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Abstract: With the mushroom growth of state of the art digital image and video manipulations tools, establishing the authenticity of 
multimedia content has become a challenging issue. This undermines our trust in images and, in particular, questions pictures as 
evidence for real-world events. In this context, here we analyze different forms of photograph manipulations to create a new, fake 
photograph. Digital image forensics is an increasingly growing research field that symbolizes a never ending struggle against forgery 
and tampering. This review attempts to cover different techniques that have been proposed for exposing digital image forgeries. 
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1. Introduction 
 
Millions of digital images and documents are produced 
daily. We know that images are a powerful tool for 
communication. With the advent of low-cost and high-
resolution digital cameras and sophisticated editing software, 
images can easily be altered and manipulated. Image forgery 
detection systems have been developed according to the 
conditions imposed by many applications. Detecting forgery 
is a technique used in forgery which uses image processing 
tools. Different types of image forgeries are seen nowadays. 
Therefore many forgery detection systems have exhibited in 
advancement of theses image forgery fields. 
 
A picture may worth a thousand words. We know millions of 
digital images are produced by a variety of devices and 
distributed by newspapers, magazines, websites and 
television. Interests in digital image processing methods 
stems from two principal application areas: improvement of 
pictorial interpretation, and processing of image data for 
storage, transmission and representation of autonomous 
machine perception.  
 
For a long time, photographs were accepted as proves of 
evidences in different fields such as forensic investigations, 
scientific research and publications, crime detection and 
legal proceedings, military intelligence, investigation of 
insurance claims, journalism, medical field related images 
etc. But nowadays it is not difficult to use software tools 
such as Corel Paint Shop, PhotoScape, PhotoPlus, GIMP, 
Photoshop, and Pixelmator etc. to manipulate images. Now it 
has become quite impossible to say whether a photograph is 
a genuine camera output or a manipulated version of it just 
by looking at it. Now a question arises how to differentiate 
the real from the fake? Forensic investigators use all 
available sources of tampering evidence.  
 
Digital forgeries, often leaving no visual clues of having 
been altered with, can be identified from authentic 
photographs. As a result, we conclude that photographs can’t 
be treated as the unique stature as a definitive recording of 
events. There are three types of image forgery; Copy- Move, 
Image splicing and Image retouching. 
 

 In Copy- Move Forgery, one part of the image is copied 
and that part is pasted on other part of the same image to 
cover an important scene of the image.  

 In Image-Splicing, two images are combined to create one 
tampered image. Splicing detection is more challenging in 
comparison to cloning detection as unlike cloned images, 
spliced images do not have any duplicate regions and 
unavailability of the a source image offers no clue about 
the forgery.  

 In Image Retouching, the image is less modified. It just 
enhances some features of the image. Ethically it’s also 
wrong. 

 
Digital image forensics is a field that analyses images of a 
particular scenario to establish credibility and authenticity 
through a variety of means. It is fast becoming a popular 
field because of its potential applications in many domains, 
such as intelligence, sports, legal services, news reporting, 
medical imaging and insurance claim investigations. 
 
How we deal with such technology towards photograph 
manipulation raises a surprising host of legal and ethical 
questions that we must address. When does image 
manipulation turn from simple tweaking of family photos to 
more serious, potentially criminal, manipulation of the public 
opinion? Before one can think of taking appropriate actions 
upon a questionable image, one must be able to detect that an 
image has been altered. 
 
To use an image as a trusted document for a particular event 
that actually happened, forensic investigators try to detect all 
possible tampering telltale signs in a given image in order to 
expose image forgeries. Manipulation cues are, among 
others, compression artifacts, natural image statistics, image 
acquisition artifacts, and illumination inconsistencies.  
 
2. Exposing Digital Forgeries From 3-D 
Lighting Environments 
 
When creating a photographic composite from multiple 
images, it is often difficult to exactly match the lighting 
conditions. In addition, it can be difficult to visually judge 
inconsistencies in lighting and shadows in a photograph [8]. 
Assume that the amount of light striking a surface is 
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proportional to the surface normal and the direction to a 
single light source. With knowledge of 3-D surface normals, 
the direction to the light source can be estimated. Because 3-
D surface normals usually cannot be determined from a 
single image, only the 2-D surface normals at occluding 
boundaries were considered. In return, only two of the three 
components of the light source direction were estimated. We 
can estimate the 3-D direction to a light source from the 
light’s reflection in the human eye. The required 3-D surface 
normals were determined by leveraging a 3-D model of the 
human eye. In these earlier works, a simplified lighting 
model consisting of a single dominant light source was 
assumed. 
 
In practice, however, the lighting of a scene can be complex: 
any number of lights can be placed in any number of 
positions, creating different lighting environments. Because 
3-D surface normals usually cannot be determined from a 
single image, we considered the 2-D surface normals at 
occluding boundaries, from which only five of the nine 
model parameters could be estimated. We can also estimate 
the full 3-D lighting environment in images of people. In 
order to extract the required 3-D surface normals, we fit 3-D 
models to an image of a person’s head and automatically 
align this model to an arbitrary head pose. We describe how 
to model and estimate lighting environments using this 
approach and show its efficiency in detecting photographic 
composites. This 3-D approach removes the ambiguities in 
the earlier 2-D lighting techniques, and hence allows for a 
more powerful forensic analysis. For this we first express an 
arbitrary lighting environment as a non-negative function on 
the sphere, specifying the intensity of the incident light along 
the unit vector direction. Then we will go for 3d model 
estimation and registration [1]. 
 
2.1. 3-D Model Estimation 
 
A 3-D morphable model for the analysis and synthesis of 
human faces was derived by collecting a set of 3-D laser 
scanned faces and projecting them into a lower-dimensional 
linear subspace. New faces (geometry, texture/color, and 
expressions) are modeled as linear combinations of the 
resulting linear basis. The 3-D model parameters can be 
estimated from a paired frontal and profile view or from only 
a single frontal view. This estimation requires the manual 
selection of several fiducial points on the face (11 on the 
frontal view and 9 on the profile view), from which the 3-D 
model is then automatically estimated [1].  
 
2.2. 3-D Model Registration 
 
Once estimated, the 3-D model is registered to the face being 
analyzed. This is done by maximizing an objective function 
over the camera intrinsic and extrinsic parameters that aligns 
the 3-D model to the image of the face. The 3-D model is 
first manually rotated to approximately align it with the 
image. At least three corresponding points are selected on 
the model and image (e.g., the center of each eye and base of 
the nose), from which the optimal translation is estimated 
using standard least-squares. With this initial alignment as a 
starting configuration, a brute force search is performed over 
the three rotation parameters, focal length, and camera 

center. On each iteration of this search, the translation vector 
is estimated. In order to reduce the effects of lighting, a high-
pass filter is applied to both the image and rendered model. 
Once the model has been estimated and registered, 3-D 
surface normals and corresponding intensities are used to 
estimate the lighting environment. 
 
 We can accurately estimate the 3-D lighting environment 
even at low resolution. But it would have been difficult to 
estimate 2-D normals in low-resolution image. When 
creating a composite of two or more people, it is often 
difficult to match the lighting. Lighting environments can be 
approximated with a nine dimensional model consisting of a 
linear combination of spherical harmonics. Lighting 
inconsistencies across an image are then used as evidence of 
tampering [1]. This technique extends earlier 2-D lighting 
approaches that, due to the lack of 3-D surface normals, 
were only able to estimate a subset of the full lighting model. 
This new approach removes the ambiguities in these earlier 
techniques, and hence allows for a more powerful forensic 
analysis.  
 
3. Exposing Digital Forgeries By Detecting 
Duplicated Image Regions 

A common manipulation in tampering with an image is to 
copy and paste portions of the image to conceal a person or 
object in the scene. If the splicing is imperceptible, little 
concern is typically given to the fact that identical or 
virtually identical regions are present in the image. This is a 
technique that can efficiently detect and localize duplicated 
regions in an image by applying a principal component 
analysis (PCA) on small fixed size image blocks to yield a 
reduced dimension representation. This representation is 
robust to minor variations in the image due to additive noise 
or lossy compression. Duplicated regions are then detected 
by lexicographically sorting all of the image blocks. The 
data-driven PCA basis may better capture discriminating 
features. We show the efficacy of this technique on credible 
forgeries, and quantify its robustness and sensitivity to 
additive noise and lossy JPEG compression. 
 
 3.1 Detecting Duplicated Regions 
 
Given an image with N pixels, our task is to determine if it 
contains duplicated regions of unknown location and shape. 
An exhaustive approach that would examine every possible 
pair of regions would have an exponential complexity in the 
number of image pixels. Such an approach is obviously 
computationally prohibitive. A more efficient algorithm 
might look for duplication of small fixed-sized blocks. By 
stringing each such block into a vector and lexicographically 
sorting all image blocks, identical blocks correspond to 
adjacent pairs in the sorted list. The primary cost of this 
algorithm would be the lexicographic sorting, yielding a 
complexity of O(N log N), since the number of image blocks 
is proportional to the number of image pixels, N. Note that 
this is a significant improvement over the brute-force 
exponential algorithm. The drawback of this approach, 
however, is that it is sensitive to small variations between 
duplicated regions due to, for example, additive noise or 
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lossy compression [2]. We describe next an algorithm that 
overcomes this limitation while retaining its efficiency. 
 
The detection algorithm proceeds as follows. First, to further 
reduce minor variations due to corrupting noise, the reduced 
dimension of each image block, is component-wise 
quantized. A matrix is constructed whose rows contain these 
quantized coefficients. Let the matrix be the result of 
lexicographically sorting the rows of this matrix in column 
order. Let i denote the ith row of this sorted matrix, and let 
the tuple (xi, yi) denote the block's image coordinates (top-
left corner) that corresponds to i. Consider next all pairs of 
rows i and j, whose row distance, |i – j|, in the sorted 
matrix S is less than a specified threshold. The offset, in the 
image, of all such pairs is given by: 

(xi - xj , yi - yj) if xi - xj > 0 
(xj - xi, yi - yj) if xi - xj < 0 

(0, |yi - yj |) if xi = xj 

From a list of all such offsets, duplicated regions in the 
image are detected by noting the offsets with high 
occurrence [2]. For example a large duplicated region will 
consist of many smaller blocks, each of these blocks will 
appear in close proximity to each other in the 
lexicographically sorted matrix, and will have the same 
offset. In order to avoid false hits due to uniform intensity 
areas, offset magnitudes below a specified threshold are 
ignored. The results of this detection can be visualized by 
constructing a duplication map- a zero image of the same 
size as the original is created, and all pixels in a region 
believed to be duplicated are assigned a unique gray scale 
value.  
 
The complexity of this algorithm is dominated by the 
lexicographic sorting. There are at least two ways in which 
this algorithm can be extended to color images. The simplest 
approach is to independently process each color channel 
(e.g., RGB) to yield three duplication maps. The second 
approach is to apply PCA to color blocks of size 3b, and 
proceed in the same way as described above. 
 
We have presented an efficient and robust technique that 
automatically detects duplicated regions in an image. This 
technique works by first applying a principal component 
analysis (PCA) on small fixed-size image blocks to yield a 
reduced dimension representation that is robust to minor 
variations in the image due to additive noise or lossy 
compression. Duplicated regions are then detected by 
lexicographically sorting all of the image blocks. The 
technique is effective on plausible forgeries, and has 
quantified its sensitivity to JPEG lossy compression and 
additive noise. Detection is possible even in the presence of 
significant amounts of corrupting noise.  
 
4. Exposing Digital Forgeries Through 
Specular Highlights On The Eye 
 
When creating a digital composite of two people, it is 
difficult to exactly match the lighting conditions under which 
each individual was originally photographed. In many 
situations, the light source in a scene gives rise to a specular 

highlight on the eyes. We show how the direction to a light 
source can be estimated from this highlight. Inconsistencies 
in lighting across an image are then used to reveal traces of 
digital tampering. In this work, we show how the location of 
a specular highlight can be used to determine the direction to 
the light source. Inconsistencies in the estimates from 
different eyes, as well as differences in the shape and color 
of the highlights, can be used to reveal traces of digital 
tampering. 
 
4.1 Methods 
 
The position of a specular highlight is determined by the 
relative positions of the light source, the reflective surface 
and the viewer (or camera). The light direction can be 
estimated from the surface normal and view direction at a 
specular highlight. In the following sections, we describe 
how to estimate these two 3-D vectors from a single image. 
Note that the light direction is specified with respect to the 
eye, and not the camera. In practice, all of these vectors will 
be placed in a common coordinate system, allowing us to 
compare light directions across the image. 
 
a) Camera Calibration 
 
In order to estimate the surface normal and view direction in 
a common coordinate system, we need to estimate the 
projective transform that describes the transformation from 
world to image coordinates. With only a single image, this 
calibration is generally an under-constrained problem. In our 
case, however, the known geometry of the eye can be 
exploited to estimate this required transform. The limbus, the 
boundary between the sclera (white part of the eye) and the 
iris (colored part of the eye), can be well modeled as a circle. 
The image of the limbus, however, will be an ellipse except 
when the eye is directly facing the camera. Intuitively, the 
distortion of the ellipse away from a circle will be related to 
the pose and position of the eye relative to the camera [3]. 
We therefore seek the transform that aligns the image of the 
limbus to a circle. 
 
Once estimated, the projective transform can be decomposed 
in terms of intrinsic and extrinsic camera parameters. The 
intrinsic parameters consist of the camera focal length, 
camera center, skew and aspect ratio. The extrinsic 
parameters consist of a rotation matrix and a translation 
vector that define the transformation between the world and 
camera coordinate systems [3]. Since the world points lie on 
a single plane, the projective transform can be decomposed 
in terms of the intrinsic and extrinsic parameters.  
 
b) Surface Normal 
 
The 3-D surface normal N at a specular highlight is 
estimated from a 3-D model of the human eye. The model 
consists of a pair of spheres. The larger sphere represents the 
sclera and the smaller sphere represents the cornea. The 
surface normal depends on the view direction [3]. The 
surface normal is determined by intersecting the ray leaving 
specular highlight along the view direction with the edge of 
the sphere.  
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c) Light Direction 
 
The position of the specular highlight is then used to 
determine the surface normal. Combined with the estimate of 
the view direction V, the light source direction L can be 
estimated. In order to compare light source estimates in the 
image, the light source estimate is converted to camera 
coordinates [3]. 
 
When creating a composite of two or more people it is often 
difficult to match the lighting conditions under which each 
person was originally photographed. Specular highlights that 
appear on the eye are a powerful cue as to the shape, color 
and location of the light source(s). Inconsistencies in these 
properties of the light can be used as evidence of tampering. 
We can also measure the 3-D direction to a light source from 
the position of the highlight on the eye. The shape and color 
of a highlight are relatively easy to quantify and measure and 
should also prove helpful in exposing digital forgeries. Since 
specular highlights tend to be relatively small on the eye, it is 
possible to manipulate them to conceal traces of tampering. 
To do so, the shape, color and location of the highlight 
would have to be constructed so as to be globally consistent 
with the lighting in other parts of the image. Also working in 
our favor is that even small artifacts on the eyes are visually 
salient. Nevertheless, as with all forensic tools, it is still 
possible to circumvent this technique. 
  
5. Exposing Digital Image Forgeries Using 
Color Illumination 
 
Methods based on illumination inconsistencies have two 
main characteristics that make them potentially effective in 
splicing detection. Firstly, from the viewpoint of a 
manipulator, a perfect adjustment of illumination conditions 
is very difficult to achieve when creating a composite 
photograph. Secondly, this class of methods can also be used 
to analyze analog pictures [9]. Illumination color analysis is 
a promising cue to expose image composites. In earlier 
work, Riess and Angelopoulou proposed to analyze 
illuminant color estimates from local image regions to detect 
spliced images [6]. Unfortunately, the authors leave the 
interpretation of the so-called illuminant maps to human 
experts. In practice, it turns out that it is very challenging to 
decide whether or not an image is tampered with based just 
on illuminant maps. Moreover, we cannot simply rely solely 
on a subject's or expert's opinion, as the human visual system 
can be quite inept at judging inconsistencies in photographs, 
especially when it involves lighting and shadows [4].  
 
We propose a new semi-automatic method that is 
considerably easier to use and more reliable than earlier 
approaches. We make use of the fact that local illuminant 
estimates are most discriminative when comparing objects 
that are made of the same (or similar) material. Thus, we 
focus on the automated comparison of regions of human 
skin, and more specifically, faces [4]. We classify the 
illumination on two faces as either consistent or inconsistent. 
The only interaction that is required by the user is to select 
image regions that contain objects of similar materials. 
Specifically, we restrict the required user interaction to 

marking bounding boxes around the faces in an image under 
investigation. 
 
5.1 Core of the System: Estimation of the Locally 
Dominant Illuminant and Interpretation of Illuminant 
Maps 
 
Here we propose a new approach that minimizes user 
dependence and improves the state-of-the-art. We classify 
the illumination for each pair of faces in the image as either 
consistent or inconsistent. First, we present an overview of 
the algorithm. Then, we present the algorithmic details for 
every step. The proposed method consists of five main 
components: 
 
 Dense Local Illuminant Estimation (IE): The input 

image is segmented into homogeneous regions. Per 
illuminant estimator, a new image is created where each 
region is colored with the estimated illuminant color. 
This resulting intermediate representation is called 
illuminant map (IM). 

 Face Extraction: This is the only step that may require 
human interaction. An operator sets a bounding box 
around each face (e. g., by clicking on two corners of the 
bounding box) in the image that should be investigated. 
Alternatively, an automated face detector can be 
employed. We then crop every bounding box out of each 
illuminant map, such that only the illuminant estimates of 
the face regions remain. 

 Computation of Illuminant Features: For all face 
regions, texture-based and gradient based features are 
computed on the IM values. Further analysis is performed 
on these features. 

 Paired Face Features: Our goal is to assess whether two 
faces in an image are consistently illuminated. For that, 
we combine the feature vectors from each pair of faces in 
the image creating a pair-of-faces feature vector.  

 Classification: We use a machine learning approach to 
automatically classify the feature vectors. Given an image 
with f faces, we consider an image as a forgery if at least 
one pair of faces (represented by one feature vector) is 
classified as inconsistently illuminated [5]. 

 
5.1.1 Dense Local Illuminant Estimation 
To detect inconsistencies in the illumination color, we need a 
dense set of localized estimates. We segment the input image 
into regions of approximately constant chromaticity (so-
called super-pixels). Then we estimate the color of the 
illuminant per super-pixel. By recoloring the super-pixels 
with the estimated illuminant chromaticity, we obtain an 
illuminant map. We use two separate methods to obtain a 
version of this map:  
 
a) Generalized Gray World Estimates 
We follow the generalized gray world approach by van de 
Weijer et al [10]. Let f = (R, G, B)T denote the observed 
color of a pixel. Van de Weijer et al. assume a Lambertian 
scene (i. e., objects of purely diffuse reflectance) and linear 
camera response. Then, f is formed by  

f =∫Ω e( λ)s( λ)c(λ )d λ 
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where λ denotes the wavelength of the light, e(λ) denotes the 
spectrum of the illuminant, s(λ) the surface reflectance of an 
object, and c(λ) the sensitivity of the camera as a vector for 
each color channel.  
 
b) Inverse Intensity-Chromaticity Estimates 
The second illuminant estimator is the inverse intensity-
chromaticity (IIC) color space. The observed image 
intensities are assumed to exhibit a mixture of diffuse (i. e., 
Lambertian) and specular reflectance. Pure specularities are 
assumed to consist of only the color of the illuminant. Let f = 
(R, G, B)T be the observed colors of a pixel. Then, using the 
same notation as for the generalized gray world model, f is 
modeled as 

f =∫Ω (e(λ)s(λ) + e(λ ))c(λ )d λ 

5.1.2 Face Extraction 
Unconstrained estimation of the illuminant color can be 
error-prone and affected by the reflectance properties of the 
materials in the scene. However, it is possible to improve the 
accuracy of the relative error between two estimates by 
focusing only on objects of approximately the same material. 
For this work, we limit our examination of illumination 
consistency to human skin and, in particular, to faces. 
Pigmentation is the most obvious difference in skin 
characteristics between different ethnicities. This 
pigmentation difference depends on many factors as quantity 
of melanin, amount of UV exposure, genetics, melanosome 
content and type of pigments found in the skin. However, 
this intramaterial variation is typically smaller than that of all 
materials possibly occurring in a scene. 
 
All faces in the image that should be part of the investigation 
have to be annotated with a bounding box. In principle, this 
can be done automatically, through the use of a face 
detector. However, we prefer a human operator for this task 
for two main reasons: a) this minimizes false detections or 
misses of faces; b) scene context is important when judging 
the lighting situation. For instance, consider an image where 
all persons of interest are illuminated by ashlight. The 
illuminants are expected to agree with one another. 
Conversely, assume that a person in the foreground is 
illuminated by ashlight, and a person in the background is 
illuminated by ambient light. Then, a difference in the color 
of the illuminants is expected. Such differences are hard to 
distinguish in a fully automated manner.  
 
5.1.3 Interpreting Illuminant Maps as Texture Maps 
From an image processing perspective, we can interpret the 
illuminant maps from face regions as texture maps. Many 
different texture descriptors have been proposed in the 
literature thus far. One of the most effective methods is the 
Statistical Analysis of Structural Information (SASI) 
descriptor [11]. The most important advantage of SASI 
application is its remarkable capability of capturing small 
granularities and discontinuities which are present in texture 
patterns. These patterns appear mainly in sharp corners and 
abrupt changes such as the ones present in illuminant maps, 
especially in the face region of composite images. 
 
 
 

5.1.4 Face Pair 
To compare two faces, we combine the same descriptors for 
each of the two faces. For instance, we can concatenate the 
SASI-descriptors that were computed on gray world. The 
idea is that a feature concatenation from two faces is 
different when one of the faces is an original and one is 
spliced. For an image containing f faces (f ≥ 2), the number 
of face pairs is (f(f -1))=2. 
 
5.1.5 Classification 
We classify the illumination for each pair of faces in an 
image as either consistent or inconsistent. Assuming all 
selected faces are illuminated by the same light source, we 
tag an image as manipulated if one pair is classified as 
inconsistent. Individual feature vectors, i. e., texture on 
either gray world or IIC-based illuminant maps, are 
classified using a Support Vector Machine (SVM) classifier 
with a Radial Basis Function (RBF) kernel. 
 
In this work, we presented a new method for detecting 
forged images of people using the color of the illuminant. 
We estimate the illuminant color with a statistical gray edge 
method and a physics-based method using the inverse 
intensity-chromaticity color space. We interpret these 
illuminant maps as texture maps and also extract edge 
information from them. Although the proposed method is 
tailored to detect splicing on images containing faces, there 
is no principal hindrance in applying it to other, problem-
specific materials in the scene. The proposed method 
requires only a minimum of human interaction and provides 
a crisp statement on the authenticity of the image. 
Additionally, it is an important leap ahead to exploit color as 
a forensic cue. Prior color-based work either assumes 
complex user interaction or imposes very limiting 
assumptions. Although promising as forensic cues, methods 
that operate on illuminant color are inherently prone to 
estimation errors. 
 
6. Conclusion 
 
The authenticity of an image is major research challenge in 
the field image forensic for real world events. The image 
integrity verification as well as identifying the areas of 
tampering on images without need to any expert support or 
manual process or prior knowledge original image contents 
is now days becoming the challenging research problem. 
Thus to solve this problem recently some techniques were 
presented and new techniques will be developed to make 
better and harder to detect fakes (for exposing photographic 
frauds). In this paper we have discussed different methods of 
detection for digital image forgery. For the future work we 
suggest to work over improved new method with efficient 
skin detection methods.  
 
An attempt has been made to introduce various promising 
techniques that represent reasonable improvements in the 
forgery detection methods. Still these improvements are far 
from being perfect and have certain drawbacks that must be 
eliminated to obtain effective results. There are techniques 
exhibiting improved detection accuracy, but having high 
computational complexity. Moreover, most of the methods 
may not be that responsive to the geometric transformations, 
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such as rotation and scaling. The factor of human perception 
is also not counted as a factor during the development of 
these techniques. Therefore there is a need to develop 
techniques that are automatic, and effective against 
geometric transformations. 
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