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Abstract: The present investigation was carried out on Chamera - I reservoir located in Chamba district of Himachal Pradesh from 
January, 2010 to Feburary, 2012 to study temporal changes in physico-chemical factors. Water quality samples were subjected to various 
chemometric methods like cluster analysis (CA), Principal Component analysis (PCA) and correlation (r) & regression analysis (RA) 
that identified and related most significant water quality parameters (WQPs). A dendrogram from the cluster analysis showed 2 major 
clusters separating rainy season from the other three seasons on temporal scale in the study area. PCA selected 3 variables accounting 
for 100% of total variance for water quality on temporal scale. The correlation coefficient r ranged from ± 0.9 to 1.0. The obtained 
correlation values were then subjected to regression analysis suggesting significant linear relationship between various WQPs. 
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1. Introduction  
 
Lotic systems are the most important inland water resources 
for various human needs. Due to this water quality has 
become one of the major environmental concerns worldwide 
as it is influenced by natural and anthropogenic disturbances 
[18]. In recent years, surface water quality has become a 
matter of serious concern as it is directly linked with human 
well being. Due to this, freshwater reservoirs are also 
impacted by several inputs from the surroundings [11]. The 
reservoirs have important use in irrigation, hydroelectric 
generation and drinking purpose. Therefore it has become 
crucial to establish monitoring programs to draft suitable 
measures for reduction of hazardous substances in aquatic 
ecosystems that endangers the biota and human life [23]. For 
reducing the complexity of large water quality data 
multivariate statistical analysis of water quality parameters 
(WQPs) should be conducted. These chemometric methods 
like Correlation analysis, Regression analysis, Factor 
analysis/Principal Component Analysis (FA/PCA) and 
cluster analysis (CA) are useful for reducing the clutter of 
large datasets and obtain meaningful results [3], [22], [17], 
[12], [19], [21], [9].  
 
In recent years, many studies related to these methods have 
been carried out. For instance, multivariate statistical 
methods, such as PCA/FA and CA were used [16] to identify 
the sources of water pollution of Alqueva’s reservoir, 
Portugal. By using three multivariate techniques FA, PCA, 
and DA spatial and temporal changes in the Suquia River 
were reported in Argentina [22]. Similarly, FA, PCA and DA 
techniques were used [12], [13] to study the water quality and 
apportionment of pollution sources of Gomti river (India). 
Further, multivariate methods, like CA, DA and PCA/FA 
were used [20] to analyze the water quality dataset of 

Mekong river and Fuji river basin from 1995-2002 to obtain 
temporal and spatial variations and to identify potential 
pollution sources. In 2013, [14] correlation and regression 
analysis was applied in assessing ground water quality and 
found out that EC and TDS have high correlation with most 
of the parameters throughout different seasons. Then they 
recommended treatment of tube well water for drinking 
purposes. Also, [6] correlation coefficient values were used 
to select proper treatments to minimize the contaminations of 
Ganga river water in Haridwar. 
 

 
Figure 1: Google earth map showing Chamera I reservoir 

 
The Chamera I reservoir (32036’65” N 75059’70”E) is 
located on the Ravi river and supports the hydroelectricity 
project in the region formed by Chamera-I Dam. It is located 
near the town of Dalhousie in the Chamba district in the state 
of Himachal Pradesh in India. The reservoir of the dam is the 
Chamera Lake. The reservoir behind the dam extends to 18 
km upstream of river Ravi and 11 km along the river Siul 
also. The surface area of the reservoir is approximately 9.5 
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sq. km. Ravi river has a total catchment area of 5,451 sq. km 
and 154 sq. km in Himachal Pradesh. This basin lies between 
the Pir Panjal and Dhauladhar ranges of Himalayas [10]. 
 
The present study was aimed to investigate the physico-
chemical changes in water quality of Chamera I reservoir 
during the years 2010-2012. By using various multivariate 
data reduction techniques like PCA/FA, CA, RA we can 
determine the differences and similarities between 
monitoring periods and also establish the role of significant 
WQPs that influence the temporal variations in water quality 
of the reservoir. 
 
2. Methods 
 
Water samples for four seasons (summer, rainy, winter and 
spring) were collected over a 24 month period. Grab samples 
were collected in pre-treated and labelled plastic bottles and 
were immediately preserved and analyzed following standard 
protocols given in APHA/ AWWA/WEF [2]. All water 
samples were stored in insulated cooler containing cool packs 
at 4°C until processing and analysis. Portable water analyzer 
Kit (WTW Multy 340ii/ SET) was used to measure four 
water quality parameters on site and these were pH, water 
temperature (WT), dissolved oxygen (DO) and electrical 
conductivity (EC). Biochemical Oxygen Demand (BOD) was 
calculated using Oxitop measuring system for five days at 
20oC in a thermostat (TS 606-G/2-i). Alkalinity (AK), 
Acidity (AD), Total Hardness (TH), Calcium (Ca), 
Magnesium (Mg), Free CO2 (CO2) Chlorides (Cl), Total 
Solids (TS), Total Dissolved Solids (TDS) and Total 
Suspended Solids (TDS) were calculated using standard 
methods recommended in manual of APHA/AWWA/WEF 
(2005). Chemical Oxygen Demand (COD), Ammonia (NH4-
N), Total Phosphate (ƩP), and heavy metals - Lead (Pb), 
Maganese (Mn), Nickel (Ni), Chromate (Cr) and Cadmium 
(Cd) analysis were measured using Merck cell test kits & 
heavy metal testing kits on UV/VIS spectrophotometer 
(Spectroquant® Pharo 300).  
 
The variables chosen for present study were normally 
distributed as confirmed by Kolmogorov Smirnov (Ke-S) 
statistics. Correlation matrix (Pearson’s r) was constructed 
using the mean values (seasons) of studied parameters using 
STATISTICA Software. Significant correlated values 
between different parameters were further tested for linear 
regression. The water quality data sets, standardized through 
z scale transformation (23 variables) were subjected to three 
multivariate techniques: cluster analysis (CA), principal 
component analysis/ factor analysis (PCA/FA) and regression 
analysis (RA). All statistical tests and computations were 
performed using the SPSS statistical software (Version 
16.00) and STATISTICA 12.  
 
Pearson correlation (r) matrix was applied to all samples for 
different seasons for identifying the possible statistical 
relationship between different WQPs. Only values from ± 0.9 
to 1 were taken from Pearson’s correlation to find regression 
equation between different parameters with their P and F 
values. RA was carried out in order to know the nature and 
magnitude of the relationship among various 
physicochemical parameters. 
 

PCA/FA was executed on the mean values of seasonal data 
sets (23 variables) to identify the factors influencing the 
water quality and to evaluate the significant differences 
among the sampling seasons [20]. PCA/FA technique was 
used to transform the original and interrelated water quality 
variables into uncorrelated and fewer variables called 
Principal Components (PCs) for extracting the useful 
information [22],[20]. After that less significant PCs 
(eigenvalues less than 1) were eliminated through varimax 
rotation of the axis defined by PCA. For better interpretation 
of results a new group of variables were obtained known as 
Varifactors (VFs). Varifactor loadings were classified as 
>0.75, 0.75-0.50 0.50-0.30 respectively as strong, moderate 
and weak [5]. 
 
Cluster analysis was applied to the water quality data sets 
obtained for two year period in order to group the similar 
sampling seasons (temporal variability). In this study, 
Hierarchical agglomerative CA on normalized seasonal mean 
data using Bray Curtis (similarity or dissimilarity) and 
Ward’s method (distance) with squared Euclidean distances 
was performed. A dendrogram was generated that showed 
clustering processes on basis of proximity of objects [22], 
[17], [12], [13], [20]. 
 
3. Results  
 
Table 1: Water quality characteristics of Chamera-I reservoir 

Variable Mean± S.E. Limit PL (BIS*) (MPL)
WT 7.97±1.95 3.90 - 13.25 - - 
pH 8.00 ±0.94 6.47 - 10.67 6.5-8.5  

BOD 18.29±5.64 5.17 -32.33 - - 
DO 9.31±2.51 4.40 - 13.74 - - 

COD 17.53±14.16 0.93 - 59.67 - - 
EC 181.83±9.71 160.83 - 03.17 - - 
TS 215.42±25.74 171.67-290.00 - - 

TDS 91.67±20.92 45.00 - 140.00 500 2000 
TSS 122.50±17.62 85.00 - 155.00 - - 
CO2 20.53±3.82 9.53 - 26.40 - - 
AK 50.42±13.32 20.00 - 85.00 200 600 
AD 25.83±6.68 10.83 -43.33 - - 
Cl 20.83±5.87 8.99 - 36.92 250 1000 
TH 49.00±15.17 26.00 - 93.67 300 600 
Ca 10.49±3.01 6.41 - 19.24 75 200 
Mg 5.57±2.00 2.27 - 11.13 30 - 
Ni 0.16±0.08 0.02 - 0.37 - - 

NH4 0.19±0.19 0.00 - 0.75 - - 
Pb 0.24±0.12 0.10 - 0.60 0.05 - 
Cd 0.16±0.05 0.06 - 0.28 0.01 - 
Cr 0.13±0.03 0.07 - 0.22 - - 
Mn 0.39±0.13 0.05 - 0.63 0.1 0.3 
∑P 0.23±0.17 0.03 - 0.75 - - 

 
Note: BIS (Bureau of Indian Standards); PL- Permissible 
Limit; MPL-Maximum Permissible Limit; All parameters 
were measured in mg/l except WT-0C; pH- pH; EC- μS/cm;  
 
Table 1 represents summary of mean ± S.E. values, limits and 
range of 23 physicochemical WQPs of Chamera I reservoir 
studied for four seasons (summer, winter, spring and rainy) 
over a period of two years. The average concentration of 
heavy metals like Pb, Cd and Mn were higher than the 
recommended permissible limits of drinking water stated 
under Bureau of Indian Standards [4]. This is due to leaching 
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Figure 3: Plots of water quality parameters as a linear regression model (A-N)

 
Note: Average values of the parameters on X and Y axis were taken in mg/l except for pH and EC 
  
Principal Component Analysis 
 
The screen plot was used to identify the number of PCs 
during seasonal sampling of physicochemical parameters. 

The 23 physicochemical parameters were reduced to 3 main 
factors i.e. factor 1, 2 and 3 (Fig. 4). A pronounced change of 
slope was seen after the 3rd eigenvalue as the remaining 20 
factors have eigenvalues of less than one and therefore not 
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considered significant. Loading of three retained PCs are 
shown in table 4. PC1 explains 59.4% of the variance and is 
highly contributed by variables with highest positive factor 
loadings (>0.90) such as WT, pH, TS, TDS, AK, AD, Cl, TH, 
Ca, Mg, Ni and Pb whereas DO and Mn has strong negative 
loadings. High positive loadings indicated strong linear 
correlation between the factors and water quality parameters. 
PC2 explains 21.5% of the variance and includes COD, EC 
and Cr. PC3 explains 19.1% of variance contributed to it by 
CO2, NH4-N and Cd. These high values are indicative of 
high agricultural runoff and erosion from surrounding hills. 
 
A rotation of PCs can achieve a simpler and more meaningful 
representation of the underlying factors by decreasing 
contributions to PCs by variables with minor significance and 
increasing the more significant ones. Although rotation does 
not affect the goodness of fitting of principal components 
solution, the variance explained by each factor is modified 
[9]. A varimax rotation of principal components to rotated 
PCs (called henceforth varifactors) is presented in (Table 4). 
Therefore 3 varifactors (VF) were extracted, explaining 
100% of the variance in data sets. It must be noted that 
rotation were resulted in an increase in the number of factors 
necessary to explain the same amount of variance in the 
original data set. Therefore, the VF1 (51.4%) explained less 
variance than shown before rotation. Similar conclusions 
were explained on spatial and temporal variation in water 
quality of Jajrood River [9]. VF1 showed high positive scores 
on pH, TS, TDS, Cl, TH, Ca, Mg, Ni and Pb with DO, Cd 
and Mn having negative load. VF2, showed 24.4% of the 
total variance which showed high negative loading of BOD, 
COD and Cr with only TSS showing strong positive loading. 
The increased level of BOD and COD is due to 
anthropogenic interference from the surroundings [7],[20]. 
VF3 (24.1% of variance) has a high and positive load of CO2 
whereas only ƩP has strong negative load.  
 

 
Figure 4: Scree plot of eigen values showing temporal 

variations 
 

 
 
 
 
 
 

Table 4: Loadings of temporal water quality variables on 
principal and rotated components 

 Principal Components Rotated Components 
 PC1 PC2 PC3 VF1 VF2 VF3 

WT .942 -.015 .334 .701 .385 .600 
pH .991 .131 -.010 .911 .163 .380 

BOD -.656 .724 -.214 -.392 -.912 -.123
DO -.786 -.605 .127 -.844 .362 -.395

COD -.214 .954 -.208 .034 -.992 .122 
EC .515 .780 -.354 .723 -.668 .177 
TS .988 -.043 .145 .818 .368 .443 

TDS .843 .377 -.384 .971 -.216 .105 
TSS .454 -.581 .676 .038 .862 .505 
CO2 .225 .514 .828 -.073 -.153 .985 
AK .932 .120 .342 .708 .262 .656 
AD .935 .089 .344 .704 .292 .647 
Cl .925 .066 -.373 .995 .094 .021 
TH .979 -.163 -.120 .904 .395 .166 
Ca .953 -.270 -.138 .872 .478 .100 
Mg .991 -.085 -.106 .919 .331 .213 
Ni .945 .326 -.020 .902 -.031 .431 

NH4-N -.370 -.314 .874 -.745 .442 .500 
Pb .960 -.272 -.069 .849 .503 .161 
Cd -.649 .080 .756 -.889 -.032 .458 
Cr -.411 .910 .051 -.258 -.930 .260 
Mn -.756 .545 .363 -.751 -.604 .266 
P -.532 -.449 -.718 -.238 .039 -.970

Eigen Value 14.26 5.16 4.58 12.35 5.86 5.79 
%Total Variance 59.40 21.5 19.1 51.5 24.4 24.1 

Cumulative % 59.40 80.9 100.0 51.5 75.9 100.0
 
4. Conclusion 
 
The present study assessed the temporal variability and water 
quality using multivariate statistics in the Chamera-I reservoir 
in Himachal Pradesh. All sampled parameters were within 
permissible limits of BIS. These parameters also showed a 
trend in seasonal variation. The higher concentration of heavy 
metals like Pb, Cd and Mn in the surface water can be 
attributed to discharge of domestic wastes from catchment 
area and due to natural erosion of mineral & soil deposits 
from the surrounding hills. A systematic correlation and 
regression in this study showed that there is a significant 
linear relationship between different pairs of water quality 
parameters which can be used to determine the water quality. 
It can be concluded that Ni and TS are the most important 
WQPs as they are correlated with most of the variables. 
Results of regression analysis also showed that during rainy 
season, runoff increases the concentration of most inorganic 
parameters. Hierarchical cluster analysis grouped the 
sampling seasons into 2 seasons suggesting inorganic runoff 
from the surrounding hills. The results from PCA also 
suggested that most variations in water quality are due to 
natural soluble salts and domestic sewage.  
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