
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Web User Interface of Hadoop Distributed File
System

D Dhananjay1, Dr. G. Venkata Rami Reddy2

1M.Tech. Student, School of Information Technology, JNTUH, Hyderabad, India

2Associate Professor, School of Information Technology, JNTUH, Hyderabad, India

Abstract: Hadoop Distributed file systems forms the basis of those computing paradigms which implement network intensive
frameworks. Among various available Distributed File Systems (DFS) Apache Hadoop implemented its own file system known as
Hadoop Distributed File System (HDFS) which forms the basis of Hadoop. Hadoop Distributed File System (HDFS) is a distributed file
system that stores data on commodity machines, providing very high aggregate bandwidth across the cluster. The main objective of this
project is to make Hadoop Distribute File

Keywords: HDFS, SaaS, PaaS, IaaS, fault-tolerant.

1. Introduction

1.1 Introduction

Apache Hadoop is an open-source software framework for
storage and large scale processing of data-sets on clusters of
commodity hardware. Hadoop is an Apache top-level project
being built and used by a global community of contributors
and users. It is licensed under the Apache License 2.0. The
Apache Hadoop Framework is composed of the following
modules:
Hadoop Common-contains libraries and utilities needed by
other Hadoop modules.

1.1.1 Hadoop Distributed File System (HDFS)
A distributed file-system that stores data on commodity
machines, providing very high aggregate bandwidth across
the cluster.

1.1.2 Hadoop YARN
A resource-management platform responsible for managing
compute resources in clusters and using them for scheduling
of users applications.

1.1.3 HadoopMapReduce

A programming model for large scale data processing. All
the modules in Hadoop are designed with a fundamental
assumption that hardware failures (of individual machines,
or racks of machines) are common and thus should be
automatically handled in software by the framework.

Apache HadoopMapReduce and HDFS components
originally derived respectively from Google’s MapReduce
and Google File System (GFS) papers.

Beyond HDFS, YARN and MapReduce, the entire Apache
Hadoop “platform” is now commonly considered to consist
of a number of related projects as well Apache Pig, Apache
Hive, Apache HBase, Apache Spark, and others. For the
end-users, though MapRduce java code is common, any
programming language can be used with “Hadoop
Streaming” to implement the “map” and “reduce” parts of
the user’s program. Apache Pig, Apache Hive, Apache
Spark among other related projects expose higher level user
interfaces like Pig Latin and a SQL variant respectively. The
Hadoop framework itself is mostly written in the Java
programming language, with some native code in C and
command line utilities written as shell-scripts.

1.2Architecture

Figure 1.1: HDFS Cluster

Paper ID: OCT146 475

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A small Hadoop cluster includes a single master and multiple
worker nodes. The master node consists of a Job Tracker,
Name Node and Data Node. A Slave or Worker node acts as
both a Data Node and Task Tracker, though it is possible to
have data-only worker nodes and compute only worker
nodes. These are normally used only in nonstandard
applications.

 Hadoop requires Java Runtime Environment (JRE) 1.6 or
higher. The standard start-up and shutdown scripts require
Secure Shell (ssh) to be set up between nodes in the cluster.
In larger cluster, the HDFS is managed through a dedicated
Name Node Server to Host the File system index, and a
secondary Name Node that can generate snapshots of the
name node’s memory structures, thus preventing file-system
corruption and reducing loss of data. Similarly, a standalone
Job Tracker server can manage job scheduling.

In clusters where the HadoopMapReduce engine is deployed
against an alternate file system, the Name Node, secondary
Name Node and Data Node architecture of HDFS is replaced
by the file-system-specific equivalent.

The file system is a type of data store which can be used to
store, retrieve and update a set of files. The file system has
maintained aspects such as file names, directories, space
management, and meta-data. Each operating system is
having its own file system to maintain files in file or
directories structure. There are several file systems available.

1.3 Cloud Computing

A cloud is a type of parallel and distributed system
consisting of a collection of inter-connected and virtualized
computers that are dynamically provisioned and presented as
one or more unified computing resources based on service-
level agreement established through negotiation between the
service provider and consumers.

Cloud Architecture and Classification

With respect to the ways cloud can be used, the ‘de facto’
consensus achieved led to the definition of 3 major
exploitation levels:

 Infrastructure as a Service (IaaS)
 Platform as a Service (Paas)
 Software as a Service (Saas)

1.4 Motivation

Hadoop Distributed File System implementation is a typical
task keeping in view of the large number of clients, large
volume of dataset and large size of files. The main objective
of this project is to make Hadoop Distributed File System
easy for user. To achieve this goal I prepare a Web User
Interface by which anyone can use Hadoop easily. I had
implemented all the fs shell commands in it.

1.5 Problem Definition

Hadoop Distributed File System does not has any user
supported Web GUI Interface. So I have tried to develop a
user friendly web application. For that I had implemented all
the fs shell commands in it.

1.6 Objective of Project

The main objective of the project is to make Hadoop
Distributed File System User friendly, So that anyone can
use it easily.

1.7 Limitations of Project

We have tested this project in pseudo-distribution mode.
This cannot be implemented in fully distributed mode as
there is no provision for IP address to be recognized.

2. Analysis

2.1 Introduction

Hadoop Distributed File System implementation is a typical
task keeping in view of the large number of clients, large
volume of dataset and large size of files. The main objective
behind this project is to make Hadoop Distributed File
System easy for user. So that anyone can use HDFS easily.
To achieve this goal I prepare a web user interface. I had
implemented all the fs shell commands in it.

2.2 FS shell commands

The FileSystem (FS) shell is invoked by bin/hadoop fs
<args>. All the FS shell commands take path URIs as
arguments. The URI format isscheme://autority/path. For
HDFS the scheme is hdfs, and for the local filesystem the
scheme is file. The scheme and authority are optional. If not
specified, the default scheme specified in the configuration is
used. An HDFS file or directory such as /parent/child can be
specified ashdfs://namenodehost/parent/child or simply
as /parent/child (given that your configuration is set to point
to hdfs://namenodehost). Most of the commands in FS shell
behave like corresponding Unix commands. Differences are
described with each of the commands. Error information is
sent to stderr and the output is sent to stdout.

2.2.1 cat
Usage: hadoop fs -cat URI [URI …]
Copies source paths to stdout.

Example:

 Hadoop fs -cat hdfs://nn1.example.com/file1
hdfs://nn2.example.com/file2

 hadoop fs -cat /file3 /user/hadoop/file4
ExitCode:
 Returns 0 on success and -1 on error.

2.2.2 chgrp
Usage: hadoop fs -chgrp [-R] GROUP URI [URI …]
Change group association of files. With -R, make the change
recursively through the directory structure. The user must be

Paper ID: OCT146 476

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

the owner of files, or else a super-user. Additional
information is in the Permissions User Guide.

2.2.3 chmod
Usage: hadoop fs -chmod [-R] <MODE[,MODE]... |
OCTALMODE> URI [URI …]
Change the permissions of files. With -R, make the change
recursively through the directory structure. The user must be
the owner of the file, or else a super-user. Additional
information is in the Permissions User Guide.

2.2.4 chown
Usage: hadoop fs -chown [-R] [OWNER][:[GROUP]] URI
[URI]
Change the owner of files. With -R, make the change
recursively through the directory structure. The user must be
a super-user.

2.2.5 copyFromLocal
Usage: hadoop fs -copyFromLocal <localsrc> URI
Similar to put command, except that the source is restricted
to a local file reference.

2.2.6 copyToLocal
Usage: hadoop fs -copyToLocal [-ignorecrc] [-crc] URI
<localdst>
Similar to get command, except that the destination is
restricted to a local file reference.

2.2.7 cp
Usage: hadoop fs -cp URI [URI …] <dest>
Copy files from source to destination. This command allows
multiple sources as well in which case the destination must
be a directory.

2.2.8 du
Usage: hadoop fs -du URI [URI …]
Displays aggregate length of files contained in the directory
or the length of a file in case its just a file.

2.2.9 get
Usage: hadoop fs -get [-ignorecrc] [-crc] <src><localdst>
Copy files to the local file system. Files that fail the CRC
check may be copied with the -ignorecrc option. Files and
CRCs may be copied using the -crcoption.

Example:

 hadoop fs -get /user/hadoop/file localfile
 hadoop fs -get hdfs://nn.example.com/user/hadoop/file

localfile

2.2.10 getmerge
Usage: hadoop fs -getmerge <src><localdst> [addnl]
Takes a source directory and a destination file as input and
concatenates files in src into the destination local file.
Optionally addnl can be set to enable adding a newline
character at the end of each file.

2.2.11 ls
Usage: hadoop fs -ls <args>

For a file returns stat on the file with the following format:
filename <number of replicas> filesize modification_date
modification_time permissionsuserid...groupid

2.2.12 lsr
Usage:hadoop fs- lsr<args>
Recursive version of ls. Similar to Unix ls -R.

2.2.13 mkdir
Usage: hadoop fs -mkdir <paths>
Takes path uri's as argument and creates directories. The
behavior is much like unix mkdir -p creating parent
directories along the path.

2.2.14 movefromLocal
Usage: dfs -moveFromLocal <src><dst>
Displays a "not implemented" message.

2.2.15 mv
Usage: hadoop fs -mv URI [URI …] <dest>
Moves files from source to destination. This command
allows multiple sources as well in which case the destination
needs to be a directory. Moving files across filesystems is
not permitted.

2.2.16 put
Usage: hadoop fs -put <localsrc> ... <dst>
Copy single src, or multiple srcs from local file system to the
destination filesystem. Also reads input from stdin and
writes to destination filesystem.

2.2.17 rm
Usage: hadoop fs -rm URI [URI …]
Delete files specified as args. Only deletes non empty
directory and files. Refer to rmr for recursive deletes.

2.2.18 rmr
Usage: hadoop fs -rmr URI [URI …]
Recursive version of delete.

2.2.19 setrep
Usage: hadoop fs -setrep [-R] <path>
Changes the replication factor of a file. -R option is for
recursively increasing the replication factor of files within a
directory.
2.2.20 stat
Usage: hadoop fs -stat URI [URI …]
Returns the stat information on the path.

2.2.21 tail
Usage: hadoop fs -tail [-f] URI
Displays last kilobyte of the file to stdout. -f option can be
used as in Unix.

2.2.22 test
Usage: hadoop fs -test -[ezd] URI
Options: -e check to see if the file exists. Return 0 if true.
 -z check to see if the file is zero length. Return 0 if true.

-d check return 1 if the path is directory else return 0.

2.2.23 text
Usage: hadoop fs -text <src>

Paper ID: OCT146 477

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Takes a source file and outputs the file in text format. The
allowed formats are zip and TextRecordInputStream.

2.2.24 touchz
Usage: hadoop fs -touchz URI [URI …]
Create a file of zero length.

2.3 Software Requirement Specification

2.3.1 Purpose
In order to uses HDFS in cloud we must be made it user
friendly. So that anyone can use it without any hurdle

2.3.2 Scope
The Hadoop Distributed File System (DFS) is a fault tolerant
scalable distributed storage component of the Hadoop
distributed high perforamance computing platform. Hadoop
is asoftware framework that supports largescale distributed
data analysis on commodity servers. Hadoop leads cloud
service provider to bring the flexibility, agility and massive
scalability of the cloud to user, HDFS appears as a
traditional file system. You can perform CURD action on
files with certain directory path. But, due to the
characteristics of distributed storage, there are “NameNode”
and “DataNode” which take each of their responsibility. The
NameNode is the master of the DataNodes. It provides
metadata service within HDFS. The metadata indicates the
file mapping of the DataNode. It also accepts operation
commands and determines which DataNode should perform
the action and replication. The DataNode serves as storage
blocks for HDFS.they also respond to command that create,
delete, and replication blocks received from the NameNode.
In simple term, Hadoop can be used to distributed cloud
computing services i.e. it is a distributed platforms. The main
objective of this project is to deploy all FS Shell Commands
and create a Web GUI so that anyone can use hadoop easily.

2.4 Requirements

Here we dealt with the software and hardware requirements
of the project to be made.
Hardware requirements:
 Desktop or laptop
 2 GB RAM
 250 GB Hard Disk

Software Requirements:
 Linux
 Java 1.6
 NetBeans IDE
 Hadoop 1.0.4
 OpenSSH

2.5 Software Design Specification

The overall schema of the project include the following
aspects.
Data Read: This includes to read all file stored on HDFS.
User download the files.
Data Write: The file that is to store the files or data on
HDFS. User can also delete the files.

2.6User documentation

A comprehensive user manual is provided in Annexure-I of
this documentation.

2.6.1 Functional Requirement
 File should be download according to user request
 File should be upload in HDFS
 We should able to read all files in HDFS
 File requested to read should be granted to read
 File should be remove according to the user request
 We can maker or delete directory and also we can store

files in it

2.6.2Non-functional Requirements
Non- functional requirements includes the following
 Performance of hadoop should not degrade.
 The cluster should be scalable
 Reliability of the cluster should be maintained
 Quality of software should improve

3. Design

3.1 Introduction

Hadoop comes with a distributed file system called HDFS,
which stands for Hadoop Distributed File System. HDFS is
hadoop flagship file system and is the focus of this
chapter,butHadoop actually has a general purpose file system
abstraction, so we’ll see along the way hadoop integrates
with storage system (such as the local file system and
Amazon S3).

3.2 The Design of HDFS

HDFS is a file system designed for storing very
large files with streaming data access patterns,
running on clusters of commodity hardware.
Lets examine this in more detail:

3.3 Very large Files

Very large in this context means files that are hundreds of
megabytes, gigabytes or terabytes in size. There are Hadoop
Clusters running today that store petabytes of data.

3.4 Streaming Data Access

HDFS is built around the idea that the most efficient data
processing pattern is a write-once, read-many-times pattern.
A dataset is typically generated or copied from source, then
various analyses are performed on that dataset over time.
Each analysis will involve a large proportion, if not all, of
the dataset, so the time to read the whole dataset is more
important than the latency in reading the first record.

3.5 Commodity Hardware

Hadoop doesnt require expensive, highly reliable hardware
to run on. Its designed to run on clusters of commodity
hardware (commonly available hardware available from

Paper ID: OCT146 478

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

multiple vendors3) for which the chance of node failure
across the cluster is high, at least for large clusters. HDFS is
designed to carry on working without a noticeable
interruption to the user in the face of such failure.

3.6 Low-Latency Data Access

Applications that require low-latency access to data, in the
tens of milliseconds range, will not work well with HDFS.
Remember, HDFS is optimized for delivering a high
throughput of data, and this may be at the expense of
latency.

3.7 Data Flow

3.7.1 Anatomy of File Read
To get an idea of how data flows between the client
interacting with HDFS, the namenode and the datanodes,
consider Figure 4.1, which shows the main sequence of
events when reading a file. The client opens the file it wishes
to read by calling open() on the FileSys-tern object, which
for HDFS is an instance of Distributed FileSystem (step 1 in
Figure 4.1). Distributed FileSystem calls the namenode,
using RPC, to determine the locations of the blocks for the
first few blocks in the file (step 2).

Figure 3.1: A client reading data from HDFS

For each block, the namenode returns the addresses of the
datanodes that have a copy of that block. Furthermore, the
datanodes are sorted according to their proximity to the
client.

If the client is itself a datanode (in the case of a MapReduce
task, for instance), then it will read from the local datanode,if
it hosts a copy of the block.

The Distributed FileSystem returns an FS DatalnputStream
(an input stream that supports file seeks) to the client for it to
read data from.

FSDatalnput-Stream in turn wraps a DFSlnputStream, which
manages the datanode and namenode I/O.

The client then calls read() on the stream (step 3).
DFSInputStream with is reported to the namenode before the
DFSInput Stream attempts to read a replica of the block from
another datanode.

One important aspect of this design is that the client contacts
datanodes directly to retrieve data and is guided by the
namenode to the best datan-ode for each block.

This design allows HDFS to scale to a large number of
concurrent clients, since the data traffic is spread across all
the datanodes in the cluster.

The namenode meanwhile merely has to service block
location requests (which it stores in memory, making them
very efficient) and does not, for example, serve data, which
would quickly become a bottleneck as the number of clients
grew.

3.7.2 Anatomy of File Write
Next well look at how files are written to HDFS. Although
quite detailed, it is instructive to understand the data flow
since it clarifies HDFSs coherency model.

The case was going to consider is the case of creating a new
file, writing data to it, then closing the file.

The client creates the file by calling create() on Distributed
FileSystem (step 1 in Figure 4.2). DistributedFileSystem
makes an RPC call to the namenode to create a new file in
the filesystems namespace, with no blocks associated with it
(step 2).

The namenode performs various checks to make sure the file
doesnt already exist, and that the client has the right

Paper ID: OCT146 479

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

permissions to create the file. If these checks pass, the
namenode makes a record of the new file; otherwise, file
creation fails and the client is thrown an I0Exception.

The Distributed FileSystem returns an FSDataOutputStream
for the client to start writing data to.

Just as in the read case, FSDataOutputStream wraps a
DFSOutput Stream, which handles communication with the
datanodes and namenode.

Figure 3.2: A client writing data to HDFS

As the client writes data (step 3), DFSOutputStream splits it into
packets,which it writes to an internal queue, called the
data queue.

The data queue is consumed by the DataStreamer, whose
responsibility it is to ask the namen-ode to allocate new
blocks by picking a list of suitable datanodes to store the later
on.

The failed datanode is removed from the pipeline and the
remainder of the blocks data is written to the two good
datanodes in the pipeline. The namenode notices that the
block is under-replicated, and it arranges for a further replica
to be created on another node. Subsequent blocks are then
treated as normal.

Its possible, but unlikely, that multiple datanodes fail while a
block is being written. As long as dfs.replication.min replicas
(default one) are written, the write will succeed, and the
block will be asynchronously replicated across the cluster
until its target replication factor is reached (dfs.replication,
which de- faults to three).

When the client has finished writing data, it calls close() on
the stream (step 6). This action flushes all the remaining
packets to the datanode pipeline and waits for
acknowledgments before contacting the namenode to signal
that the file is complete (step 7). The namenode already
knows which blocks the file is made up of (via Data
Streamer asking for block allocations), so it only has to wait
for blocks to be minimally replicated before returning
successfully.

3.8 Conclusion on Design

In this chapter we discuss about the design of Hadoop
Distributed File System and its various components. We also
study about the anatomy of file reading and file writing

The admin of software in this part can add server to each
client with subpart 1, and can delete server with subpart 2,
and turn on of the virtual os to each user from subpart 3, and
turn off of the virtual os form each client of the system from
subpart 4, and at last the admin can list all users vps (Visual
Personal Server) information from subpart 5.
Here the admin will control all virtual os for users.

Note:
The admin in subpart 1 can specify details of user’s virtual
os as os type, hard disk drive, ram. Because some users need
more hard disk drive or ram for self system.

Description of test case This test case is to check whether
file is uploading or not

Pre-condition File selected or not
iDescription File uploading ! OK

Actual Result File uploading ! OK
Pass/Fail Criteria Pass when lok` else fail

4. Testing and Validation

4.1 Introduction

Software testingE183 is an investigation conducted to
provide stakeholders with information about the quality of
the product or service under test. Software testing can also
provide an objective, independent view of the software to
allow the business to appreciate and understand the risks of
software implementation.

Test techniques include, but are not limited to the process of
executing a program or application with the intent of finding
software bugs (errors or other defects).Software testing can
be stated as the process of validating and verifying that a
computer program/application/product: meets the
requirements that guided its design and development, can be
implemented with the same characteristics, and satisfies the
needs of stakeholders.

Software Testing, depending on the testing method
employed can be implemented at any time in the software
development process. Traditionally most of the test effort
occurs after the requirements have been defined and the
coding process has been completed, but in the Agile
approaches most of the test effort is on-going. As such, the
methodology of the test is governed by the chosen software
development methodology

Software testing methods are traditionally divided into
white- and black-box testing. These two approaches are used
to describe the point of view that a test engineer takes when
designing test case.

1. White-box testing[4] (also known as clear box testing,
glass box testing, transparent box testing and structural
testing) tests internal structures or workings of a program,
as opposed to the functionality exposed to the end-user.

In white-box testing an internal perspective of the system, as
well as programming skills, are used to design test cases.
The tester chooses inputs to exercise paths through the code
and determine the appropriate outputs. This is analogous to

Paper ID: OCT146 480

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

testing nodes in a circuit, e.g. in-circuit testing (ICT). While
white-box testing can be applied at the unit, integration and
system levels of the software testing process, it is usually
done at the unit level. It can test paths within a unit, paths
between units during integration, and between subsystems
during. Though this method of test design can uncover many
errors or problems, it might not detect unimplemented parts
of the specification or missing requirements.

Black-box testing treats the software as a "black box",
examining functionality without any knowledge of internal
implementation.

The testers are only aware of what the software is supposed
to do, not how it does it. Black-box testing methods include
equivalence partitioning, boundary value analysis, all-pairs
testing, state transition tables, decision table testing, fuzz
testing, model-based testing, use case testing, exploratory
testing and specification-based testing.

4.2 Design of test cases

I have discussed the various test case designs that can be
implemented in this project.

4.3 File Upload

The test case design of File Upload is given below.

Table 4.1: Test case of file upload
Description Of test

case
This test case is to check whether

file is uploading or not
Pre-condition File selected or not
iDescription File uploading ! OK

Actual Result File uploading ! OK
Pass/Fail Criteria Pass when lok` else fail

4.4 File Download
The test case design of File Download is given below.

Table 4.2: Test case of file download

Description of test
case

This test case is to check whether
file is downloading or not

Pre-condition File selected or not
Expected Result File downloading ! OK

Actual Result File downloading ! OK
Pass/Fail Criteria Pass when 'ok’ else fail

4.5 File List
The test case design of File List Store in HDFS is given
below

Table 4.3: Test case for File list

Description of test case This test case is to check whether
file is generated or not

Pre-condition File generated or not
Expected Result File generated ! OK

Actual Result File generated ! OK
Pass/Fail Criteria Pass when `ok` else fail

4.6 File Deletion
The test case design of File Deletion from HDFS is given
below

Table 4.4: Test case for File Delete
Description of test case This test case is to check whether

tile is deleted or not
Pre-condition File deleted or not

Expected Result File deleted ! OK
Actual Result File deleted ! OK

Pass/Fail Criteria Pass when `ok` else fail

4.7 Directory Deletion
The test case design of Directory Deletion from HDFS is
given below

Table 4.5: Test case for Directory Delete
Description of test

case
This test case is to check whether

directory is deleted or not
Pre-condition Directory deleted or not

Expected Result Directory deleted! OK
Actual Result Directory deleted! OK

Pass/Fail Criteria Pass when 'ole else fail

4.8 Validation

Validation is the process of checking that a software system
Meets specifications and that it fulfills its intended purpose.
It may also be referred to as software quality control. It is
normally the responsibility of software testers as part of the
software development Lifecycle.

Validation checks that the product design satisfies or fits the
intended use (high-level checking), i.e., the software meets
the user requirements. This is done through dynamic testing
and other forms of review. Results of validation testing of
test case scenarios are:-

Table 4.6: Validation
TestCase

ID
Expected Result

Actual
Result

Pass/Fail

6.2.1 File Uploading! Ok OK Pass
6.2.2 File Downloading! Ok OK Pass
6.2.3 File List Generated! OK OK Pass
6.2.4 File Deleted! OK OK Pass
6.2.5 Directory Deleted! OK OK Pass

4.9 Conclusion on Testing

In this chapter various test cases were designed and
validated. The project passed the all five test cases designed.
The file is being uploading, downloading, deletion, file
listing, directory deletion. This project meets all the
specification.

5. Conclusion and Future Work

5.1 Conclusion

Hadoop Distributed File System provides efficient storage of
large dataset. Developed by Apache and co-developed by
Yahoo it has come a long way from experimental
implementation to real world scenario. Providing efficient
management for data storage and retrieval it is now one of
the most widely used distributed file system for unstructured
data. It’s read and write algorithm are open to changes.

Paper ID: OCT146 481

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

5.2 Future Work

Hadoop is a fast growing open source technology which
constantly needs refinements. One such field is its read-write
algorithm. Its many other components such as Hive, map
reduce needs development. It posses a big challenge to all
BIG DATA managers and developers to define more
efficient way to manage and store data.

Furthur extension of project, we can develop an application
for novice users or business clients for storing, deleting,
uploading, modify huge data of any organization in more
ease way.

6. Installation prerequisites”

This project is a simulation of hadoop. Here I am giving the pre-
requisites for installing hadoop.
1. ubuntu 12.04: This is the most stable linux package from

ubuntua can be installed using wubi.exe software which
installs ubuntu above windows. Ubuntu can also be
installed using virtual box software.

2. linux-kernal 3.9.0.29:It automatically gets installed with
ubuntu 12.04.

3. hadoop-1.0.4:This can be downloaded as a tar package
from hadoop.apache.org This is the package with the help
of which hadoop will be installed on system.

4. openjdk-6-jdk:Java version 6 or more is required to
configure hadoop.

5. Now I am going to discuss how to install hadoop and all
other softwares related to it.

6.1 Install openjdk-6-jdk

Open terminal and type the following commands
sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudoapt-get install openjdk-6-jdk
This will install Java-6 on ubuntu.

6.2 Create a dedicated hadoop user

It is recommended (not necessary) to add a dedicated user
for hadoop with
sudo permissions.
sudo adduser hadoop
sudo adduser hadoop sudo
Now move to the folder where hadoop-1.0.4.tar file is kept
and extract it
using following command
tar -xvf hadoop-1.0.4.tar
Now login as hadoop user.
su hadoop

6.3 Installing openssh and generating keys

sudo apt-get install openssh-server
sudo apt-get install openssh-client
ssh –keygen
cd /home/hadoop/.ssh
is (list the keys)

ssh-copy-id -i /home/hadoop/.ssh/id rsa.pub localhost

6.4 Create a folder named temp and change permissions

Before creating tmp folder permission for hadoop-1.0.4 folder
needs to be changed.
sudo chown -R hadoop hadoop-1.0.4
sudo chmod 777 hadoop-1.0.4
sudo mkdir /home/hadoop tmp
sudo chown -R hadoop /home/hadoop/tmp
sudo chmod 777 /home/hadoop/tmp

6.5 Start configuring hadoop

sudo gedit /home/hadoop/.bashrc
In this file add the following two lines.
export JAVA HOME---/usr/lib/jvm/java-6-openjdk-amd64
export HADOOP HOME= path to hadoop-1.0.4 directory
Change to bin folder of hadoop-1.0.4/bin
sudo gedit hadoop-env.sh
Add the following line in it
export JAVA HOME=/usr/libijvm/java-6-openjdk-amd64
sudo gedit core-site.xml

 Add the following lines in it
<?xml version="1.0"?>
<?xml-stylesheet type="text/xs1"
href="configuration.xs1"?>

 <!-- Put site-specific property overrides in this file. - - >

<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>/home/hadoop/tmp</value>
</property>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:54310</value>
</property>
 </configuration>

 sudo gedit mapred-site.xml
Add the following lines in it
<?xml version="1.0"?>
<?xml-stylesheet type="text/xs1"
href="configuration.xs1"?>
 <!-- Put site-specific property overrides in this file. -->
<configuration>
 <property>
<name>mapred.job.tracker</name>
 <value>localhost:54311</value>
 </property>
</configuration>
sudo gedit hdfs-site.xml
Add the following lines in it
<?xml version="1.0"?>
<?xml-stylesheet type="textixs1"
href="configuration.xs1"?>.
<!-- Put site-specific property overrides in this file:- -->
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>

Paper ID: OCT146 482

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

</property>
<property>
</configuration>
Format namenode as
bin/hadoop namenode -format
It will show you a message regarding namenode has been
succesfully
formated.

Start the name node by typing bin/start-all.sh.
It will start all hadoop daemons.
To check whether all are working type jps.
To stop hadoop type bin/stop-all.sh.

References

[1] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,

Robert Chansler "The Hadoop Distributed File
System". Yahoo!,Sunnyvale, California USA,2010,pp.1-
10

[2] Apache Hadoop. http://hadoop.apache.org/
[3] S. Ghemawat, H. Gobioff, S. Leung. "The Google

filesystem," In Proc. of ACM Symposium on Operating
Systems Principles, Lake George,NY, Oct 2003, pp
2943.

[4] IEEE Standard for Software Test Documentation, IEEE
Std 829,1998
 J. Dean, S. Ghemawat, "MapReduce: Simplified Data
Processing on Large Clusters," In Proc. of the 6th
Symposium on Operating Systems Design and
Implementation, San Francisco CA, Dec. 2004,pp.1-13
Common IO Download
http://commons.apache.org/proper/commons-
io/download_io.cgi

[5] K. V. Shvachko, "HDFS Scalability: The limits to
growth," ;login:.April 2010, pp. 616.

[6] J. Venner, Pro Hadoop. Apress, June 22, 2009.
[7] T. White, Hadoop: The Definitive Guide. O'Reilly

Media, Yahoo! Press,June 5, 2009.
[8] InterMezzo.http://www.inter-mezzo.org
[9] Lustre.http://www.lustre.org
[10] Barbara Liskov, Sanjay Ghemawat, Robert Gruber,Paul

Johnson, Liuba Shrira, and Michael Williams.
Replication in the Harp file system. In 13th Symposium

on Operating System Principles, pages 226238, Pacific
Grove, CA,October 1991.

[11] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung.The Google file system. In 19th Symposium on
Operating Systems Principles, pages 29.43, Lake
George,New York,2003.

[12] Douglas Thain, Todd Tannenbaum, and Miron
Livny.Distributed computing in practice: The Condor
experience. Concurrency and Computation: Practice
and Experience,2004.

[13] P.H. Carns, W.B. Ligon III, R. B. Ross, and R. Thakur .
“PVFS: A parallel file system for Linux Clusters,” in
proc. Of 4th Annual Linux Showcase and
conference,200,pp. 317327

[14] Lusture File System. http://www.lustre.org
Software
Testing.http://en.wikipedia.org/wiki/Software_testing
Creating Tables with Latex
www1.maths.leeds.ac.uk/latex/TableHelp1.pdf

[15] A. Gates, O.Natkovich, S. Chopra, P.kamath,
S.Narayanam, C.Olston, B. Reed, S. Srinivasan, U.
Srivastava. “Building a Higjh-LevelDataFlow System
on top of MapReduce : The Pig Experience,” In Proc.
Of Very Large Data Bases, vol 2 no. 2, 2009, PP.
14141425 .

[16] S. Radia, “Naming Policies in the spring system,” In
Proc. Of 1st IEEE Workshop on Services in Distributed
and Networked Environments , June 1994, PP. 164171.

Author Profile

Dubellam Dhananjay received Bachelor of
Engineering in Computer Science and Engineering
from TRRCE, JNTUH. He is pursuing Master of
Technology in Computer Science. His research

interests are Big Data and Analytics, Operating Systems, Data
mining, Networking, Web Technologies, Image Processing,
Computer Graphics.

G. Venkata Rami Reddy has completed his Master of
Technology in Computer Science from School Of IT,
JNTU, Kukatpally Hyderabad. He is the Associate
Professor and course coordinator of Software

Engineering for School of IT, JNTUH. His subjects of interests are
Image Processing, Computer Networks, Analysis of Algorithms,
Data mining, Operating Systems and Web technologies.

Paper ID: OCT146 483

