</tr>
<tr>
<td>50</td>
<td>24±2.4 29±2.5</td>
</tr>
<tr>
<td>90</td>
<td>Imidaclorprid+</td>
</tr>
<tr>
<td>20</td>
<td>20±2.7 20±2.1</td>
</tr>
<tr>
<td>50</td>
<td>22±5.7 22±3.5</td>
</tr>
<tr>
<td>90</td>
<td>24±7.4 24±4.4</td>
</tr>
</tbody>
</table>

F value = 27.4 12.1 31.220.131.1 26.4
Lsd5% = 16.415.414.714.215.116.8

Table 5: Assessments of damage caused in corn field after the fungi treatment.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Season 2012 Wt of corn crop (kg/feddan) yield loss%</th>
<th>Season 2013 Wt of corn crop (kg/feddan) yield loss%</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. brongniarti</td>
<td>3922±54.6 33110±60.7 312710±40.9 394510±43.9</td>
<td>4241±60.4 133239±84.1 342511±73.2 484919±50.9</td>
</tr>
<tr>
<td>Imidaclorprid</td>
<td>33.6 120.7</td>
<td>31.7 115.5</td>
</tr>
</tbody>
</table>

References

[71] Sabbour, M. M. 2013c. Evaluation of isolated Entomopathogenic Fungi against the Red Palm Weevil

Volume 3 Issue 10, October 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

