
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Common Gateway Interface

Kamal Kathuria1, Chaynika Kapoor2, Apoorva Adlakha3

1, 2, 3 Student, CSE, Dronacharya College of Engineering, Gurgaon, Haryana, India

Abstract: In the world of the Internet, Apache and Internet Information Server (IIS) were the web servers that were developed for
exchanging the information between clients computer having different Operation System. The only function of IIS is that of displaying
static information such as HTML and image files onto the Web Browser. But the major problem lies here that when the information is
updated in the database, the administrator has to update it by manual operation. Because it is necessary to update several places about
the same information, the work load becomes higher than it is assumed, thus the updation of error and omission may occur. Such
problems faced by the Web Developers were solved by the use of a Common Gateway Interface (CGI) program such as a bulletin board
system and a Blog system. However, these programs are opened to Internet and often they don’t have user authentication and access
control mechanism. This means that they have the problem that the user can access it easily and freely only by getting the URL and
inputting it into a Web Browser. Common Gateway Interface (CGI) is a standard method used to generate dynamic content for the Web
pages and Web applications. When implementation of CGI is done on a Web server, it provides with an interface between the Web server
and programs that generate the Web content. These programs are popularly known as CGI scripts or simply CGIs; they are usually
written in a scripting language, but can also be written in any other programming language.

Keywords: Common Gateway Interface(CGI), packet filtering, DACS Scheme, Websites, PBNM, Destination NAT

1. Introduction

As we traverse the vast frontier of Internet commonly
known as the “World Wide Web”, we generally come across
many documents that surprise us, "Can this thing really
happen?" These documents can be like forms that ask us for
the feedback of any particular thing or registration
information just like a image maps, registration forms that
allow us to click on different parts of the image, counters for
displaying the number of views to the document, and
utilities that allow us to search databases for particular
information. In many cases especially on an animated or
good looking websites, we find that these effects were
achieved using the “Common Gateway Interface”, which is
commonly known as “CGI”.

One of the Internet's worst-kept secrets is that CGI is
astonishingly simple. That is, its design is trivial, and anyone
with basics or we can say anyone with an iota of
programming experience can pen down the rudimentary

scripts that work. It is used only when a person is short of
time and his needs are more demanding ,in that case you
have to master the more complex workings of the Web. In a
way, we can say that CGI is as easy as cooking is: anyone
can bake a muffin or to boil an egg. It's only when you want
a mayonnaise sauce that things start to get complicated.

CGI is the part of the Web server that can communicate with
other programs running on the server. With the help of CGI,
the Web server can call up a existing or a running program,
while passing user-specific data to the program. The called
program then processes that data and the server passes the
program's response back to the Web browser.

CGI isn't magic; it's just programming with some special
types of input and a few strict rules for program output. This
is a combination of programming and some special skills
that one possesses. Underlying it all is the simple model
shown in

2. Implementing CGI Scripts

The following CGI script is created using Perl. This script
tabulates to create the table of output
following the script:
#!/usr/local/bin/perl

print "Content-type:text/html\n\n";
open(INF,"votes.out");
@NAMES = <INF>;
close(INF);
foreach $line (@NAMES)
{
 $linecount++;

Paper ID: OCT14668 1733

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

 @values = split(/\|/, $line);
 foreach $value (@values)
 {
 $FORM{$value}++;
 }
}
print "<html><head><title>Current
Results</title></head>\n";
print "<BODY BGCOLOR=\"#AABBBB\" TEXT=BLACK
LINK=\"#001170\"
VLINK=\"#001170\" ALINK=\"#001170\">\n";
print "<h2>Current Results</h2>

\n";
print "<TABLE WIDTH=400 BORDER=1
CELLSPACING=0 CELLPADDING=0
BGCOLOR=\"#779E9E\">";
print "<TR><TD colspan=1 align=center><h3>Boy
Names:</h3></TD>";
print "<TD colspan=1 align=center><h3>Girl
Names:</h3></TD>";
print "<TR BGCOLOR=\"#88AFAF\"><TD><TABLE
WIDTH=200 BORDER=0
CELLSPACING=0 CELLPADDING=0";
print " BGCOLOR=\"#779E9E\">\n";
@boynames = ("boyname q","boyname r","boyname s");
foreach $x (@boynames) {
 {
 print "<TR BGCOLOR=\"#88AFAF\"><TD
WIDTH=33%> </TD>";
 print "<TD WIDTH=30%>$x</TD><TD
WIDTH=4%>$FORM{$x} </TD>";
 print "<TD WIDTH=33%> </TD></TR>\n";
 }
}
print "</TABLE></TD><TD>";
print "<TABLE WIDTH=200 BORDER=0
CELLSPACING=0 CELLPADDING=0";
print " BGCOLOR=\"#779E9E\">\n";
@girlnames = ("girlname q", "girlname r", "girlname s");
foreach $x (@girlnames) {
 {
 print "<TR BGCOLOR=\"#88AFAF\"><TD
WIDTH=33%> </TD>";
 print "<TD WIDTH=30%>$x</TD><TD
WIDTH=4%>$FORM{$x} </TD>";
 print "<TD WIDTH=33%> </TD></TR>\n";
 }
}
print "</TABLE></TD></TR>";
print "<TR><TD COLSPAN=2 BGCOLOR=\"#779E9E\"
ALIGN=RIGHT>$linecount people had
voted.</TD></TR>";
print "</TABLE>";
print "

\n";
print "Go back to
Beth v2.0\n";
print "</DIV>\n";
print "</BODY></HTML>\n";

3. Why CGI?

The above applications can be implemented using other
languages as well for e.g., server-side JavaScript .ACGI,
DHTML , VRML, PHP, but many of these given languages

are developed after CGI. CGI, then, has become a standard,
and many programmers prefer simply to “tweak” their old
CGI scripts for new purposes, in spite of starting from the
scratch with the new languages. Also, CGI is more versatile
than other languages in many ways. A traditional CGI
application made using Perl language, for instance, can run
on a large number of platforms with wide variety of Web
servers.

CGI also has disadvantages . Many of the new languages
developed in response to CGI being slow, so these run at a
faster rate more efficiently. Also, CGI is not secured ,it has
many security issues. Since a file that uses CGI is
executable, it is equivalent to letting anyone in the world run
a program on your machine.

Obviously, this is not the safest thing to do. For various
security reasons, many Web hosts do not allow users to run
these CGI scripts. In this case, though, you can have your
CGI applications to be hosted for you remotely.
Http://www.hypermart.net is a free host which allows CGI
scripting, and
http://cgi.resourceindex.com/Remotely_Hosted/ lists a
number of other hosts that allows CGI.

Related is the fact that the programs that uses CGI scripts
need to reside in a exceptional directory, so that the server
knows basically which program to execute rather than
simply display it to the browser. This directory, commonly
/cgi-bin, is under the direct control of the Webmaster. This
prohibits the average user from creating and running
programs that use CGI.

CGI programs are mostly used with HTML Languages and
its FORM's, and it provides the server interface that receives
the form variables and processes them for the users. The
requirement for being able to act as a CGI program is the
ability to read from Standard Input (stdin), or the ability to
access Environment variables.

Access to CGI programs and scripts must be made via the
"cgiwrap" process. The below steps describe how to
implement a program using "cgiwrap".

To use the "cgiwrap" process CGI programs are mostly used
with HTML Languages and its FORM's, and it provides the
server interface that receives the form variables and
processes them for the users. The requirement for being able
to act as a CGI program is the ability to read from Standard
Input (stdin), or the ability to access Environment variables.

Access to CGI programs and scripts must be made via the
"cgiwrap" process. The below steps describe how to
implement a program using "cgiwrap".

To use the "cgiwrap" process:
1. Create a sub-directory within your "public_html"

directory called "cgi-bin".
2. The directory should have permissions of 0711.

Moreover It should be world executable rather than
world readable.

Paper ID: OCT14668 1734

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Place your executable scripts and/or programs within this
directory. These files must have permissions 0700. They
must be only executable by you.

4. Code the "ACTION" URL within your "<FORM>" tag
as:

5. <FORM ACTION="/cgi-
bin/cgiwrap/username/CGIprogram"
 METHOD= [GET | POST] >
"username" is your user ID that you use to login.
"CGIprogram" is the name of your executable script or
program. Note that the username in the "<FORM>" tag
does not start with a tilde (~) character unlike that in the
case of URL for your Home Page.
 " METHOD=POST" can only be used within a

"<FORM>" tag.
 "METHOD=GET" can be used directly within a

"<FORM>" tag and implicitly in the URL of an HTTP
link.

 " METHOD=POST " provides any parameters as
"keyword=value" pairs in a single input line in
Standard Input (stdin).

 " METHOD=GET" provides the same input string in
an Environment variable called "QUERY_STRING".

 Some browsers also provide a value for an
Environment variable called "CONTENT_LENGTH"
This should be treated as informational only as this is
not universal

 Multiple keyword=value pairs are separated by a
single ampersand (&) character.

 Blanks or spaces in keywords or values are received as
a plus (+) sign.

 Most special characters are received as a two-digit
hexadecimal value preceded by a per-cent (%) sign.

 Multi-line values have their lines separated by a
carriage-return/line-feedpair, encoded in hexadecimal
as "%0D%0A".

6. Note that the URL in this tag does NOT specify the name
of a Web server.

7. The "cgiwrap" process does a few basic security checks
so that it can be prevented from the world and then
executes our script or program, running under our user
ID. The program or script must:
 be executable;
 not be setuid or setgid;
 be a physical file in "~username/public_html/cgi-bin";
 not be a symbolic link to any other file.
 be owned by the username listed in the "ACTION"

URL.
8. Since the "cgiwrap" process executes your script or

program under your personal or own user ID, the
program or script have the same access to files as you do
when you are logged on.

9. This means that any files that you need to access should
be only writable by you. They should not be world
writable!
You can create sub-directories within your cgi-bin
directory. These should also have permission 0711. In
this case, code the "ACTION" URL within your
"<FORM>" tag as:
<FORM ACTION="/cgi-
bin/cgiwrap/username/Directory/CGIprogram">

10. If you need full control of the HTML Headers produced
by your script/program, you can substitute "nph-cgiwrap"
for the normal cgiwrap program. This is mostly needed
only if you wish to create your own error handlers for the
problems with your owhn personal web content.
Example- If you want to provide your own handling for a
"404 - page not found" error. Note that this support will
require other things. If anyone wants to do this then e
should read the Apache Manual very closely .Hint: The
Webmaster will not help you!

References

[1] http://adashimar.hypermart.net/ -- introduction to CGI;

focuses on steps for installing
[2] http://bignosebird.com/cgi.shtml -- free Perl CGI scripts
[3] http://cgi.resourceindex.com -- CGI-related resources,

including scripts
[4] (/Programs_and_Scripts/), documentation

(/Documentation), and information on remote
[5] hosting for CGI (/Remotely_Hosted/)
[6] http://developer.netscape.com/viewsource/lazar_cgi.htm

l -- CGI vs. server-side
[7] JavaScript for databases
[8] http://hoohoo.ncsa.uiuc.edu/cgi/overview.html -- CGI

documentation (including a good
[9] intro page (/intro.html) and examples
[10] http://hotwired.lycos.com/webmonkey/99/26/index4a_p

age4.html?tw=programming --
[11] CGI permission levels
[12] http://jgo.local.net/LinuxGuide/linux-chmod.html --

CGI permission levels and chmod
[13] http://worldwidemart.com/scripts/ -- free CGI scripts
[14] http://www.cpan.org/ -- Comprehensive Perl Archive

Network; documentation, FAQ,
[15] mailing list, scripts
[16] http://www.hypermart.net -- Web host that allows CGI

scripting http://www.linkyours.com/cgi_overview.html
-- graphic overview of CGI interface

[17] process
[18] http://www.mattkruse.com/info/cgi/ -- good, simple

introduction to CGI
[19] http://www.w3.org/Security/Faq/wwwsf4.html -- World

Wide Web Security FAQ on
[20] CGI scripting

Paper ID: OCT14668 1735

