On Bc-open sets

Raad Aziz Al-Abdulla¹, Ruua Muslim Abed²

¹,²Department of Mathematics, College of Computer Sciences and Mathematics, University of AL-Qadisiyah

Abstract: In this paper, we introduce a new class of open sets, called Bc-open sets, it is denoted and studied. Also, we have studied of definition Bc-paracompact spaces and nearly Bc-paracompact spaces and have provide some properties of this concepts.

Keywords: θ-open, Bc-open

1. Introduction

In [5] H. Z. Ibrahim introduced the concept of Bc-open set in topological spaces. This paper consist of two sections. In section one, we give similar definition by using of Bc-open sets and also we proof some properties about it. In section two we obtain new a characterization and preserving theorems of Bc-paracompact spaces, nearly Bc-paracompact spaces and the product of space $X \times Y$ where X is Bc-paracompact space and Y is θ-paracompact space.

Definition (1.1)[3]:
Let X be a topological space and $A \subseteq X$. Then A is called b-open set in X if $A \in \mathcal{B}(X)$. The family of all b-open subset of a topological space (X, τ) is denoted by $BO(X, \tau)$ or (Briefly $BO(X)$).

Definition (1.2)[5]:
Let X be a topological space and $A \subseteq X$. Then A is called Bc-open set in X if for each $x \in A$, there exists a closed set F such that $x \in F \subseteq A$. The family of all Bc-open subset of a topological space (X, τ) is denoted by $BcO(X, \tau)$ or (Briefly $BcO(X)$). A subset of X is Bc-closed set if A' is Bc-open set. The family of all Bc-closed subset of a topological space (X, τ) is denoted by $BcC(X, \tau)$ or (Briefly $BcC(X)$).

Remark (1.3):
It is clear from the definition that every Bc-open set is b-open, but the converse is not true in general as the following example:

Let $X = \{1,2,3\}$, $\tau = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}$. Then the closed set are: $X, \phi, \{2,3\}, \{1,3\}, \{3\}$. Hence $BO(X) = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}$ and $BcO(X) = \{\phi, X, \{1,3\}, \{2,3\}\}$. Then $\{1\}$ is b-open but $\{1\}$ is not Bc-open.

Definition (1.4)[10]:
1) Let X be a topological space and $A \subseteq X$. Then A is called θ-open set in X if for each $x \in A$, there exists an open set G such that $x \in G \subseteq G \subseteq A$. The family of all θ-open subset of a topological space (X, τ) is denoted by $\theta O(X, \tau)$ or (Briefly $\theta O(X)$).
2) Let X be a topological space and $A \subseteq X$. A point $x \in X$ is said to θ-interior point of A if there exist an θ-open set U such that $x \in U \subseteq A$. The set of all θ-interior points of A is called θ-interior of A and is denoted by A^{θ}.

3) Let X be a topological space and $A \subseteq X$. The θ-closure of A is defined by the intersection of all Bc-closed sets in X containing A, and is denoted by A^{θ}.

Remark (1.5)[5]:
1) Every θ-open is Bc-open.
2) Every θ-closed is Bc-closed.

Example (1.6):
The intersection of two Bc-open sets is not Bc-open in general. Let $X = \{1,2,3\}$, $\tau = \{\phi, X, \{1\}, \{2\}, \{1,2\}\}$. Then $\{1,3\}, \{2,3\}$ is Bc-open set where as $\{1,3\} \cap \{2,3\} = \{3\}$ is not Bc-open set.

Remark (1.7)[2]:
The intersection of an b-open set and an open set is b-open set.

Proposition (1.8):
Let X be a topological space and $A,B \subseteq X$. If A is Bc-open set and B is an θ-open set, then $A \cap B$ is Bc-open set.

Proof:
Let A be a Bc-open set and B is an θ-open set, then A is b-open set and B is an open set since every θ-open is open. Then $A \cap B$ is b-open set by (Remark (1.7)). Now, let $x \in A \cap B$, $x \in A$ and $x \in B$. Then there exists a closed set F such that $x \in F \subseteq A$, and there exists an open set E such that $x \in E \subseteq E \subseteq B$. Therefore, $E \cap F$ is closed since the intersection of closed sets is closed. Thus $x \in E \cap F \subseteq A \cap B$. Then $A \cap B$ is Bc-open set.

Proposition (1.9)[5]:
Let X be a topological space and $A \subseteq X$. Then A is Bc-open if and only if there is a α-open set F_{α}, where $A \subseteq F_{\alpha}$, and F_{α} is closed sets for each α.

Proposition (1.10)[5]:
Let $\{A_{\alpha}; \alpha \in \Lambda\}$ be a collection of Bc-open sets in a topological space X. Then $\cap \{A_{\alpha}; \alpha \in \Lambda\}$ is Bc-open.

Lemma (1.11)[4]:
Let X be a topological space and $Y \subseteq X$. If G is an θ-open in X, then $G \cap Y$ is an θ-open in Y.

Proposition (1.12)[5]:
Let X be a topological space and $Y \subseteq X$. If G is an θ-open in X and Y is an open in X, then $G \cap Y$ is θ-open in Y.

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Volume 3 Issue 10, October 2014

Paper ID: OCT145011
Proposition(1.13):
Let X be a topological space and $Y \subset X$. If G is a Bc-open set in X and Y is a θ-open in X, then $G \cap Y$ is Bc-open in Y.

Proof:
Let $x \in G \cap Y$, $x \in G$ and $x \in Y$. Since G is a Bc-open set in X, then for each $x \in G \in BO(X)$, there exists F is closed set in X such that $x \in F \subset G$ and since Y is an θ-open in X, then there exists U is open set in X such that $x \in U \subset \bar{U} \subset Y$. Since G is Bc-open, then G is b-open and since Y is an θ-open, then Y is an open by proposition(1.12). Therefore, $G \cap Y$ is b-open in Y. Since $F \cap \bar{U}$ is closed set in Y. Thus $x \in F \cap \bar{U} \subset G \cap Y$. Hence $G \cap Y$ is Bc-open in Y.

Proposition(1.14):
Let X be a topological space and Y is a θ-open subset of X. If G is a Bc-open in Y, then G is Bc-open in X.

Proof:
Suppose that Y is an θ-open subset of X and $G \subset Y$, since G is a Bc-open set in Y, then for each $x \in G \in BO(Y)$, there exists F is closed set in Y such that $x \in F \subset G$. Let $G = Y \cup U$, $U \subset X$, and $F = E \cap Y, E \subset C$. Then $x \in E \subset C$. Hence G is Bc-open in X.

Lemma(1.15)[6]:
Let X and Y be a topological spaces and let $A \subset X, B \subset Y$ be two non empty subset:
1) If A is an open set in X and B is an open set in Y, then $A \times B$ is an open set in $X \times Y$.
2) If A is a closed set in X and B is a closed set in Y, then $A \times B$ is a closed set in $X \times Y$.
3) $(A \times B) = A \cap B$.

Theorem(1.16):
Let X and Y be a topological spaces and let $A \subset X, B \subset Y$ such that A is an θ-open set of X, B is an θ-open set of Y, then $A \times B$ is an θ-open set of $X \times Y$.

Proof:
Let A be an θ-open set of X and B be an θ-open set of Y, then for each $x \in A$, there exists $G \subset X$ such that $x \in G \subset \bar{G} \subset A$ and for each $y \in B$, there exists U open set in X such that $y \in U \subset \bar{U} \subset B$. By lemma(1.15)(1), then $G \times U$ is an open set in $X \times Y$. Since $G \times U$ is closed set, then $G \times U$ is a closed set in $X \times Y$ by lemma(1.15)(2). Since $G \times U = \bar{G} \times \bar{U}$ by lemma(1.15)(3), then $x \in \bar{G} \times \bar{U} \subset \bar{X} \times \bar{Y} \subset A \times B$. Hence $A \times B$ is an θ-open subset of $X \times Y$.

Theorem(1.17)[8]:
Let X and Y be topological spaces and let $A \subset X, B \subset Y$ such that A is a b-open set of X, B is an open set of Y, then $A \times B$ is a b-open subset of $X \times Y$.

Theorem(1.18):
Let X and Y be topological spaces and let $A \subset X, B \subset Y$ such that A is a Bc-open set of X, B is an θ-open set of Y, then $A \times B$ is a Bc-open subset of $X \times Y$.

Proof:
Let A be a Bc-open set of X and B be an θ-open set of Y, then for each $x \in A \in BO(X)$, there exists F closed set in X such that $x \in F \subset A$ and for each $y \in B$, there exists U open set in Y such that $y \in U \subset \bar{U} \subset B$. Since A is a Bc-open in X and B is an θ-open in Y, then A is a b-open in X and B be an open in Y. Thus $A \times B$ is a b-open subset of $X \times Y$ by proposition(1.17), $x \in A$ and $y \in B$, then $(x, y) \in A \times B \in BO(X)$. Since $x \in F \subset A$ and $y \in U \subset \bar{U} \subset B$ such that F is closed set in X and U is closed set in Y, then $F \times U$ is closed set in $X \times Y$. Therefore, $(x, y) \in F \times U \subset A \times B$. Hence $A \times B$ is a Bc-open subset in $X \times Y$.

Definition(1.19)[1]:
Let X be a topological space and $x \in X$. Then a subset N of x is said to be a θ-neighborhood of x, if there exists θ-open set U in X such that $x \in U \subset N$.

Definition(1.20)[5]:
Let X be a topological space and $A \subset X$. A point $x \in X$ is said to Bc-interior point of A, if there exist a Bc-open set U such that $x \in U \subset A$. The set of all Bc-interior points of A is called Bc-interior of A and is denoted by A^{Bc}.

Theorem(1.21)[5]:
Let X be a topological space and $A, B \subset X$, then the following statements are true:
1) A^{Bc} is the union of all Bc-open set which are contained in A.
2) A^{Bc} is Bc-open set in X.
3) $A^{Bc} \subset A$.
4) A is Bc-open if and only if $A = A^{Bc}$.
5) $(A^{Bc})^{Bc} = A^{Bc}$.
6) If $A \subset B$, then $A^{Bc} \subset B^{Bc}$.
7) $A^{Bc} \cup B^{Bc} \subset (A \cup B)^{Bc}$.
8) $(A \cap B)^{Bc} \subset A^{Bc} \cap B^{Bc}$.

Definition(1.1.122)[5]:
Let X be a topological space and $A \subset X$. The Bc-closure of A is defined by the intersection of all Bc-closed sets in X containing A, and is denoted by A^{Bc}.

Theorem(1.23)[5]:
Let X be a topological space and $A, B \subset X$. Then the following statements are true:
1) A^{Bc} is the intersection of all Bc-closed sets containing A.
2) A^{Bc} is Bc-closed set in X.
3) $A \subset A^{Bc}$.
4) A is Bc-closed set if and only if $A = A^{Bc}$.
5) $(A^{Bc})^{Bc} = A^{Bc}$.
6) If $A \subset B$, then $A^{Bc} \subset B^{Bc}$.
7) $A^{Bc} \cup B^{Bc} \subset (A \cup B)^{Bc}$.
8) $(A \cap B)^{Bc} \subset A^{Bc} \cap B^{Bc}$.

Proposition(1.24)[5]:
Let X be a topological space and $A \subset X$. Then $x \in A^{Bc}$ if and only if $A \cap U \neq \phi$ for every Bc-open set U containing x.

Volume 3 Issue 10, October 2014

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
Definition(1.25)[5]:
Let X be a topological space and $A \subset X$. A point x is said to be Bc-limit point of A, if for each Bc-open set U containing x, $U \cap (A - \{x\}) \neq \emptyset$. The set of all Bc-limit points of A is called a Bc-derived set of A and is denoted by A^{Bc}.

Proposition(1.26)[5]:
Let X be a topological space and $A \subset X$. Then $A^{Bc} = A \cup A^{Bc}$.

Proposition(1.27):
Let X be a topological space and $A \subset X$, then A^{Bc} is the smallest Bc-closed set containing A.

Proposition(1.28)[5]:
Let X be a topological space and $A \subset X$, then the following statements are true:
1) $(A^{Bc})^{c} = (A^{c})^{Bc}$.
2) $(A^{+Bc})^{c} = (A^{c})^{Bc}$.
3) $A^{Bc} = (A^{c})^{Bc}$.
4) $A^{Bc} = \left(\overline{A}^{Bc}\right)^{c}$.

Definition(1.29):
Let X be a topological space and $A \subset X$, A is called Bc-regular open set in X iff $A = A^{Bc\theta}$. The complement of Bc-regular open set is called Bc-regular closed.

Definition(1.30):
Let X be a topological space and $A \subset X$, A is called Bc-regular open set in X iff $A = A^{Bc\theta}$. The complement of Bc-regular open set is called Bc-regular closed.

Remark(1.31):
Let X be a topological space and $A \subset X$, A is Bc-regular open set, then $\overline{A}^{Bc\theta}$ is Bc-regular open set.

Proof:
To prove $\overline{A}^{Bc\theta}$ is Bc-regular open we must prove that $\overline{A}^{Bc\theta} = \overline{A}^{Bc\theta} \cap A^{Bc\theta}$, since $A \subset \overline{A}^{Bc\theta}$, then $A^{Bc\theta} \subset \overline{A}^{Bc\theta}$ and since A is Bc-open set, hence $A \subset \overline{A}^{Bc\theta} \cap A^{Bc\theta} \subset \overline{A}^{Bc\theta}$... (1) Since $A^{Bc\theta} \subset \overline{A}^{Bc\theta}$, then $\overline{A}^{Bc\theta} \subset \overline{A}^{Bc\theta}$... (2) From (1) and (2) we get $\overline{A}^{Bc\theta} = \overline{A}^{Bc\theta} \cap A^{Bc\theta}$. Hence $\overline{A}^{Bc\theta}$ is Bc-regular open.

2. Separation Axiom

Definition(2.1)[7]:
A space X is called $\partial T_{2} - space$ iff for each $x \neq y$ in X there exist disjoint θ-open sets U, V such that $x \in U, y \in V$.

Definition(2.2):
A space X is called Bc-regular space iff for each x in X and θ-closed set such that $x \notin C$, there exist disjoint Bc-open sets U, V such that $x \in U, C \subseteq V$.

Proposition(2.3): A space X is Bc-regular space iff for every $x \in X$ and each θ-open set U in X such that $x \in U$ there exists an Bc-open set W such that $W \subseteq \overline{U}^{Bc} \subseteq U$.

Proof:
Let X be a Bc-regular space and $x \in X$, U is θ-open in X such that $x \in U$. Thus U^{c} is θ-closed set, $x \notin U^{c}$. Then there exist disjoint Bc-open set W, V such that $x \in W, U^{c} \subseteq V$. Conversely let F be an θ-open set such that $x \notin F$. Then F^{c} is θ-open set and $x \notin F^{c}$. Thus there exist W is Bc-open set such that $x \in W \subseteq \overline{W}^{Bc} \subseteq F^{c}$. Then $x \in W \subseteq \overline{W}^{Bc} \subseteq F^{c}$. Hence X is Bc-regular space.

Definition(2.4):
A space X is called Bc*-regular space iff for each x in X and Bc-closed set C such that $x \notin C$, there exist disjoint sets U, V such that $x \in U$, V is a θ-open and $x \in U, C \subseteq V$.

Proposition(2.5):
A space X is Bc*θ-regular space iff for every $x \in X$ and each Bc-open set U in X such that $x \in U$, there exists an θ-open set W such that $x \in W \subseteq \overline{U}^{Bc} \subseteq U$.

Proof:
Let X be a Bc*θ-regular space and $x \in X$, U is Bc-closed in X such that $x \in U$. Thus U^{c} is Bc-θ-closed set, $x \notin U^{c}$. Then there exist disjoint θ-open set W, V such that W is θ-open, V is a Bc-open and $x \in W, U^{c} \subseteq V$. Hence $x \in W \subseteq \overline{W}^{BC} \subseteq \overline{V}^{BC} \subseteq V^{c} \subseteq U$. Conversely, let F be a Bc-θ-closed set such that $x \notin F$. Then F^{c} is an θ-open set and $x \notin F^{c}$. Thus there exist W is θ-open set such that $x \in W \subseteq \overline{W}^{BC} \subseteq F^{c}$. Then $x \in W \subseteq \overline{W}^{BC} \subseteq F^{c}$. Hence X is Bc*θ-regular space.

Definition(2.7):
A space X is called almost Bc-regular space iff for each x in X and C is θ-regular closed set such that $x \notin C$, there exist disjoint Bc-closed sets U, V such that $x \in U$, $C \subseteq V$.

Definition(2.8):
A space X is called almost Bc*θ-regular space iff for each x in X and C is Bc-θ-regular closed set such that $x \notin C$, there exist disjoint sets U, V such that $x \in U$, V is Bc-θ-open and $x \in U, C \subseteq V$.

Proposition(2.9):
A space X is almost Bc-regular space iff for every $x \in X$ and each θ-open set U in X such that $x \in U$ there exists an Bc-open set W such that $x \in W \subseteq \overline{W}^{Bc} \subseteq U$.

Proof:
Let X be almost Bc-regular space and $x \in X$, U is θ-open in X such that $x \in U$. Thus U^{c} is θ-closed set, $x \notin U^{c}$. Then there exist disjoint Bc-open set W, V such that $x \in W, U^{c} \subseteq V$. Hence $x \in W \subseteq \overline{W}^{Bc} \subseteq \overline{V}^{Bc} \subseteq U$. Conversely, Let F be an θ-open set such that $x \notin F$. Then F^{c} is an θ-open set and
x ∈ Fc. Thus there exist W is Bc-open set such that x ∈ W ⊆ \(W^{Bc} \subseteq Fc \). Then \(x \in W, F \subseteq (W^{Bc})^c \) and \(W, (W^{Bc})^c \) are disjoint Bc-open set. Hence X is almost Bc-regular space.

Proposition (2.10):
A space X is almost Bc*-regular space iff for every x ∈ X and each Bc-regular open set U in X such that x ∈ U there exists an 0-open set W such that x ∈ W \(\subseteq W^{Bc} \subseteq U \).

Proof:
Let X be an almost Bc*-regular space and \(x, U \) be Bc-regular open in X such that x ∈ U. Thus U^c is Bc-regular closed set, x \(\subseteq U^c \). Then there exist disjoint set \(W, V \) such that W is 0-open, V is a Bc-open set and \(x \subseteq W \subseteq U^c \subseteq V \). Hence \(x \subseteq W \subseteq W^{Bc} \subseteq V^{Bc} \subseteq U \). Conversely, let F be an Bc-regular closed set such that \(x \in F \). Then F^c is an Bc-open regular set and \(x \subseteq F^c \). Thus there exist W is 0-open set such that \(x \subseteq W \subseteq W^{Bc} \subseteq F^c \). Then \(x \subseteq W, F \subseteq (W^{Bc})^c \) and \((W^{Bc})^c \) is Bc-open set, \(W \cap (W^{Bc})^c = \phi \). Hence X is almost Bc-regular space.

Definition (2.11):
A space X is called Bc-normal space iff for every disjoint 0-closed set \(F_1, F_2 \) there exist disjoint Bc-open sets \(V_1, V_2 \) such that \(F_1 \subseteq V_1, F_2 \subseteq V_2 \).

Proposition (2.12):
A space X is called Bc-normal space iff for every 0-open set \(F \subseteq X \) and each 0-open set \(U \) in X such that \(F \subseteq U \) there exists an Bc-open set W such that \(F \subseteq W \subseteq W^{Bc} \subseteq U \).

Proof:
Let X be a Bc-normal space and let \(F \) be an 0-closed set in \(X, U \) is an 0-open set such that \(F \subseteq U \). Thus U^c is 0-closed set \(U^c, F \) are disjoint 0-open set, then there exists Bc-open sets \(W, V \) such that \(F \subseteq W, U^c \subseteq V, W \cap V = \phi \). Hence \(F \subseteq W \subseteq W^{Bc} \subseteq (W^{Bc})^c \subseteq U \). Conversely, let \(F_1, F_2 \) be a disjoint 0-closed set, then \(F_1^c, F_2^c \) is an 0-open set and \(F_1 \subseteq F_1^c, F_2 \subseteq F_2^c \). Thus there exist W is Bc-open set such that \(F_1 \subseteq W \subseteq W^{Bc} \subseteq F_2^c \). Then \(F_1 \subseteq W, F_2 \subseteq (W^{Bc})^c \) and \((W^{Bc})^c \) is disjoint Bc-open set. Hence X is Bc-normal space.

Proposition (2.13):
If X is both Bc-normal and \(\partial l_2 \) - space , then X is Bc-regular.

Proof:
Let x ∈ X and U be an 0-open set such that x ∈ U. Thus \(\partial l_2 \) is 0-closed subset of X. Thus there exists a Bc-open set \(W \subseteq W^{Bc} \subseteq U \). By proposition (2.12), so that \(x \subseteq W \subseteq W^{Bc} \subseteq U \). Hence by proposition (2.3) X is Bc-regular space.

3.Bc-paracompact Spaces

Definition (3.1)[9]:
A covering of a topological space X is the family \(\{ A_\alpha : \alpha \in \Lambda \} \) of subsets such that \(\bigcup_{\alpha \in \Lambda} A_\alpha = X \). If each \(A_\alpha \) is open, then \(\{ A_\alpha : \alpha \in \Lambda \} \) is called an open covering, and if each \(A_\alpha \) is closed, then \(\{ A_\alpha : \alpha \in \Lambda \} \) is called a closed covering. A covering \(\{ B_\gamma : \gamma \in \Gamma \} \) is said to be refinement of a covering \(\{ A_\alpha : \alpha \in \Lambda \} \) if for each \(\gamma \) in \(\Gamma \) there exists some \(\alpha \in \Lambda \) such that \(B_\gamma \subseteq A_\alpha \).

Definition (3.2):
The family \(\{ B_\alpha : \alpha \in \Lambda \} \) of a subset of a space X is said to be an \(\theta \)-locally finite if for each \(x \in X \) there exist an \(\theta \)-neighborhood \(N_x \) of x such that the set \(\{ \alpha \in \Lambda : N_x \cap B_\alpha \neq \phi \} \) is finite.

Proposition (3.3):
If \(\{ B_\alpha : \alpha \in \Lambda \} \) is an \(\theta \)-locally finite family of subset of a space X, then there exist \(\{ A_\alpha : \alpha \in \Lambda \} \) of \(\{ C_\alpha : \alpha \in \Lambda \} \) such that \(\{ A_\alpha : \alpha \in \Lambda \} \subseteq \{ C_\alpha : \alpha \in \Lambda \} \subseteq \{ B_\alpha : \alpha \in \Lambda \} \) for each \(\alpha \), then \(\{ C_\alpha : \alpha \in \Lambda \} \) is an \(\theta \)-locally finite.

Proof:
Let \(\{ B_\alpha : \alpha \in \Lambda \} \) is an \(\theta \)-locally finite, for each \(x \in X \), then there exist \(\{ C_\alpha : \alpha \in \Lambda \} \) of \(\{ B_\alpha : \alpha \in \Lambda \} \) such that \(\{ C_\alpha : \alpha \in \Lambda \} \subseteq \{ B_\alpha : \alpha \in \Lambda \} \) for each \(\alpha \), then \(\{ C_\alpha : \alpha \in \Lambda \} \) is an \(\theta \)-locally finite.
then \(V \cap A_\alpha = \phi \), for \(\alpha \in \Lambda \). Now, we have \(\cap (U_{\alpha \in \Lambda} A_\alpha) = \phi \), so that since \(x \in V \), then \(x \notin \cup_{\alpha \in \Lambda} A_\alpha \), by proposition (1.24) which is a contradiction. Thus \(\cup_{\alpha \in \Lambda} A_\alpha = \cup_{\alpha \in \Lambda} \overline{A_\alpha} \), so that \(\cup_{\alpha \in \Lambda} A_\alpha - \cup_{\alpha \in \Lambda} \overline{A_\alpha} \), then \(\cup_{\alpha \in \Lambda} A_\alpha = \cup_{\alpha \in \Lambda} \overline{A_\alpha} \).

Proposition (3.6): The union of member of \(\theta \)-locally finite \(B_c \)-closed sets is \(B_c \)-closed.

Proof: Let \(\{A_\alpha\}_{\alpha \in \Lambda} \) be a family of \(\theta \)-locally finite \(B_c \)-closed sets. Then \(\cup_{\alpha \in \Lambda} A_\alpha = \cup_{\alpha \in \Lambda} \overline{A_\alpha} = \cup_{\alpha \in \Lambda} A_\alpha \), by theorem (3.4) and hence \(\cup_{\alpha \in \Lambda} A_\alpha \) is \(B_c \)-closed by theorem (1.23).

Theorem (3.7): Let \(\{A_\alpha\}_{\alpha \in \Lambda} \) be a family of \(\theta \)-open subsets of a space \(X \) and let \(\{B_\gamma\}_{\gamma \in \Gamma} \) be an \(\theta \)-locally finite \(B_c \)-closed covering of \(X \) such that for each \(\gamma \in \Gamma \) the set \(\{\alpha \in \Lambda: B_\gamma \cap A_\alpha \neq \phi\} \) is a finite. Then there exists \(\theta \)-locally finite family \(\{G_\alpha\}_{\alpha \in \Lambda} \) of \(B_c \)-open set of \(X \) such that \(A_\alpha \subseteq G_\alpha \) for each \(\alpha \in \Lambda \).

Proof: For each \(\alpha \), let \(G_\alpha = \left((F_\alpha - B_\gamma \cap A_\alpha = \phi)\right)^c \). Clearly \(G_\alpha \subseteq G_\alpha \) and since \(\{B_\gamma\}_{\gamma \in \Gamma} \) is an \(\theta \)-locally finite, it follow that \(G_\alpha \) is \(B_c \)-open by proposition (3.6). Let \(x \) be a point of \(X \), there exists an \(\theta \)-neighborhood \(N \) of \(x \), and a finite subset \(k \) of \(\Gamma \) such that \(N \cap \cap_{\gamma \in \Gamma} F_\gamma = \phi \) if \(\gamma \notin k \). Hence \(\cup_{\gamma \in \Gamma} F_\gamma \). Now \(F_\gamma \cap A_\alpha \neq \phi \) iff \(F_\gamma \cap A_\alpha \neq \phi \). For each \(\alpha \) in \(k \) the set \(\{\alpha \in \Lambda: F_\gamma \cap A_\alpha \neq \phi\} \) is a finite. Hence \(\{\alpha \in \Lambda: N \cap \cap A_\alpha = \phi\} \) is a finite.

Lemma(3.8): If every \(\theta \)-open cover of a topological space \(X \) has an \(\theta \)-locally finite \(B_c \)-closed refinement, then every \(\theta \)-open cover of \(X \) has a \(\theta \)-locally finite \(B_c \)-closed refinement.

Proof: Let \(U \) be a \(\theta \)-open cover of \(X \), and \(A = \{A_s: s \in S\} \) an \(\theta \)-locally finite of \(U \) and for each \(x \in X \) choose an \(\theta \)-neighborhood \(V_x \) of \(x \) which meets only finitely many members of \(A \). Let \(F \) be an \(\theta \)-locally finite \(B_c \)-closed refinement of the \(\theta \)-open cover \(\{V_x: x \in X\} \) and for each \(s \in S \), let \(V_s = ((F \cap \cap A_s) \cup F) \). Then \(V_s \) is a \(B_c \)-open and contain \(A_s \), for each \(s \in S \) and \(F \in F \), we have \(V_s \cap F \neq \phi \) iff \(A_s \cap F \neq \phi \). For each \(s \in S \) take a \(U_s \in U \) such that \(A_s \subseteq U_s \) and let \(V_s = W_s \cap U_s \). The family \(\{V_s\}_{s \in S} \) is a \(B_c \)-open refinement of \(U \). Since for each \(x \in X \) has an \(\theta \)-neighborhood such that meets only finitely many members of \(F \) and every members of \(F \) meets only finitely many members of \(A \). Therefore, \(\{V_s\}_{s \in S} \) is an \(\theta \)-locally finite \(B_c \)-closed refinement of \(U \).

Theorem(3.9): If every \(\theta \)-open covering of a space \(X \) has an \(\theta \)-locally finite \(B_c \)-closed refinement, then \(X \) is \(B_c \)-normal space.

Proof: Let \(X \) be a topological space such that each \(\theta \)-open covering of \(X \) which has an \(\theta \)-locally finite \(B_c \)-closed refinement and let \(A \), \(B \) be a disjoint \(\theta \)-open set of \(X \). The \(\theta \)-open covering \(\{A^c, B^c\} \) of \(X \) has an \(\theta \)-locally finite \(B_c \)-closed refinement \(W \). Let \(E \) be the union of the members of \(W \) disjoint from \(A \) and let \(S \) be the union of the members of \(W \) disjoint from \(B \). Then \(E \) and \(S \) are \(B_c \)-closed sets and \(E \cap W = \phi \). Thus if \(G = (E)^c \) and \(U = (S)^c \), then \(G, U \) are disjoint \(B_c \)-open sets such that \(A \subseteq G \), \(B \subseteq U \). Hence \(X \) is \(B_c \)-normal space.

Definition (3.10): A topological space \(X \) is said to be \(B_c \)-paracompact if every \(\theta \)-open covering of \(X \) has an \(\theta \)-locally finite \(B_c \)-open refinement.

Proposition (3.11): Let \(X \) be a \(B_c \)-paracompact space, let \(A \) be an \(\theta \)-open subset of \(X \) and let \(B \) be an \(\theta \)-closed set of \(X \) which is disjoint from \(A \). If for every \(x \in B \) there exist \(\theta \)-open sets \(U_x \) such that \(A \subseteq U_x \), \(\cap V \subseteq \phi \) and \(\cup V = \phi \).

Proof: Let \(X \) be a \(B_c \)-paracompact space, let \(A \) be an \(\theta \)-open subset of \(X \) and let \(B \) be an \(\theta \)-closed set of \(X \) which is disjoint from \(A \). If \(x \in B \) there exist \(\theta \)-open sets \(U_x \) such that \(A \subseteq U_x \), \(\cap V \subseteq \phi \) and \(\cup V = \phi \).

Proof: If \(X \) is a \(B_c \)-paracompact \(\theta \)T2 space, then \(X \) is \(B_c \)-regular.

Theorem (3.13): Let \(X \) be a topological space. If each \(\theta \)-open covering of \(X \) has an \(\theta \)-locally finite \(B_c \)-closed refinement, then \(X \) is \(B_c \)-paracompact \(B_c \)-normal Space.

Proof: Let \(U \) be an \(\theta \)-open covering of \(X \) and let \(\{A_\alpha\}_{\alpha \in \Lambda} \) be an \(\theta \)-locally finite \(B_c \)-closed refinement of \(X \). Since \(\{A_\alpha\}_{\alpha \in \Lambda} \) is an \(\theta \)-locally finite, for each point \(x \) of \(X \) has an \(\theta \)-neighborhood \(G_x \) such that \(\{\alpha \in \Lambda: G_x \cap A_\alpha = \phi\} \) is a finite. If \(\{B_\gamma\}_{\gamma \in \Gamma} \) is an \(\theta \)-locally finite \(B_c \)-closed refinement of the \(\theta \)-open covering \(\{G_\gamma\}_{\gamma \in \Gamma} \) of \(X \), then for each \(\gamma \in \Gamma \) the set \(\{\alpha \in \Lambda: B_\gamma \cap A_\alpha = \phi\} \) is a finite. It follows from theorem (3.9), that there exist an \(\theta \)-locally finite family \(\{V_\alpha\}_{\alpha \in \Lambda} \) of \(\theta \)-open sets such that \(A_\alpha \subseteq V_\alpha \) for each \(\alpha \). Let \(V_\alpha \) be a member of \(U \) such that \(A_\alpha \subseteq V_\alpha \) for each \(\alpha \in \Lambda \).
Then \((V_a \cap U_a)_{a \in A}\) is an 0-locally finite Bc-open refinement of \(X\). Thus \(X\) is Bc-paracompact, so that \(X\) is Bc-normal space by theorem(3.9).

Theorem(3.14):

Bc*-regular space is Bc-paracompact Bc-normal if and only if each \(0\)-open covering has an 0-locally finite Bc-closed refinement.

Proof:

Suppose that \(X\) is Bc-paracompact Bc-normal space and let \((A_\alpha)_{\alpha \in A}\) be an \(0\)-open covering of \(X\). Since \(X\) is Bc*-regular, there exists an \(0\)-open set \(V_\alpha\) such that \(x \in V_\alpha \subseteq \overline{U}^{bc}_{\alpha} \subseteq A_\alpha\) for some \(\alpha\). The family \((A_\alpha; x \in X)\) is an \(0\)-open cover of \(X\) and since \(X\) is Bc-paracompact, then there exists an 0-locally finite Bc-open refinement \(W = \{W_\beta^bc: x \in X\}\) of \((A_\alpha; x \in X)\). Hence \(\overline{W}^{bc}_{x} \subseteq \overline{W}^{bc}_{\alpha} \subseteq A_\alpha\). Then \(\{W_\beta^bc: x \in X\}\) is an 0-locally finite Bc-open refinement of \((A_\alpha)_{\alpha \in A}\). Conversely , from theorem(3.13).

Theorem(3.15):

Let \(X\) be any Bc*-regular space , the following condition are equivalent:
1) \(X\) is Bc-paracompact.
2) Every \(0\)-open cover of \(X\) has an 0-locally finite refinement.
3) Every \(0\)-open cover of \(X\) has a Bc-closed 0-locally finite refinement.

Proof:

1→2
Let \(X\) be a Bc-paracompact , then every \(0\)-open cover of \(X\) has an 0-locally finite refinement.

2→3
Let \(U\) be an \(0\)-open covering of \(X\). Since \(X\) is Bc*-regular, there exists an \(0\)-open set \(V_x\) such that \(x \in V_x \subseteq \overline{U}^{bc}_{x} \subseteq U_x\). The family \(V = \{V_x: x \in X\}\) is an \(0\)-open cover of \(X\), by (2) \(V\) has an \(0\)-locally finite refinement. Hence \(\{\overline{V}^{bc}_{x}: x \in X\}\) is an 0-locally finite Bc-open refinement of \(U\).

3→1
By lemma(3.14).

Lemma(3.16):

Let \(X\) be any Bc*-regular Bc-paracompact space. Then every Bc- open cover \(\{G_s: s \in S\}\) has an 0-locally finite Bc-open refinement \(\{U_s: s \in S\}\) such that \(\overline{U}^{bc}_{s} \subseteq G_s\) for each \(s \in S\).

Proof:

Let \(\{G_s: s \in S\}\) be any Bc-open cover of \(X\). For \(x \in X\), \(x \in G_s\), for some \(s \in S\) and since \(X\) is Bc*-regular, hence by proposition(1.36), there exists an \(0\)-open cover \(W = \{W_s: x \in X\}\) and \(\overline{W}^{bc}_{s} \subseteq G_s\). Since \(X\) is Bc-paracompact, then \(W\) has an 0-locally finite Bc-open refinement \(\{A_h: h \in H\}\) for each \(h \in H\) choose \(s(h) \in S\) such that \(A_{s(h)}^{bc} \subseteq G_{s(h)}\) and let \(U_s = \{A_{s(h)}: s(h) \in H\}\). Since \(\bigcup_{h \in H} A_{s(h)} \subseteq \overline{W}^{bc}_{s} = \bigcup_{s(h) \in H} A_{s(h)}^{bc} \subseteq G_s\), then \(\{U_s: s \in S\}\) is an 0-locally finite Bc-open refinement of \(\{G_s: s \in S\}\) such that \(\overline{U}^{bc}_{s} \subseteq G_s\) for each \(s \in S\).

Definition(3.17):

Let \(X\) be a topological space and \(\subseteq X\). \(A\) is said to be Bc-dense set if \(A^{bc} = X\).

Definition(3.18):

A topological space \(X\) is said to be Bc-Lindelof if every Bc-open cover of \(X\) has a countable sub cover.

Theorem(3.19):

Let \(X\) be any Bc*-regular Bc-paracompact space such that there exists an 0-open Bc-dense Bc-Lindelof set \(A\), then \(X\) is a Bc-Lindelof.

Proof:

Let \(U = \{U_s: s \in S\}\) be any Bc-open cover of \(X\). For each \(x \in X\), \(x \in U_s\), for some \(s \in S\). By lemma(3.16), there exists a Bc-0 locally finite Bc-dense Bc-Lindelof set \(\{A_s: s \in S\}\) such that \(\overline{A_s^{bc}} \subseteq U_s\) for each \(s \in S\). Then \(\bigcup_{s \in S} A_s\) is Bc-open cover of \(A\), by proposition(1.13). Since \(A\) is Bc-Lindelof, there exists a countable sub cover \(S_a \subseteq S\) such that \(A = \bigcup_{s \in S_a} A_s\). So \(X = A^{bc} = \bigcup_{s \in S_a} \overline{A_s^{bc}} = \bigcup_{s \in S_a} \overline{A_s^{bc}} \subseteq \bigcup_{s \in S_a} U_s\), hence \(X\) is Bc-Lindelof.

Lemma(3.20):

If \(U\) is an \(0\)-open covering of a topological space product \(X \times Y\) of a Bc-paracompact space \(X\) and an \(0\)-compact space and let \(U\) has a refinement of the form \(\{V_{a,i} \times G_{a,i}: i = 1, \ldots, n_a\}\), where \(V_{a,i} : a \in A\) is an \(0\)-locally finite Bc-open covering of \(X\), and for each \(a_i\), \(G_{a,i} = G_{a,i}: i = 1, \ldots, n_a\) is a finite \(0\)-open covering of \(Y\).

Proof:

Let \(x\) be a point of \(X\). Since \(Y\) is an \(0\)-compact there exists an \(0\)-open neighborhood \(W_{x}\) of \(x\) and a finite \(0\)-open covering \(\{V_{a,i}\}_{a \in A}\) of \(Y\) such that \(W_{x} \times V_{a,i} \subseteq U_{s}\) for each \(s \in S\). Then \(\{V_{a,i}\}_{a \in A}\) is an \(0\)-locally finite Bc-open refinement of \(W_{x}\) of the Bc-paracompact space \(X\). For \(x \in A\), choose \(x \in X\) such that \(V_{a,i} \subseteq W_{x}\) and let \(G_{x,a} = \{G_{a,i}: i = 1, \ldots, n_a\}\). Then \(\{G_{x,a}\}\) is a Bc-open refinement of \(U\).

Proposition(3.21):

The product of a Bc-paracompact space and an \(0\)-compact space is a Bc-paracompact space.

Proof:

Let \(X\) be a Bc-paracompact space and \(Y\) be an \(0\)-compact space and let \(U\) be an \(0\)-open covering of the topological product \(X \times Y\). Then by lemma(3.20) \(U\) has a Bc-open refinement of the form \(\{V_{a,i} \times G_{a,i}: i = 1, \ldots, n_a\}\), where \(V_{a,i} : a \in A\) is an \(0\)-locally finite Bc-open refinement and \(G_{a,i} = G_{a,i}: i = 1, \ldots, n_a\) is a finite \(0\)-open covering for \(Y\) and \(a_i \in A\). Therefore, \(X \times Y\) is a Bc-paracompact space.

Definition(3.22):

A space \(X\) is said to be nearly Bc-paracompact space if each \(0\)-regular open covering of \(X\) has a \(0\)-locally finite Bc-open refinement.
Lemma (3.23): Let X be any almost Bc*-regular nearly Bc-paracompact space. Then every Bc-regular open cover $\{G_s : s \in S\}$ has an θ-locally finite Bc-regular open refinement $\{V_s : s \in S\}$ such that $V_s \subseteq G_s$ for each $s \in S$.

Proof: Let $\{G_s : s \in S\}$ be any Bc-regular open cover of X. For $x \in X, x \in G_s$, for some $s \in S$ and since X is almost Bc*-regular, hence by proposition (2.10), there exists an θ-regular open cover $W = \{W_x : x \in X\}$ and $W_s^{BC} \subseteq G_s$. Since X is nearly Bc-paracompact, then W has an θ-locally finite Bc-open refinement $\{A_h : h \in H\}$ for each $h \in H$ choose $s(h) \in S$ such that $A_{s(h)}^{BC} \subseteq G_{s(h)}$, and let $U_s = \bigcup_{s(h)=s} A_h$. Since $\bigcup_{s(h)=s} A_h \subseteq \bigcup_{s(h)=s} A_{s(h)}^{BC} = \bigcup_{s(h)=s} A_h^{BC} \subseteq G_s$, then $U_s \subseteq \bigcup_{s(h)=s} A_h^{BC} \subseteq G_s$. Hence $U_s \subseteq \bigcup_{s(h)=s} A_h^{BC} \subseteq G_s$. Let $V_s = U_s^{BC}$, then $\{V_s : s \in S\}$ is an θ-locally finite Bc-regular open refinement of $\{G_s : s \in S\}$ such that $V_s^{BC} \subseteq G_s$ for each $s \in S$.

Theorem (3.24): For any space X, the following are equivalent:
1) X is nearly Bc-paracompact.
2) Every θ-regular open cover of X has a Bc-regular open θ-locally finite refinement.
3) Every θ-regular open cover of X has a Bc-regular closed θ-locally finite refinement.

Proof: 1\Rightarrow2
Let U be any θ-regular open cover of X, then U has an θ-locally finite Bc-open refinement V. Consider the family $W = \{V^{BC} : V \in \mathcal{V}\}$ is an θ-locally finite Bc-regular open refinement of U.

2\Rightarrow3
It is clear since every Bc-regular open set is Bc-regular closed set.

3\Rightarrow1
From lemma (3.8).

References