
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Comprehensive Survey of Recent Developments
in Software Testing Methodologies

C. Prakasa Rao1, P. Govindarajulu2

Research Scholar, Dept. of Computer Science, S.V. University, Tirupati, India

Assoc. Professor, PEC, Kandukur,

Retd. Professor , Dept. of Computer Science, S.V. University, Tirupati, India

Abstract: Testing is one of the phases of all process models of software engineering. It remains the most indispensable part of software
quality assurance. High reliability of software is expected in the real world as it, otherwise, becomes obsolete. It is more so with complex
and machine critical applications. In this paper we provide a comprehensive survey of recent developments in software testing
methodologies. Various approaches discussed in this paper include automatic generation of test cases, search based techniques, Just-In-
Time quality assurance, static analysis, bad smell detection, early detection of concurrency problems, random testing, integration testing,
combinatorial testing, model-based testing, test-driven approaches, dependency-based test case prioritization, state-based testing,
adaptive testing and so on. This paper throws light into dependency structures for test case prioritization and test suite generation with
minimum size test suites maximum coverage with discussion on empirical studies. The recent methodologies in software testing are
focused in this paper besides finding potential gaps for future work.

Keywords: Software testing, test-driven development, search-based methods, automatic software testing

1. Introduction

Software testing is one of the essential parts of software
development process. A software test contains the definition
for expected output besides the input that is used to execute
the program. Many solutions came into existence for
automatic testing of software. Test case generation with unit
testing, integration testing and other approaches are found in
the literature. The test case testing life cycle is presented in
Figure 1. As there are phases in system development life
cycle, in test life cycles also there are phases involved.
Generally these phases are carried out in parallel with the
development life cycle. In software testing, the coverage of
test cases plays an important role to unearth all possible
defects in the SUT. A common approach in generating test
cases is to generate a test case for each coverage goal and
combine them into a single test suite as explored in [27].
When a single goal at a time is considered, it generates more
test suites or the size of test suite is more. In [12] a
representative test suite or whole test suite is generated that
will have full coverage besides reducing size of test suites.

Figure 1: Test case testing life cycle

There are many approaches to test case generation. They are
automatic test case generation approaches [6], [8], [3], [4],
[31] and [12], search – based approaches [20], [4] and [31],
architecture based approaches [29], Just-In-Time quality
assurance [35], bad smell detection types and approaches
[15], early detection of concurrency problems [22], static
analysis for test case generation [19], interaction testing
approaches [7], random testing approaches [5], test-driven
approaches [34] and [17], dependency based test case
prioritization techniques [30], [32], state based testing
approaches [25], refactoring approaches [23], combinatorial
testing [31], adaptive testing approaches [14] and [31], layer
assessment approaches [10], model based approaches [31]
and [24], state-based testing approaches [25] and integration
testing [2]. The role of test sequence length in structural
coverage of software testing was explored in [4]. There is
evidence that there is relationship between test sequence
length and structural coverage. Genetic algorithms are used
as evolutionary approaches in test case generation as
explored in [28], [16], [11] and [12].

In this paper our contributions include the review of
literature in finding various methodologies employed for test
case generation besides identifying potential research gaps
that can help in directing for future research. The remainder
of the report is structured as follows. Section 2 presents GA
based methodologies. Section 3 provides dependency based
solutions for software testing. Section 4 presents test-driven
software testing approaches. Section 5 provides search-
based techniques. Section 6 presents bad smells detection
and resolution. Section 7 presents other approaches such as
state-based testing, refactoring, architecture based solution,
adaptive testing, combinatorial testing and so on. Section 8
presents the recent research and the gaps in the research that
can help in planning for future work. Section 9 concludes
the paper besides giving directions for future work.

Paper ID: OCT14664 1889

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2. GA Based Methodologies

2.1 Whole Test Suite Generation

Fraser and Arcuri [12] presented a novel approach to
generate whole test suite that fulfills all coverage goals
besides keeping the size of test suits small. They
implemented a tool named EVOSUITE for efficiently
testing the whole test suite generation. An evolutional
approach using Genetic Algorithms (GA) is used to achieve
this. The solution here is a test suite represented as T = {t1,
t2, t3, …}. Here t1 represents a program that is used test a
part of Software Under Test (SUT). In the same fashion, a
test case is treated as sequence of instructions represented as
t = {s1, s2, s3, …}. The test suite’s length is considered as
the sum of length of all test cases involved in test suite. It is

represented as length(T) = The statement or
instruction denoted as t is of four types namely primitive
statement, constructor statement, field statement and
assignment statement. Enumeration variables, numeric
variables, Strings and Boolean variables come under
primitives. The statements used to construct objects come
under constructor statements while the statements that make
use of public member variables and they are part of object
are known as field statements. The assignment statements
are instructions that assign values to variables or arrays or
collections. As part of fitness function the notion of branch
coverage is used for test criterion. Such fitness value is used
to measure how close the test suite is that has maximum
coverage. There is bloat control mechanism which avoid
generating longer test cases. Test suite cross over and test
suite mutation are the genetic operators used in the solution
[25].

(a)Test Suite Crossover (b) Test Case Mutation

Figure 1: Search operators using GA [12]

In order to initialize first generation, random test cases are
used. The tool which implemented this makes use of JUnit
test cases and generates test suites for given Java source
code. The tool also uses byte code instrumentation to have to
obtain additional information when required. It also uses a
security manager to deal with security issues. Experiments
are made with many real time software products for testing.
The experimental results are compared with single branch
strategy [12]. The empirical results revealed that the whole
test suite generation has higher performance when compared
with single branch strategy as presented in Figure 2.

Figure 2: Average branch coverage [12]

From the experiments conclusions are made such as high
coverage can be achieved using whole test suite generation
besides producing smaller test suites. Evolutionary
algorithms using GA performed better when the tool is
compared with other tools that used different approaches to
solving the problem. With respect to path coverage the
whole test suite generation is compared with other tools such
as CUTE [21] and DART [26] and it showed higher
performance.

2.2 Other GA Based Methodologies

Baker and Babli [28] applied mutation testing for testing
safety-critical software systems as SUT and experimented
on improving the test quality. Program size is one of the
characteristics considered for mutation testing. Their
experimental results revealed that mutation testing provides
measure for test quality. Andrews et al. [16] employed
randomized unit testing using genetic algorithms along with
a Feature Subset Selection (FSS) tool for assessing size in
GA. This approach was proved to be more useful when
compared with search-based approaches. Fraser and Zeller
[11] introduced artificial detects called mutations into the
program and presented an automated solution for generating
test cases. The empirical results revealed that the approach
could generate test suits that uncover more defects in the
system.

3. Dependency Based Solutions

3.1 Test Suite Prioritization

Fault detection is the main goal of any test suite which has
multiple test cases. However, some test cases depend on
other test cases. Provided this fact, it is essential to identify
dependency structure in order to priorities test cases. When
test cases are prioritized, the resultant functional test suites
can produce quality feedback that helps developers to focus
on the issues and rectify problems. Haidry and Miller [32]
studied the problem of test suit prioritization. They focused
on a hypothesis that tells that dependencies among test cases
can have their impact on the fault detection rate. The test
case prioritization is the process of ordering test cases in
order to increase the possibility of fault detection. The

Paper ID: OCT14664 1890

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

number of defects unearthed in SUT can be called as rate of
fault detection. In SUT some interactions should occur prior
to other interactions causing dependencies problem [32].
Figure 3 shows a sample dependency structure.

Figure 3: Sample dependency structure [32]

As shown in Figure 3, the root nodes do not have any
dependencies while all other nodes do have dependencies.
There are direct dependencies and indirect dependencies.
For instance D6 is indirectly dependent on I1 and directly
dependent on D3. Dependency is of two types namely open
dependency and closed dependency. Open dependency

refers to the fact that a test case needs to be executed before
another test case but need not be immediately before the test
case. The closed dependency says that a test case needs to be
executed just before another test case based on the
dependency. There might be some dependencies that are
combination of closed and open dependencies. Two graph
coverage measures are used to know dependency structures.
They are known as DSP height and DSP volume. DSP is the
acronym for Dependency Structure Prioritization. DSP
volume refers to the number of dependencies. DSP height
refers to the level of deepest dependencies. DSP volume can
be computed as all indirect and direct dependencies of a test
case while DSP height is computed as the height of all test
paths and considering the one which has longest path. The
test cases ordering are done using these two graph measures.
Two sets of experiments are made to test both open
dependencies and closed dependencies respectively. Figure
4 shows the artifacts collected from real world and the
metrics for the SUT.

Figure 4: Statistics of SUT [32]

As can be seen in Figure 4, it is evident that the Bash has
highest dependencies while the CRM1 and CRM2 have least
dependencies. These SUTs are used for experiments to know
both closed and open dependencies and generate test suites
with test case prioritization. The experiments are made to
demonstrate the usefulness of test cases in order to increase

fault detection rate. Average Percentage of Faults Detected
(APFD) is the measure defined in [13] used to know the rate
of fault detection. The more its value is the more the rate of
fault detection.

Figure 5: APFD for closed dependencies [32]

Paper ID: OCT14664 1891

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 6: APFD for open dependencies [32]

As shown in Figure 5 and Figure 6, it is evident that the
many algorithms are employed to test the APFD for closed
and open dependencies respectively. There are DSP
prioritization methods and other methods that do not use
DSP measures. The empirical results revealed that the DSP
prioritization methods achieved higher APFD when
compared with non-DSP prioritization methods. Both
experiments proved that DSP measures yield best
performance in test case prioritization and also fault
detection ratio for given SUT. There are three test case
prioritization techniques that are close to the approach
followed in [32]. They include history – based [13],
knowledge – based [36] and model-based [9]. The first one
takes information from prior execution cycles; the second
one uses human knowledge for the task while the third uses
a model of the system for test case prioritization.

3.2 Cyclic Dependencies and Quality of Software

Oyetoyan et al. [30] studied cyclic dependencies in SUT and
the quality of the software. They made experiments on the
object oriented metrics on cyclic dependencies to relate them
with error-proneness. The results revealed that the cyclic
components in software caused more defects in the system.
This will have influence in software testing and
maintenance. Refactoring such components is required in
order to improve the quality of software. Another
observation is that software complexity adds to the error-
proneness.

Figure 8: Defective components in cyclic group in class and

package respectively [30]

As seen in Figure 8, it is evident that there is high rate of
defective classes in cyclic groups. For instance Apache
Camel exhibits 90% defects at class level and 82% at
package level. This way other products and their defective
components are presented in Figure 8.

4. Test-Driven Software Testing Approaches

Rafique and Miˇsi´c [34] studied the impact of test-driven
development (TTD) on productivity and code quality.
Developer’s task size, test-driven approach has significant
influence on the quality of software. TDD has positive effect
on quality of software. Meta – analytical techniques were
used to know the effectiveness of TDD in software quality.
However, the productivity of TDD is inconclusive as it
needed further research efforts. Wilkerson et al. [17]
presented two approaches for software testing. The first
approach is code inspection while the second approach is
test-driven development. As far as reduction of defects is
concerned, the code inspection has more advantages.
However, it is proved to be expensive. When compared to
traditional programming methods, the TDD approach has no
significant improvement over the code inspection approach.
Code inspection proved to be more effective than TDD.

5. Search Based Testing Approaches

In [20] meta-heuristic algorithms were applied for search
based testing. The algorithms were integrated with a tool
named AUSTIN (Augmented Search-Based Testing). The
tool is meant for structural data generation so as to cover all
branches in SUT. A pseudo symbolic execution was used
along with search based approaches. Hill climbing search
algorithm is used for achieving this. Hill Climbing is one of
the local search methods and also known as neighborhood
search that starts with search space that is randomly chosen.
The tool was built for testing applications built in C
language. Thus the tool AUSTIN fills the gap between
research and the industry application with respect to search-
based testing solution for C programs. In [4] four search
based techniques are compared. They include Genetic
Algorithm (GA), Evolutionary Algorithm (EA), Hill
Climbing (HC) and Random Search (RS). The performance
of these algorithms was tested under different lengths of test
sequences. The empirical results revealed that different
algorithms provided performance differently based on SUT.
However, a fact proven is that the length of test sequence

Paper ID: OCT14664 1892

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

has its impact on structural coverage of SUT. In [31] search
based software testing (SBST) was presented for automated
test data generation. With respect to evolutionary
algorithms, fitness function is used to guide the convergence
of test cases.

6. Saving Effort through Bad Smell Detection

Potential problems can exist in SUT. The sign of such
problems can be called as bad smell. Liu et al. [15] explored
the concept of scheduling bad smell detection for resolving
issues in the code. Towards this end, they presented a
sequence of steps that can be used to achieve the desired
results.

Different kinds of bad Instances of a specific smells are

detected kind of bad smell are and resolved one after
resolved one after the other the other

Figure 10: Procedure for detection resolution of bad smells
[15]

As can be seen in Figure 10, it is evident that there is certain
procedure to be followed to detect various kinds of bad
smells such as duplicate code, long method, large class, long
parameter list, useless class, useless method, useless field,
primitive obsession, feature envy etc. Pair wise resolution
sequences are constructed in order to detect and resolve bad
smells with ease. This also reveals potential relationships
among bad smells.

Figure 11: Illustrates pair wise resolution sequences [15]

Schematic overview of the pair wise resolution sequences is
presented in Figure 11 that help in finding dependencies and
relationships so as to detect bad smells easily. Commonly
occurring bad smells in source code can be detected in this
approach. When this knowledge is applied in testing
software products, it can greatly help in identifying bad
smells and generate a comprehensive report which can guide
developers taking necessary steps [15].

7. Other Testing Mechanisms

Kamei et al. [35] focused on Just-In-Time quality assurance
by unearthing potential errors in code in the early stages of
system development life cycle. This solution overcomes the
problems of other quality assurance approaches. The
drawbacks it overcomes include coarse-grained prediction
units, inability to identity relevant experts, and late
predictions. Andrews [16] focused on randomized unit
testing using GAs. Goues et al. [8] presented a generic
method that detects problems software and repair it
automatically. Their method is named “GenProg” which is
based on GA. Delta-debugging and tree-structured
differential techniques in order to repair software. Shousha
et al. [22] presented a solution for early detection of
concurrency issues such as deadlocks and starvation in
software using UML modeling. Yilmaz [7] presented
combinatorial interaction testing which covers arrays and
collections which is test case - aware. Various configuration
space models were explored for testing SUT. Mesbah et al.
[3] proposed a novel method for automatic testing of AJAX
– based modern applications. Fault detection was achieved
using DOM-tree variants that can be used as test oracles.
Their approach is known as invariant based automatically
testing that supports plug-in for scalable and expandable
solution.

Arcuri et al. [5] studied random testing. Their empirical
study reveals the relationship between the random testing
and quality of SUT. Sch¨ afer et al. [23] focused on
accessibility and naming problems with respect to

Paper ID: OCT14664 1893

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

refactoring in Java applications. They presented a tool for
refactoring to overcome the issues. Hu et al. [14] proposed
an adaptive testing approach with the help of a set of
enhanced metrics. Their method is known as Modified
Adaptive Testing (MAT) which makes use of history to
achieve adaptive testing for higher reliability of SUT.
Durelli et al. [33] reviews 25 years of software testing
research in Brazil. Anand et al. [31] also present a
comprehensive survey of literature on testing
methodologies. Kakarontzas et al. [10] presents layer
assessment approach for object oriented software. This
approach can be used as a metric for white-box reuse. Holt
et al. [25] presented an approach known as state-based
testing (SBT) using test models that provide knowledge of
behavior of SUT. They also evaluate the cost effectiveness
of SBT. Lochau et al. [24] presents a model for integration
testing. The model is model-oriented and delta-oriented. It is
an integrated approach in generating and reusing of test
artifacts for software testing.

8. Conclusions and Future Work

In this paper we studied various software testing
methodologies used in the recent past. We have made a
comprehensive review of recent developments in software
testing methodologies. The testing approaches covered in
this paper include dependency based approaches, genetic
algorithms and evolutionary approaches, search based
techniques, automated software testing methods, random
testing, integration testing, interaction testing, layer
assessment, model based testing, combinatorial testing, test-
driven approaches, just-in-time software quality assurance,
early detection of concurrency problems in software
development cycle, static analysis, and architecture based
approaches. This study also provides insights into
experimental results pertaining to test driven approaches,
dependency based solutions and GA based approach. Finally
this survey presents potential research gaps that can be used
for future work. We intend to work on a representative test
suite generation combined with dependency structure based
test case prioritization in future work.

9. Acknowledgements

I am Grateful to my family and fellow members of the
teaching staff at the Prakasam Engineering College. I
Sincere thanks to Dr. Kancharla Ramaiah, correspondent
of Prakasam Engineering College for providing all the
facilities. My Special thanks would always go to my parents.
My acknowledgments go to my Uncle Dr. C. Subba Rao
for his inspiration and sparing his precious time.

References

[1] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P.

McMinn, P. Tonella, and T. Vos, “Symbolic Search-
Based Testing,” Proc. IEEE/ ACM 26th Int’l Conf.
Automated Software Eng., 2011.

[2] Alessandro Orso. Integration Testing of Object-
Oriented Software. p1-105.

[3] Ali Mesbah,Arie van Deursen and Danny Roest.
Invariant-Based Automatic Testing of Modern Web
Applications. IEEE. 38 p35-53. 2012.

[4] Andrea Arcuri. A Theoretical and Empirical Analysis of
the Role of Test Sequence Length in Software Testing
for Structural Coverage.IEEE. 38 p497-519. 2012.

[5] Andrea Arcuri,Muhammad Zohaib Iqbal and Lionel
Briand. Random Testing: Theoretical Results and
Practical Implications. IEEE. 38 p258-277. 2012.

[6] Bertrand Meyer, Ilinca Ciupa, Andreas Leitner and Lisa
(Ling) Liu. Automatic testing of object-oriented
software. Chair of Software Engineering. p1-17. 2007.

[7] Cemal Yilmaz. Test Case-Aware Combinatorial
Interaction Testing. IEEE. p1-29. 2012

[8] Claire Le Goues,ThanhVu Nguyen and Westley
Weimer. GenProg: A Generic Method for Automatic
Software Repair. IEEE. 38 p54-72. 2012.

[9] D. Kundu, M. Sarma, D. Samanta, and R. Mall,
“System Testing for Object-Oriented Systems with Test
Case Prioritization,” Software Testing, Verification, and
Reliability, vol. 19, no. 4, pp. 97- 333, 2009.

[10] George Kakarontzasa, Eleni Constantinoua, Apostolos
Ampatzogloua and Ioannis Stamelosa. Layer
assessment of object-oriented software: A metric
facilitating white-box reuse. p350-366. 2013.

[11] Gordon Fraser, and Andreas Zeller. Mutation-Driven
Generation of Unit Tests and Oracles, IEEE, VOL. 38,
NO. 2, p1-15. 2012.

[12] Gordon Fraser and Andrea Arcuri. Whole Test Suite
Generation.IEEE. 39 p276-291. 2013.

[13] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold,
“Prioritizing Test Cases for Regression Testing,” IEEE
Trans. Software Eng., vol. 27, no. 10, pp. 929-948, Sept.
2001.

[14] Hai Hua, Chang-Hai Jiang a, Kai-Yuan Cai a,b, W. Eric
Wongc and Aditya P. Mathur d. (2013). Enhancing
software reliability estimates using modified adaptive
testing. p289-300

[15] Hui Liu, Zhiyi Ma, Weizhong Shao, and Zhendong Niu.
Schedule of Bad Smell Detection and Resolution: A
New Way to Save Effort. IEEE. 38 p220-235. 2012.

[16] James H. Andrews,Tim Menzies and Felix C.H. Li.
Genetic Algorithms for Randomized Unit Testing.
IEEE. 37 p80-94. 2011.

[17] Jerod W. Wilkerson, Jay F. Nunamaker Jr and Rick
Mercer. Comparing the Defect Reduction Benefits of
Code Inspection and Test-Driven Development. IEEE.
38. p547-560. 2012.

[18] J. Malburg and G. Fraser, “Combining Search-Based
and Constraint-Based Testing,” Proc. IEEE/ACM 26th
Int’l Conf. Automated Software Eng., 2011.

[19] Karthik Pattabiraman,Zbigniew T. Kalbarczyk, Member
and Ravishankar K. Iyer. Automated Derivation of
Application-Aware Error Detectors Using Static
Analysis: The Trusted Illiac Approach. IEEE. 8 p44-57.
2011.

[20] Kiran Lakhotia. Search Based Testing . p1-177. 2009.
[21] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic

Unit Testing Engine for C,” Proc. 10th European
Software Eng. Conf. Held Jointly with 13th ACM
SIGSOFT Int’l Symp. Foundations of Software Eng.,
pp. 263-272, 2005.

Paper ID: OCT14664 1894

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

[22] Marwa Shousha, Lionel C. Briand and Yvan Labiche. A
UML/MARTE Model Analysis Method for Uncovering
Scenarios Leading to Starvation and Deadlocks in
Concurrent Systems. IEEE. 38 p354-374. 2012.

[23] Max Sch¨ afer, Andreas Thies, Friedrich Steimann and
Frank Tip. A Comprehensive Approach to Naming and
Accessibility in Refactoring Java Programs. IEEE. p1-
27. 2012.

[24] Malte Lochaua, Sascha Lityb,∗, Remo Lachmannc, Ina
Schaeferc and Ursula GoltzbaTU. Delta-oriented
model-based integration testing of large-scalesystems.
p64-84. 2014.

[25] Nina Elisabeth Holt a,⇑, Lionel C. Briand b and Richard
Torkar. Empirical evaluations on the cost-effectiveness
of state-based testing: An industrial case study. p891-
910. 2004.

[26] P. Godefroid, N. Klarlund, and K. Sen, “DART:
Directed Automated Random Testing,” Proc. ACM
SIGPLAN Conf. Programming Language Design and
Implementation, pp. 213-223, 2005.

[27] P. Tonella, “Evolutionary Testing of Classes,” Proc.
ACM SIGSOFT Int’l Symp. Software Testing and
Analysis, pp. 119-128, 2004.

[28] Richard Baker and Ibrahim Habli. An Empirical
Evaluation of Mutation Testing For Improving the Test
Quality of Safety- Critical Software. IEEE. p1-32. 2010.

[29] Roberto Pietrantuono,Stefano Russo and Kishor S.
Software Reliability and Testing Time Allocation: An
Architecture-Based Approach.IEEE. p323-337. 2010.

[30] Tosin Daniel Oyetoyana, Daniela S. Cruzesa and Reidar
Conradia. A study of cyclic dependencies on defect
profile of software components. IEEE. p3163-3182.
2013.

[31] Saswat Ananda, Edmund K. Burkeb, Tsong Yueh
Chenc, John Clarkd, Myra B. Cohene, Wolfgang
Grieskampf, Mark Harmang, Mary Jean Harroldh and
Phil McMinni. An orchestrated survey of methodologies
for automated software test case generation. p1979-
2001. 2013.

[32] Shifa-e-Zehra Haidry and Tim Miller. Using
Dependency Structures for Prioritization of Functional
Test Suites. IEEE. 39 p258-275. 2013.

[33] Vinicius Humberto Serapilha Durellia, Rodrigo Fraxino
Araujoa,b and Marco Aurelio Graciotto Silva. A
scoping study on the 25 years of research into software
testing in Brazil and an outlook on the future of the
area. p935-950. 2013.

[34] Yahya Rafique and Vojislav B. Miˇsi´. The Effects of
Test-Driven Development on External Quality and
Productivity: A Meta-Analysis. IEEE. X p1-24. 2012.

[35] Yasutaka Kamei,Emad Shihab and Naoyasu Ubayashi.
A Large-Scale Empirical Study of Just-In-Time Quality
Assurance. IEEE. p1-19. 2011.

[36] Z. Ma and J. Zhao, “Test Case Prioritization Based on
Analysis of Program Structure,” Proc. 15th Asia-Pacific
Software Eng. Conf., pp. 471-478, 2008.

Author Profile

Prakasa Rao Chapati received Master of Computer Applications
degree from Madras University and Master of Technology degree
in Computer Science & Engineering from Acharya Nagarjuna
University. He is a research scholar in the department of computer
science, Sri Venkateswara University. His research focus is on
Software Testing to improve the Quality under Software Project
Management perspective.

Prof P.Govindarajulu, Professor at Sri Venkateswara University,
Tirupathi, has completed M.Tech., from IIT Madras (Chennai),
Ph.D from IIT Bombay (Mumbai), His area of research are
Databases, Data Mining, Image processing and Software
Engineering.

Paper ID: OCT14664 1895

