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Abstract: Understanding the effect of blur is an important problem in unconstrained visual analysis. We concentrate on this 
problem in the context of image-based recognition, by a fusion of image-formation models, as well as differential geometric tools. 
First, we talk about the space spanned by blurred versions of an image and then under certain assumptions, present a differential 
geometric analysis of that space. More exclusively, we create a subspace resulting from convolution of an image with a complete set 
of orthonormal basis functions of a pre-specified maximum size (that can represent an arbitrary blur kernel within that size), and 
explain that the equivalent subspaces created from a clean image and its blurred versions are equal under the ideal case of zero 
noise, and some assumptions on the properties of blur kernels. We then learn the practical utility of this subspace representation for 
the problem of direct recognition of blurred faces and by viewing the subspaces as points on the Grassmann manifold and present 
methods to perform recognition for cases where the blur is both homogenous and spatially varying. We empirically evaluate the 
effect of noise, as well as the presence of other facial variations between the gallery and probe images, and give comparisons with 
existing approaches on usual datasets. 
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1. Introduction 
 
Understanding the effects of blur, which in general arise due 
to out-of-focus lens, atmospheric turbulence, and relative 
motion between the sensor and objects in the scene, is an 
important problem in image analysis applications such as 
face recognition. The image formation equation modeling the 
blurring process can be written as, 
 

 
 
where denotes the pixel location at which a 2D 
convolution ¤ is performed between a clean image 

and an unknown blur point-spread function (PSF) 

 to result in a blurred image1 The ubiquitous 
noise present in the system, which can be due to 
quantization, or other sensor induced errors, is represented by 

. In recognition applications, existing methods to 
handle the effects of blur can be classified as: (i) inverse 
methods based on deblurring, and (ii) direct methods based 
on invariants. 
 
The goal of deblurring is to estimate the clean image y from 
the observed blurred image . Even with complete 
knowledge of the blur kernel k, an assumption which is 
hardly true in practice, inverting (1) to obtain y is an ill-
posed problem due to the unknown nature of noise. 
Techniques for performing image restoration have been 
actively studied by the image processing community over the 
last four decades [4], and some of the prominent 
methodologies include: blind de-convolution [20] that does 
not assume any knowledge of the blur kernel, and thereby 
attempts to solve an under constrained problem of estimating 
both k and y from , non-blind de-convolution which 
assumes models for blur [34], learning priors on clean image 
statistics [9], [19], and using coded-computational 

photography techniques [2]. Regularization methods based 
on total variation [27] and Tikhonov regularization [31] 
constitute an integral part of this process. Such ideas have 
also been applied for recognizing faces across blur [17], [22], 
[23], [29]. 
 
In contrast to this, direct methods based on invariants search 
for those properties of the original image that are preserved 
across blur (under the assumption of zero noise). This is 
suited for applications where the goal is not to recover the 
clean image, but to extract features invariant to blur that can 
be used for subsequent tasks such as recognition or retrieval. 
Most efforts in this line of research are devoted to the 
specific class of centrally symmetric blur PSFs, which 
account for blur due to out-of-focus lens and atmospheric 
effects. The main observation behind these methods is as 
follows: Let , and kF denote the Fourier transform of 

, and k respectively. Then under no noise, (1) can be 

written as , where denote 
the co-ordinates in frequency domain. The phase of these 
signals are related by . Since 

centrally symmetric kernels have a phase of either 0 or , 
the tangent of phase, , is 
invariant to blur. Using this property, moment-based 
invariants were derived both in spatial and Fourier domain, 
e.g. [11], [12]. Deriving invariants for linear motion blur has 
been addressed by [13]. There have been extensions of these 
works, which in addition to blur, accommodate invariance to 
rotation, similarity, and affine transformations [10], [30], and 
have been used for recognizing objects/ faces in distorted 
images [3], [24]. Robustness to noise is generally studied 
empirically. 
 
Contributions: Our method belongs to the latter category. 
Unlike methods that impose restrictions on the parametric 
form of the blur kernel, we represent an arbitrary blur kernel 
as a linear combination of orthonormal basis functions that 
span the set of allowable blur kernels, and propose: 
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 A new blur invariant that handles more general class of 
blurs, by creating a subspace that results from convolution 
of an image with each individual basis function, which 
thereby contains (but not limited to) the set of all blurred 
versions of that image. 

 We provide a differential geometric interpretation of the 
space spanned by these blur invariants, by studying them 
as points on a Grassmann manifold. 

 We then utilize algorithms derived from this interpretation 
to perform face recognition across blur, where we 
demonstrate superior performance over various state-of-
the-art methods. 

 
2. Literature survey 
 
P.A. Absil, R. Mahony, and R. Sepulchre [1] in Riemannian 
geometry of Grassmann manifolds with a view on 
algorithmic computation given simple formulas for the 
canonical metric, gradient, Riemannian connection, Lie 
derivative, parallel translation, geodesics and distance on the 
Grassmann manifold of p-planes in Rn. In these formulas, p-
planes are represented as the column space of n × p matrices. 
The Newton method on Riemannian manifolds proposed by 
S. T. Smith is made explicit on the Grassmann manifold. 
Two applications –computing an invariant subspace of a 
matrix and the mean of subspaces and considered the 
Grassmann manifold Grass(p, n) of p-planes in Rn as the 
base space of a GLp-principal fiber bundle with the 
noncompact Stiefel manifold ST(p, n) as total space. Using 
the essentially unique On-invariant metric on Grass(p, n), we 
have derived a formula for the Levi-Civita connection in 
terms of horizontal lifts. Moreover, formulas have been given 
for the Lie bracket, parallel translation, distance and 
geodesics between p-planes. Finally, these results have been 
applied to a detailed derivation of the Newton method on the 
Grassmannmanifold. 
 
Timo Ahonen, Esa Rahtu, Ville Ojansivu, Janne Heikkila[3] 
in Recognition of Blurred Faces Using Local Phase 
Quantization given recognition of blurred faces using the 
recently introduced Local Phase Quantization (LPQ) operator 
is proposed. LPQ is based on quantizing and the Fourier 
transform phase in local neighborhoods. The segment can be 
shown to be a blur invariant property under certain 
commonly fulfilled situations. In face image analysis, 
histograms of LPQ labels computed within local regions are 
used as a face descriptor similarly to the widely used Local 
Binary Pattern (LBP) methodology for face image 
description. 
 
A. Chakrabarti, T. Zickler, and W. Freeman [6] in Analyzing 
spatially-varying blur , blur is caused by a pixel receiving 
light from multiple scene points, and in several cases, such as 
object motion, then make blur varies spatially across the 
image plane. Though, the seemingly straight-forward task of 
estimating spatially-varying blur from a single image has 
proved hard to accomplish reliably. This effort considers 
such blur and makes two contributions: a local blur cue that 
measures the likelihood of a small neighborhood being 
blurred by a candidate blur kernel; and an algorithm that, 
given an image, at the same time selects a motion blur kernel 

and segments the region that it affects. The methods are 
performed well on a diversity of images. 
 
3. Space of Blur and Blur-Invariants 
 
The goal of this section is to obtain a representation of an 
image y that is invariant to blurring with arbitrary k, under 
three assumptions: (i) there is no noise in the system , 
(ii) the maximum size of the blur kernel is known, 
and (iii) the matrix corresponding to the 
unknown blur PSF, under 0 boundary conditions for 
convolution, is full rank. More discussions on these 
assumptions are provided in the later part of this section. 
For the case of 2D signals2, we write any squareintegrable, 

shift-invariant kernel k of size as,  

where is a complete set of orthonormal basis 

functions for are their combining co-
efficients. Hence under no noise, (1) becomes, 

  

where the specific form of k is determined by . We 
now create a dictionary  
 

 
 

Of size , where with d > N, and 

denotes the vectorization operation. The column span of 
D(y) is a subspace containing the set of convolutions of y 
with arbitrary kernels of maximum3 size 

 which 

is an N-dimensional subspace in . It is important to note 
here that the set of all blurred images of y (produced by 
convolving y with physically realizable blur kernels that have 
non-negative co-efficients summing to one), span only a part 
of this subspace. 
 
Proposition 3.1:  is a blur-invariant of y. In 

other words, , where  is a 
blurred version of y. 
 

Proof: Let  denote the 
orthonormal matrix created from the basis functions. 

By writing convolution as matrix multiplication, (3) becomes 
, where Y is a matrix. The rows of Y are 

created by arranging the elements of y such that their 

multiplication with a  will realize the effect of convolution 

(of y with ) at all d corresponding pixels. Since  is full 
rank, . 
 
Now to prove Proposition 3.1, let us consider  to be the 

unknown blur kernel of (maximum) size that 

produced  from a clean image y. From (3) we have, 
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where  is the BTTB matrix of size corresponding 

to the kernel . Since the column span of and D(y) is 
same if KS is full rank, span(D(y)) = Y is a blur-invariant. 
 
Discussion: (i) One main advantage offered by this approach 
is that, since the basis functions can span any blur function of 
a known maximum size, we do not have constraints on the 
shape of blur functions that can be handled (unlike other 
invariants). (ii) Regarding the assumption on the rank of , 
we would like to stress that although some blur PSF’s are not 
invertible, their BTTB matrices are generally full rank (see 
[16], and the references therein). These BTTB matrices, 
however, can be extremely ill-conditioned at times. But since 
we do not invert these matrices, we do not encounter 
problems related to high condition numbers of matrix 
inversion that are prevalent in deblurring-based approaches. 
(iii) We note that there always exist practical scenarios such 
as the nonzero measurement noise that render some of our 
assumptions invalid. We present an analysis on the 
robustness of the invariant to additive perturbations in the 
supplementary material. 
 
4. Face Recognition Across Blur 
 
We now study the utility of invariant Y for the problem of 
recognizing faces across blur, where we empirically evaluate 
its robustness to sensor-related noise and the presence of 
other intra-class facial variations between the gallery and 
probe. Let us consider an M class problem with 

denoting the gallery faces, either clean or blurred, 

belonging to all subjects. Let  denote the blurred probe 
image which belongs to one of the M classes. The problem 
we are looking at is, given , find the identity 

of . From the gallery and probe, we first 
create their respective dictionaries using (3), 

and then compare their column span,  and  respectively, 
to perform recognition. 
 
4.1 Grassmann Manifold: Definition and some 
methodologies for recognition 
 
Since we are comparing linear subspaces in  of dimension 
N, the problem of recognition can be recast as a recognition 
problem over the Grassmann manifold. The Grassmannian 

is an analytical manifold that corresponds to the space of 
all N- dimensional subspaces in  containing the origin. 
The blur-invariant Y is a point on . An illustration is 
provided in Figure 1. Understanding the geometric properties 
of the Grassmann manifold has been the focus of works like 
[33], [8], [1], and these have been utilized in some vision 
problems with subspace constraints, e.g. [5], [15], [21]. A 
compilation of statistical analysis methods on this manifold 
can be found in [7]. Since a full-fledged explanation of these 
methods is beyond the scope of this short paper, we refer the 
interested readers to the papers mentioned above. We now 

use some of these results to compute the distance between the 
blur-invariants. We specifically focus on the following two 
cases. 
 

4.1.1 Finding distance between points on  
 
The first method uses the distance between points on the 
manifold for classification, which has more relevance when 
the gallery contains only one image per person. Formally, the 
Riemannian distance between two subspaces, say , is 
the length of the shortest geodesic connecting those points on 
the Grassmann manifold. One way of obtaining this length is 
to compute the direction (velocity) matrix A such that the 
geodesic along that direction, while starting at , reaches  
in unit time. A is computed using the inverse exponential 
map. However, since the expression for the inverse 
exponential map is not available analytically for the 
Grassmann manifold, we use a numerical method [14] as 
given in Algorithm 1. The length of A gives the distance4  

between  and , and we use , where is the 
transpose operator, as the metric to compute the length. More 

formally, if is the direction matrix between  and . 
 

 
 
We then perform recognition with  using a nearest 
neighbor classifier. 
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 4.1.2 Learning from data on  
 
In cases where there is more data available for each person in 
the gallery portraying other intra-class facial variations, it 
paves the way for performing statistics on the point cloud on 

.Since the blur-invariants have a resultant dimension of 
[8], with d significantly higher than N, it would 

require large number of samples to learn class-specific 
distributions. We hence pursued the method of Hamm and 

Lee [15] that performs kernel linear discriminant analysis on 
the blur-invariants using the projection 
kernel

,which is a 
Mercer kernel that implicitly computes the inner product 
between in the space obtained using the following 
embedding;  . To 
make the paper self-contained, we present the details of this 
method in Algorithm 2. 
 
4.2 Performing Recognition across Blur 
 
 4.2.1 Spatially uniform blur 
 
In the case when k remains unchanged over all pixels 

of a image y (1), recognition is performed by 
a nearest neighbor classifier on the two distances (say, SD) 
discussed before namely, (i) the Riemannian distance  (5), 
and (ii) the Euclidean distance in the lower-dimensional 
space obtained from KLDA (Algorithm 2). The identity of 
probe  is therefore obtained by, 
 

  
 
 4.2.2 Spatially varying blur 
 
We now study the more difficult problem, where the blur 
kernel k is spatially varying. This occurs when different parts 
of the scene are affected differently by blur, with some 
common examples being; outof- focus blur in objects with 
depth discontinuities, and motion blur when there is a sudden 
change in intensity values of a region due to object 
movements. The image formation equation for this case can 
be written as, 
 

  
 
where the subscript n indicates the pixel location. Since a 
blur kernel acts on a local spatial neighborhood, allowing it 
to change at every pixel location makes the problem severely 
under-constrained. A common assumption made to overcome 
this condition is to assume the blur to be locally uniform [6], 
which is valid in most practical cases. Along these lines, if 
the blur is assumed to be uniform over a region of size 

 we can perform 
recognition by dividing the image into T overlapping patches 
of  each, and rewriting (7) as, 
 

 
 
where the subscript t denotes the patch at which the 
quantities in (9) are computed, and the span of are 

points on . The inherent assumption 
while matching patches is that the faces are aligned. However 
for those patches where there is a transition between blur 
kernels, the column space of will not be invariant to 
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blur. The percentage of such instances depends on the nature 
of spatially varying blur. 
  
5. Conclusion 
 
We showed that the subspace resulting from convolutions of 
an image with a complete set of orthonormal basis functions 
that could represent the blur kernel is invariant to blur under 
some assumptions, and it can account for more general 
classes of blur unlike other invariants. We then studied the 
utility of this invariant for the problem of direct recognition 
of faces, using techniques that account for their underlying 
non-Euclidean geometry, and observed an improved 
performance over other existing deblurring-based and 
invariant-based approaches. From the point of view of 
performing robust face recognition under unconstrained 
settings, it is interesting to study the integration of explicit 
formulations of other facial variations such as lighting and 
pose, with this blur-invariant. 
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