
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Novel Real Time Offline Patching Scheme with
Secured Logging Over Cloud

Sunita1, Shridevi Soma2

1M.Tech. (CSE) Student, Computer Science and Engineering Department, PDA College of Engg., Gulbarga, Karnataka, India

2Associate Professor, Computer Science and Engineering Department, PDA College of Engg., Gulbarga, Karnataka, India

Abstract: Modern day software systems are updated online through an update server. A metadata file is installed at the update server
that exposes the information about current version, build, software changes, system requirement, information about fixes, priority and
also a URL to the software bundle offered as update. The software installed in client machine checks for this metadata as and when it is
scheduled to check for update and has an internet connection. Once the software finds out that there are updates available, it asks the
user for permission to update. In update process it silently downloads the patch or the bundle file and updates the software. Once
updated the new version is launched. This technique has certain disadvantages that it is not centralized and is not suitable for patching
software in a cloud architecture where several virtual machines collaborates to provide service. The update and patching information is
stored locally as a log file which does not provide any security. In this paper we propose a unique patching scheme to overcome the
aforementioned drawback of current OPS in which metadata of the image and the patching and update information is stored as a
secured file which is encrypted using symmetric key encryption using AES and Rijndael. It is also demonstrated the feasibility of the
system on real windows updates by enabling centralized offline updating the windows updates. In the offline scheme, updates and
patches are downloaded using a background agent without the need for the software to be running. Once patches are available, they can
be scheduled to be applied at a later instance. This provides better bandwidth utilization. Results show that the complexity of the process
is O(k+1/n) and that the system does not add any significant overhead for security extension.

Keywords: Offline patching, Cloud Computing, AES, Secured Log Access

1. Introduction

Software patching, updating and version management are
important aspects of software life cycle. Several patching
and version management schemes are being proposed.
However most of the schemes are online which needs the
software to search for a percolated metadata for update when
the software is running and triggering the update process.
Also such update history is maintained locally in the system
as unsecured log file. In modern computing environment
where several virtual machines collaborate to provide a
computation solution, it is quite difficult to manage such
stand alone patching. Also in critical software system, we
need more security. Centralized cloud based storage of the
log and accessing it thereafter is also important because this
provides a centralized control to the patching and version
management. Current solution does not meet these needs.
Hence it is important to develop system that can provide a
centralized secured logging of the patching and offline
patching. The objective of this work is to provide a software
architecture that enables offline patching of the software as
well as a central version/log access mechanism that is
secured using symmetric key cryptography. Offline patching
means searching for Patch, downloading and applying the
patch: all can be done independently of one another. Hence
the system does not need to run a specific patch while
applying it

The objective is also to demonstrate that the architecture is
adaptable for real and high end software solution by
extending the system to windows services.

2. Related Work

For patch management a game theoretic model [1] has been
developed to derive the optimal frequency of patch updates
to balance the operational costs and damage costs associated
with security vulnerabilities. Cloud computing security
issues and Challenges [2] analyze cloud computing
vulnerabilities; security threats cloud computing faces and
present the security objective that need to be achieved. In [3]
authors present preliminary ideas for the architecture of a
flexible, efficient and dependable fully decentralized object
store which is able to manage very large sets of variable size
objects and to coordinate in place processing. To handle
images for different infrastructures spanning virtualized and
non-virtualized resources, the FutureGrid [4] user controlled
image management framework has been developed as a
revolutionary way. It allows users to register images, created
by their software, for Nimbus, Eucalyptus, OpenStack, as
well as bare-metal instantiations. A generic catalog and
image repository [5] has been proposed to store images of
any type which is useful for FutureGrid, also for any
application that needs to manage IaaS images. Mirage is an
image library [6] which stores images in a format that
indexes their file system structure instead of as opaque disk
images. Like other libraries, Mirage provides features for
image capture and deployment. In addition, Mirage
maintains a provenance tree that records how each image
was derived from other images; allows operations, like
patching and scanning, that normally require a VM instance
to execute offline; and enables analyses such as image
search and comparison. For maintaining the security for VM
images in [7] it has been proposed new Cryptographic
protocols which take full advantage of the unique properties
of public key cryptosystems. To address the risks, that face
administrators and users (both image publishers and image

Paper ID: OCT14643 2225

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

retrievers) of a cloud's image repository [8], the image
management system has been proposed that controls access
to images, tracks the provenance of images, and provides
users and administrators with efficient image filters and
scanners that detect and repair security violations. An on-
line software replacement system [9] is for on-line software
version change for software written in the C language. This
system eliminates the shutdown while installing a new
version of a piece of software. A novel tool named Nüwa
[10] that enables efficient and scalable offline patching of
dormant VM images such VM images are often left
vulnerable to emerging security threats.

3. Image Security and System Architecture

Software may consist of one or more exe files and several
other files and entries which may include dll files, ini files,
and registry entries and so on. While a software is
distributes, each of these files are important for the
functioning of the software. If the files are distributed
individually, there are always a chance of deletion of some
file and few files getting corrupted, which ultimately leads
to undesirable functioning of the software.

Therefore these files are bundled as a single zip/jar/installer
file. An image is a standard packaging of the software
system just like the installer with added functionalities like
booting, auto run if presented through CD/DVD etc. Images
come with CRC facility that makes checking the software
sanity check easy and efficient. Therefore in the proposed
work it has been published/uploaded the software as well as
the patch of the software as software image into the cloud.

Figure 1: Offline software patching over cloud

A snapshot is the current state of the software running in a
virtual machine. As the proposed system supports
distributed metadata management and patching, it has been
considered virtual cloud architecture as above for analysis of
our system.
Developer (users) may upgrade a software version or release
a patch. The patch is released as an image pool (another
snapshot of software) rather than discrete files. This image
pool is stored in the cloud storage and is visible to all the
virtual machines in a cloud. In case of a standalone customer
machine, one can imagine the stand alone system as a single
virtual machine over a cloud comprising of only one
computer. The machines looks for patches and updates and
when available may download in a secured location.

Downloading files in a separate location for applying the
image patch is known as offline patching. An online
patching is one where a running program first copies the

files from remote locations into its main program memory
and then commit the changes when the program is
terminated.

Online patching is difficult to rollback. However incase of
offline patching, user may download the files, scan them for
viruses, check the digital signature and then may prefer to
apply the patch. Thus it gives more control over the software
patching process.

Once the patch is changed, it needs to be updated in the
patch metadata for all the virtual machines in the cloud.
Managing independent copies of history for every machine
is not feasible on the cloud. Hence it should be centralized.
It has been already discussed in Current system how the
current system offers difficulty in history and version
management of patches in a distributed environment.
Therefore to overcome the drawback it has been offered a
cloud based solution for version management after the patch
is applied. No matter whichever VMs the patch is applied,
the information about the machine ID, current version,
patching details, patched versions are updated in a central
patch file which is located in the skydrive for all time
access.

It has been used Rijndael and AES based security for cloud.
The entire architecture from publishing the patch to applying
the patch and its version management is as presented below.

Figure 2: Architecture of the proposed system

4. Methodology

As it can be seen in the block diagram below, first the user
downloads particular software from the cloud space and
installs in his system. There are three major components
called Collector, Uploader and Updater.

Collector is a component which checks for software’s
version and if the patch is available, it is downloaded and
software is updated. If the update process is successful, the
information about previous version, current version,
machine name, data and time are logged in a log file. This
log file is encrypted with a key provided by user. This log
file is stored in Skydrive (Public Cloud). User can access the
log file any time from the cloud and then decrypt it to view
the contents.

Paper ID: OCT14643 2226

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Uploader is a component where publisher creates a patch
file and uploads in an authenticated web server (Private
Cloud) using FTP services. This is invariably the vendor
side tool that helps distributing a patch efficiently in
distributed environment.

Updater is a component where the patch is applied on
software or its version is updated.

Figure 3: Block Diagram of the System

Implementation

Collector Module

The responsibility of this module is to Store the log locally
before encryption. The log file skpath.txt will be present in
the relative folder of /User/AppData/Roaming/../skpath and
is actually the file which stores the location of the skydrive
log file.

Getting the information about the current version of the
software such that the version can be compared with the
software version published and if new version is available as
patch can be downloaded. This is performed by using
reflection technique of the .Net assemblies. It will ask the
user for his skydrive credential and if the credential is
correct, download the file from skydrive location specified
by the skpath.txt. Update the data in the datagrid. Separate
each column and update the software path.

Now obtain the update metadata from remote location. If the
metadata is not null, i.e. software patch is available, compare
the current version of the patch with the published patch
version. If the current version is lesser than the patch version
then only trigger the patching/ updating process. Following
image shows the patch in the real server.

Figure 4: Real server showing the patch

The content of the UM file is as shown below.

Figure 5: Content of UM file

As it can be seen from the diagram that there are four parts
of the file: The name of the application image, its version
information, release date and download url respectively.
Download URL is the absolute path where the UM.txt file is
located. It can be seen clearly in the FileZilla image that
UM.txt is located in Public Data folder. Once the
information is available, the image can be downloaded and
patch can be applied. This can be done by a method that
enables downloading of the image file into a location using
asynchronous web downloading technique. The image is
downloaded as a zip file. If the downloading was successful,
then it unzips the software and triggers install.

Encryption using AES block cipher algorithm which is like a
service. The content of the log file is passed as argument to
the encryption service as string along with a key for
encryption. The result of Encryption is stored in the
Skydrive. Encrypt function takes a random initial vector and
mixes the password with that for more security. Both
message and mixed passwords are converted to byte array.
Then Symmetric Rijndael encryption (AES) is used to
encrypt the message. Once encrypted, message is converted
back into string and returned.

Windows Update Service Module

This module checks if any update is being released by
Microsoft for the underneath operating system. Updates
could be patches, fixes, or feature updates. Here we would
consider all the types as patches only. The responsibility of
this module is to search for those updates which are not yet
installed in a specific virtual machine, download the updates
silently and allow installation of the update. Further the
system supports a log management system which is similar
to that of custom and independent software log management
system. It has been created an update session by a method
which is first step to create a secured connection between
the virtual machine and the Windows Update server. It then
searches for those patches/updates that are not installed in
current system or that are not present. Once the search result
is available, it is enumerated in a list and displayed in a list
box. The following figure shows Windows services showing
the available installs and installed patches from skydrive.

Paper ID: OCT14643 2227

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 6: Windows services showing the available installs

and installed patches from skydrive

5. Result and Experiment Analysis

In this work first a software model is created that enables
offline patching and central cloud based secured logging of
the patching history. Custom software is designed in C#.Net.
Software is created for releasing the software and its
patches. This release tool automatically detects the version
of the software and then creates a metadata that describes
the version. Further this release tool bundles the metadata
and the patch as a single zip file and uploads in an
authenticated web server using FTP services.

Once the customer installs software from dropbox location,
a background process checks for available patches in the
metadata created by the release tool. If the patch is available,
it is downloaded and software is updates. If the update
process is successful, the information about previous
version, current version, machine name, data and time are
logged in a log file. This log file is encrypted with a key
provided by user. This log file is stored in Skydrive. User
can access the logfile any time from the cloud and then
decrypt it to view the contents. Even if the system is restored
or OS level changes are incurred, the patching information
remains safe due to their availability in cloud unlike present
system where system updates causes a loss of such log files.

In order to demonstrate the adaptability of the system, the
architecture has been extended for windows update services
and showed that the proposed system can be flawlessly
adapted and extended by any software patching.
The proposed system helps in maintaining a patch history in
most innovative way by storing it securely over the cloud.
Therefore the metadata can be obtained and synced with any
number of domain computers or group of virtual machines.
The pair wise cryptography does not require any key
exchange mechanism and hence is quite light weight.

Hence the proposed system provides a much better
technique for updating/ patching the software and log
management of the same. The offline patching process
allows the user to explicitly download the patch rather than
applying it in-memory when the system is running. Hence
the system is much more efficient. When the method is
extended to windows patch, still the system functions in a
smooth way. That proves that the proposed system can be
integrated under any software patching and update
management efficiently without losing accuracy.

Figure 7: Iteration v/s Uploading time and encryption time

This graph shows that the security extension and Skydrive
integration does not add too much overhead on the patching
time. We test the system under three different internet speed
settings. As expected for high speed broadband internet the
patching process is quicker. However in other two settings
the patching process takes moderate time under 10 seconds.
In all the iterations, size of the file is kept almost constant.
Uploading time here refers to the time required by the VM
to upload/update the log file plus the time taken for
encrypting the data of the file.

Figure 8: Iteration v/s downloading and decryption time

Before the log file is updated, it needs to be downloaded
from the skydrive, decrypted, and then current content can
be appended with the data. We check the time taken for
downloading and decrypting the log file from the skydrive.
It is important to note that as the software iteration increases,
entry of the file also increases. Hence the complexity can be
ideally thought of O(n) where n is the number of patching.
However it can be seen that the time does not increase
linearly with increase of time. Hence the complexity is
O(k+1/n) where k is a constant that depends upon internet
characteristic.

6. Conclusion and Future Work

Submission Software patching is an essential aspect of
software version management and software bug fixing. The
process can be both online as well as offline. Offline
patching schemes are more popular over the other one
because of its advantages like more control of user over the
patching decision and an efficient version management.

Paper ID: OCT14643 2228

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

With the advancement of cloud computing and its increasing
popularity, it is essential to offer a secured patching
architecture with centralized version control that should
keep track of each virtual machines in the system. The
proposed architecture has two major contribution: firstly it
helps to conceive the client as a cloud system and offers the
patches that can be independently applied to all the virtual
machines, secondly it offers a real time secured logging that
helps the update history to be stored in cloud with
encryption. It has been used a symmetric key encryption
with AES to reduce the key exchange overhead.

Results show that the system can be adapted to real time and
more heavy software architecture like windows update.
Performance analysis shows that for a moderate internet
speed the proposed system adds slight overhead of about
15seconds for the patches. Considering the security and data
protection that the proposed system offers, this is one of the
small trades off in the system.

As a future work the system can be extended to support
software patch/update rollback system. Also in a cloud
environment, secured paired key cryptography with
attributes like CP-ABE can be used for stronger security.

References

[1] Cavusoglu, Huseyin, Hasan Cavusoglu, Jun Zhang.

"Economics of security patch management." The fifth
workshop on the economics of information security
(WEIS 2006). 2006.

[2] Krešimir Popović, Željko Hocenski “Cloud computing
security issuesand challenges” In MIPRO, 2010
Proceedings of the 33rd Internatjional Convention pages
344-349, Osijek, Croatia

[3] Ricardo vilaca, Rui oliveira “Clouder: A Flexible Large

Scale Decentralized Object Store. Architecture
Overview.” Proceeding of WDDDM ’09,pages 203-210

[4] Javier, Diaz, Gregor von Laszewski, Fugang Wang,
Geoffrey Fox."Abstract image management and
universal image registration for cloud and hpc
infrastructures." Cloud Computing(CLOUD),2012
IEEE 5th International Conference on. IEEE, 2012.

[5] J. Diaz, G. von Laszewski, F. Wang, A. Younge, and G.
Fox, “FutureGrid Image Repository: A Generic Catalog
and Storage System for Heterogeneous Virtual Machine
Images,” Third IEEE International Conference on Coud
Computing Technology and Science (CloudCom2011),
2011

[6] Glenn Ammons, Vasanth Bala, Todd Mummert, Darrell
Reimer, Xiaolan Zhang. "Virtual machine images as
structured data: The mirage image library." Usenix
HotCloud (2011).

[7] Merkle, R. C. “Protocols for public key cryptosystems.”
In Proceedings of the IEEE Symposium on Security and
Privacy (1980), pp. 122–133.

[8] WEI, J., ZHANG, X., AMMONS, G., BALA, V., AND
NING, P. ” Managing security of virtual machine
images in a cloud environment.” In Proceedings of the
2009 ACM Workshop on Cloud Computing Security
(CCSW ’09) (2009), pp. 91–96.

[9] Wu Zhou, Peng Ning, Xiaolan Zhang, Glenn Ammons,
Ruowen Wang, Vasanth Bala. "Always up-to-date:
scalable offline patching of VM images in a compute
cloud." Proceedings of the 26th Annual Computer
Security Applications Conference. ACM, 2010.pages
23-30

[10] Deepak Gupta and Pankaj Jalote.“On line software
version change using state transfer between processes.”
Softw. Pract. Exper., 23(9):949–964, 1993.

Paper ID: OCT14643 2229

