
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Survey Paper on Big Data Processing and Hadoop
Components

Poonam S. Patil1, Rajesh. N. Phursule2

Department of Computer Engineering

JSPM’s Imperial College of Engineering and Research, Pune, India

Abstract: As big data continues down its path of growth, a major challenge has become how to deal with the explosion of data and
analysis of this data. For such data-intensive applications, the Apache Hadoop Framework has recently attracted a lot of attention. This
framework Adopted MapReduce, it is a programming model and an associated implementation for processing and generating large data
sets. Hadoop Provides: Distributed File System, Job scheduling, Resource Management Capabilities, and Java API for writing
Application E.g. Java Map-Reduce, Streaming MapReduce, Crunch, Pig latin, Hive, Oozie etc. Users specify a map function that
processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values
associated with the same intermediate key. Many real world tasks are expressible in this model, Hadoop gives the flexibility to use any
language to write an algorithms. In this paper we will briefly introduce the MapReduce framework based on Hadoop and the current
state-of-the-art in MapReduce algorithms for big data analysis.

Keywords: Big data, Hadoop, MapReduce, Hive, Hbase, Distributed Data, Relational Database, NoSql

1. Introduction

A. Big Data

We have entered an era of Big Data [1]. Through better
analysis of the large volumes of data that are becoming
available, there is the potential for making faster advances
in many scientific disciplines and improving the
profitability and success of many enterprises. However,
many technical challenges described in this paper must be
addressed before this potential can be realized fully. The
challenges include not just the obvious issues of scale, but
also heterogeneity, lack of structure, error-handling,
privacy, timeliness, provenance, and visualization, at all
stages of the analysis pipeline from data acquisition to
result interpretation. These technical challenges are
common across a large variety of application domains, and
therefore not cost-effective to address in the context of one
domain alone. Furthermore, these challenges will require
transformative solutions, and will not be addressed
naturally by the next generation of industrial products. We
must support and encourage fundamental research towards
addressing these technical challenges if we are to achieve
the promised benefits of Big Data.

The contributions of this paper are:

 An overview of Big Data[1]
 State-of-the art in Hadoop MapReduce[3] framework
 Introduction to the various components of Hadoop

B. Vs of Big Data

Volume: Volume refers to amount of data. Volume of data
stored in enterprise repositories have grown from
megabytes and gigabytes to petabytes.
Variety: Different types of data and sources of data. Data
variety exploded from structured and legacy data stored in
enterprise repositories to unstructured, semi structured,
audio, video, XML etc.

Velocity: Velocity refers to the speed of data processing.
For time-sensitive processes such as catching fraud, big
data must be used as it streams into your enterprise in
order to maximize its value.

2. Traditional Database Systems and

Hadoop

A. What is a Relational Database?

Traditional RDBMS (relational database management
system) have been the de facto standard for database
management System. The architecture of RDBMS is such
that data is organized in a highly-structured manner,
following the relational model. Though, RDBMS is now
considered to be a declining database technology. While
the precise organization of the data keeps the warehouse
very "neat", the need for the data to be well-structured
actually becomes a substantial burden at extremely large
volumes, resulting in performance declines as size gets
bigger. Thus, RDBMS is generally not thought of as a
scalable solution to meet the needs of 'big' data.

B. What is NoSQL?

NoSQL (commonly referred to as "Not Only SQL")
represents a completely different framework of databases
that allows for high-performance, agile processing of
information at massive scale. In other words, it is a
database infrastructure that has been very well-adapted to
the heavy demands of big data.

The efficiency of NoSQL can be achieved because unlike
relational databases that are highly structured, NoSQL
databases are unstructured in nature, trading off stringent
consistency requirements for speed and agility. NoSQL
centers on the concept of distributed databases, where
unstructured data may be stored across multiple processing
nodes, and often across multiple servers. This distributed
architecture allows NoSQL databases to be horizontally

Paper ID: OCT14251 585

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

scalable; as data continues to explode, just add more
hardware to keep up, with no slowdown in performance.
The NoSQL distributed database infrastructure has been
the solution to handling some of the biggest data
warehouses on the planet – i.e. the likes of Google,
Amazon, and the CIA.

Figure 1: Traditional DB Vs NoSQL DB

C. Hadoop

Hadoop Origin: It is Created By Doug Cutting as a Part of
Apache Product [9],

2004 Google publish GFS Paper,
2005 Nutch (open Source web search) uses MapReduce
2008 MapReduce becomes Apache top-level project, was
lucene sub-project before
2009 Yahoo used Hadoop to start 1TB in 62sec
2013 Hadoop is used by hundreds of the companies

Hadoop is not a type of database, but rather a software
ecosystem that allows for massively parallel computing. It
is an enabler of certain types NoSQL distributed databases
(such as HBase), which can allow for data to be spread
across thousands of servers with little reduction in
performance. A staple of the Hadoop ecosystem is
MapReduce, a computational model that basically takes
intensive data processes and spreads the computation
across a potentially endless number of servers (generally
referred to as a Hadoop cluster). It has been a game-
changer in supporting the enormous processing needs of
big data[1]; a large data procedure which might take 20
hours of processing time on a centralized relational
database system, may only take 3 minutes when
distributed across a large Hadoop cluster of commodity
servers, all processing in parallel.

3. MapReduce Framework

A. Master-Slave Architecture

Programs written in this functional style are automatically
parallelized and executed on a large cluster of commodity
machines. The run-time system takes care of the details of
partitioning the input data, scheduling the program's
execution across a set of machines, handling machine
failures, and managing the required inter-machine
communication. This allows programmers without any

experience with parallel and distributed systems to easily
utilize the resources of a large distributed system. Our
implementation of MapReduce[2] runs on a large cluster
of commodity machines and is highly scalable: a typical
MapReduce computation processes many terabytes of data
on thousands of machines. Programmers find the system
easy to use: hundreds of MapReduce programs have been
implemented and upwards of one thousand MapReduce
jobs are executed on Google's clusters every day.

Figure 2: Hadoop Master Slave Architecture

Figure 3: Hadoop Job and Task Tracker Responsibility

In the initial implementations [3] of Hadoop, MapReduce
is designed as a master-slave architecture as shown in fig 2
the responsibilities of task and job tracker are shown in fig
3. The JobTracker is the master managing the cluster
resources, scheduling jobs, monitoring progress and
dealing with fault-tolerance. On each of the slave nodes,
there exists a TaskTracker process, responsible for
launching parallel tasks and reporting their status to the
JobTracker. The slave nodes are statically divided into
computing slots, available to execute either Map or
Reduce tasks. The Hadoop community realized the
limitations of this static model and recently redesigned the
architecture to improve cluster utilization and scalability.
The new design, YARN [7] is presented.

B. Programming Model of MapReduce

The computation [3] of MapReduce takes a set of input
key/value pairs, and produces a set of output key/value
pairs. The user of the MapReduce library expresses the
computation as two functions: map and reduce. Map,
written by the user, takes an input pair and produces a set
of intermediate key/value pairs. The MapReduce library
groups together all intermediate values associated with the
same intermediate key I and passes them to the reduce
function. The reduce function, also written by the user,
accepts an intermediate key I and a set of values for that

Paper ID: OCT14251 586

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

key. It merges these values together to form a possibly
smaller set of values. Typically just zero or one output
value is produced per reduce invocation. The intermediate
values are supplied to the user’s reduce function via an
iterator. This allows us to handle lists of values that are too
large to fit in memory.

C. Example

Consider the problem of counting the number of
occurrences of each word in a large collection of
documents. The user would write code similar to the
following pseudo code.

Pseudo Code 1 for Word Count

map (String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”);

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));

The map function emits each word plus an associated
count of occurrences (just 1 in this simple example). The
reduce function sums together all counts emitted for a
particular word. In addition, the user writes code to fill in a
mapreduce specification object with the names of the input
and output files and optional tuning parameters. The user
then invokes the MapReduce function, passing it to the
specification object. The user’s code is linked together
with the MapReduce[2] library (implemented in C++) few
simple examples of interesting programs that can be easily
expressed as MapReduce computations.

Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermediate
data to the output.

Count of URL Access Frequency: The map function
processes logs of web page requests and outputs <URL,
1>. The reduce function adds together all values for the
same URL and emits <URL, TotalCount> pair.

ReverseWeb-Link Graph: The map function <target,
source> pairs for each link to a target URL found in a page
named source. The reduce function concatenates the list of
all source URLs associated with a given target URL and
emits the pair: <target, list(source)>

Term-Vector per Host: A term vector summarizes the
most important words that occur in a document or a set of
documents as a list of <word, frequency> pairs. The map
function emits a <hostname, term vector> pair for each
input document (where the hostname is extracted from the

URL of the document). The reduce function is passed all
per-document term vectors for a given host. It adds these
term vectors together, throwing away infrequent terms,
and then emits <hostname, term vector> pair.

D. Types

Even though the previous pseudo code is written in terms
of string inputs and outputs, conceptually the map and
reduce functions supplied by the user have associated
types.

map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

That is, the input keys and values are drawn from a
different domain than the output keys and values.
Furthermore, the intermediate keys and values are from the
same domain as the output keys and values.

4. Hadoop Component

There is an extensive list of products and projects that
either extend Hadoop’s functionality or expose some
existing capability in new ways, like MapReduce for
distributed data processing, HDFS for distributed file
system, Hive[11] for distributed data warehouse[8] and
provides sql based query language, HBase[12] or
Accumulo for distributed column based database, Pig[6]
provides an abstraction layer with the help of scripts in the
language Pig Latin, which are translated to MapReduce
jobs. Other examples of projects built on top of Hadoop
include Apache Sqoop, Apache Oozie, and Apache Flume,
YARN for improvement of cluster utilization and
scalability etc

A. HDFS

The Hadoop Distributed File System (HDFS)[10] is a
distributed file system designed to run on commodity
hardware its architecture is shown in fig 4. It has many
similarities with existing distributed file systems.
However, the differences from other distributed file
systems are significant. HDFS is highly fault-tolerant and
is designed to be deployed on low-cost hardware. HDFS
provides high throughput access to application data and is
suitable for applications that have large data sets. HDFS
was originally built as infrastructure for the Apache Nutch
web search engine project.HDFS is part of the Apache
Hadoop Core project.

Paper ID: OCT14251 587

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 4: Hadoop MapReduce and HDFS

Hadoop MapReduce[1] jobs read their input data from
HDFS and also write their output to it. HDFS has been
very popular because of its scalability, reliability and
capability of storing very large files. HDFS [10]
applications need a write-once-read-many access model
for files. A file once created, written, and closed need not
be changed. This assumption simplifies data coherency
issues and enables high throughput data access. A
Map/Reduce application or a web crawler application fits
perfectly with this model. There is a plan to support
appending-writes to files in the future.

B. HBase

Apache HBase[8] is distributed column based database -
like layer built on Hadoop designed to support billions of
messages per day, HBase is massively scalable and
delivers fast random writes as well as random and
streaming reads. It also provides row-level atomicity
guarantees, but no native cross-row transactional support.
From a data model perspective, column-orientation gives
extreme flexibility in storing data and wide rows allow the
creation of billions of indexed values within a single table.
HBase[12] is ideal for workloads that are write-intensive,
need to maintain a large amount of data, large indices, and
maintain the flexibility to scale out quickly.

C. Hive

Hive [8] is a technology developed at Facebook that turns
Hadoop into a data warehouse [8] complete with a dialect
of SQL for querying. Being a SQL dialect, HiveQL[11] is
a declarative language. The architecture of Hive is shown
in fig 5. In PigLatin[6], you specify the data flow, but in
Hive we describe the result we want and Hive figures out
how to build a data flow to achieve that result. Unlike Pig,
in Hive a schema is required, but you are not limited to
only one schema. Like PigLatin and the SQL, HiveQL[4]
itself is a relationally complete language but it is not a
Turing complete language. It can also be extended through
UDFs just like Piglatin to be a Turing complete. Hive is a
technology for turning the Hadoop into a data warehouse,

complete with SQL dialect for querying it. Hive works in
terms of tables. There are two kinds of tables you can
create: managed tables whose data is managed by Hive
and external tables whose data is managed outside of Hive.
Another option Hive provides for speeding up queries is
bucketing. Like partitioning, bucketing splits up the data
by a particular column, but in bucketing you do not specify
the individual values for that column that correspond to
buckets, you simply say how many buckets to split the
table into and let Hive figure out how to do it.

D. PIG

Pig was initially developed at Yahoo Research around
2006 but moved into the Apache Software Foundation in
2007. Pig consists of a language and an execution
environment. Pig’s language, called as PigLatin[6], is a
data flow language - this is the kind of language in which
you program by connecting things together. Pig can
operate on complex data structures, even those that can
have levels of nesting. Unlike SQL, Pig does not require
that the data must have a schema, so it is well suited to
process the unstructured data. But, Pig can still leverage
the value of a schema if you want to supply one. PigLatin
is relationally complete like SQL, which means it is at
least as powerful as a relational algebra. Turing
completeness requires conditional constructs, an infinite
memory model, and looping constructs. PigLatin is not
Turing complete on itself, but it can be Turing complete
when extended with User--Defined Function.

Figure 5: Hive System Architecture

There are three different ways to run Pig. You can run
your PigLatin[13] code as a script, just by passing the
name of your script file to the pig command. You can run
it interactively through the grunt command line launched
using Pig with no script argument. Finally, you can call
into Pig from within Java using Pig’s embedded form.

Paper ID: OCT14251 588

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

E. YARN

YARN [4], Yet Another Resource Negotiator, is included
in the latest Hadoop release and its goal is to allow the
system to serve as a general data-processing framework. It
supports programming models [7] other than MapReduce,
while also improving scalability and resource utilization.
YARN makes no changes to the programming model or to
HDFS. It consists of a re-designed runtime system, aiming
to eliminate the bottlenecks of the master-slave
architecture [4]. The responsibilities of the Job Tracker are
split into two different processes, the Resource Manager
and the Application Master. The Resource Manager
handles resources dynamically, using the notion of
containers, instead of static Map/Reduce slots. Containers
are configured based on information about available
memory, CPU and disk capacity. It also has a pluggable
scheduler, which can use different strategies to assign
tasks to available nodes. The Application Master is a
framework-specific process, meaning that it allows other
programming models to be executed on top of YARN,
such as MPI or Spark [12]. It negotiates resources with the
Resource Manager and supervises the scheduled tasks.

Figure 6: YARN System Architecture

Fig 6 shows the System Architecture of YARN. The
lifecycle of a Map-Reduce job running in YARN [7] is as
follows:

1. Hadoop MR JobClient submits the job to the YARN

ResourceManager (ApplicationsManager) rather than
to the Hadoop MapReduce [2] JobTracker.

2. The YARN RM-ASM negotiates the container for the
MR Application Master with the Scheduler (RMS)
and then launches the MR AM for the job.

3. The MR AM starts up and registers with the RMASM.
4. The Hadoop MapReduce JobClient polls the ASM to

obtain information about the MR AM and then
directly talks to the AM for status, counters, etc.

5. The MR AM computes input-splits and constructs
resource requests for all maps and reducers to the
YARN Scheduler.

6. The MR AM runs the requisite job setup APIs of the
Hadoop MR Output Committer for the job.

7. The MR AM submits the resource requests for the
map/reduce tasks to the YARN Scheduler (RM-S),
gets containers from the RM and schedules
appropriate tasks on the obtained containers by
working with the Node Manager for each container.

8. The MR AM monitors the individual tasks to
completion, requests alternate resource if any of the
tasks fail or stop responding.

9. The MR AM also runs appropriate task cleanup code
of completed tasks of the Hadoop MR Output
Committer.

10. Once the entire map and reduce tasks are complete,
the MR AM runs the requisite job commit APIs of the
Hadoop MR Output Committer for the job.

11. The MR AM then exits since the job is complete.

5. Conclusion and Future Scope

The MapReduce programming model has been
successfully used at Google for many different purposes
the model is easy to use, even for programmers without
experience with parallel and distributed systems, since it
hides the details of parallelization, fault tolerance, locality
optimization, and load balancing. Second, a large variety
of problems are easily expressible as MapReduce
computations. MapReduce is easy to parallelize and
distribute computations and to make such computations
fault tolerant. And there are extensive list of products and
projects that either extend Hadoop’s functionality or
expose some existing capability in new ways.

MapReduce model specifically, are an active research
area, still at its infancy. Currently, the interest for
MapReduce is at its peak and there exist a lot of problems
and challenges still to be addressed. There lies a bright
future ahead for Big Data, as businesses and organizations
realize more and more the value of the information they
can store and analyze. Developing ways to process the vast
amounts of data available drives business innovation,
health discoveries, science progress and allows us to find
novel ways to solve problems, which we considered very
hard or even impossible in the past.

References

[1] Apache Hadoop. Available at

http://hadoop.apache.org
[2] Apache HDFS. Available at

http://hadoop.apache.org/hdfs
[3] Apache Hive. Available at http://hive.apache.org
[4] Apache HBase. Available at http://hbase.apache.org
[5] A community white paper developed by leading

researchers across the United States “Challenges and
Opportunities with Big Data”

[6] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain,
Zheng Shao, Prasad Chakka, Ning Zhang, Suresh
Antony, Hao Liu and Raghotham Murthy “Hive – A
Petabyte Scale Data Warehouse Using Hadoop” By
Facebook Data Infrastructure Team

[7] dhruba,jssarma,jgray,kannan,nicolas,hairong,krangana
than,dms,aravind.menon,rash,rodrigo,amitanand.s
“Apache Hadoop Goes Realtime at Facebook”

Paper ID: OCT14251 589

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

SIGMOD .’11, June 12.–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06

[8] Jeffrey Dean and Sanjay Google, Inc.” MapReduce:
Simplified Data Processing on Large Clusters”

[9] Kyuseok Shim Seoul National University
shim@ee.snu.ac.kr “MapReduce Algorithms for Big
Data Analysis”

[10] Sanjeev Dhawan1, Sanjay Rathee2, Faculty of
Computer Science & Engineering, Research Scholar “
Big Data Analytics using Hadoop Components like
Pig and Hive” AIJRSTEM 13- 131; © 2013,
AIJRSTEM.

[11] Vasiliki Kalavri, Vladimir VlassovKTH The Royal
Institute of Technology Stockholm, Sweden
kalavri@kth.se “MapReduce: Limitations,
Optimizations and Open Issues”.
TrustCom/ISPA/IUCC,Page1031-1038,IEEE,(2013)

[12] Vinod Kumar, Vavilapalli, Arun C Murthy, Chris
Douglas, Sharad Agarwal,Mahadev, Konar, Robert
Evans,Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, Bikas Saha, Carlo Curino, Owen
O’Malley, Sanjay Radia, Benjamin Reed, Eric
Baldeschwieler “Apache Hadoop YARN: Yet Another
Resource Negotiator” SoCC’13, 1–3 Oct. 2013, Santa
Clara, California, USA. ACM978-1-4503-2428-1

Paper ID: OCT14251 590

