Antioxidant Activity, Total Phenolic, Flavonoid and Tannin Contents of Callus and Seeds Extracts of Fenugreek (Trigonella foenum-graecum L.)

Ammar M. A. Ali¹, Mawahib E. M. ElNour²

¹,²Department of Biology and Biotechnology, Faculty of Science and Technology, AL Neelain University, Sudan

Abstract: The research aimed to study antioxidant activity, total phenolic, flavonoid and tannin contents of methanolic extracts of callus and seeds and petroleum ether extract of seeds of fenugreek (Trigonella foenum-graecum). Callus was induced from hypocotyls and cotyledons explants in MS medium supplemented with combination of 2 mg/l of different auxin (2, 4-D or NAA) + 0.5 mg/l Kinetin. Free radical scavenging activity was evaluated by DPPH method. The highest scavenging activity was obtained from cotyledons derived callus (91.5±0.16%) followed by hypocotyls derived callus (85.46±0.29%) and methanolic extract of seeds (80.53±0.01%). Petroleum ether extract of seeds demonstrated weak antioxidant activity with inhibition percentage 24.56±0.12%. Significant differences (p<0.05) were detected among different antioxidant potentials of T. foenum-graecum callus and seeds extracts. IC₅₀ values of DPPH scavenging capacity of methanolic extracts were evaluated in descending order, plant seeds (1.1185mg/g)>hypocotyls derived callus (0.7159mg/g)>cotyledons derived callus (0.4914mg/g)> ascorbic acid (0.1874mg/g). A lower value of IC₅₀ indicates a higher antioxidant activity. Highest phenolic content were observed in callus of cotyledons (412.087 mg/l), compared to callus of hypocotyls (211.1937 mg/l) and methanolic extract of seeds (124.84 mg/l) calculated as mg/l gallic acid equivalent of phenols. Methanolic extract of seeds showed highest level of flavonoid content (424.951 mg/l), compared to callus of cotyledons (217.285 mg/l) and callus of hypocotyls (95.92 mg/l) calculated as mg/l quercetin equivalent of flavonoids. Tannins content were detected only in methanolic extract of seeds (116.259 mg/l) calculated as tannic acid equivalent of tannins.

Keywords: Trigonella foenum-graecum L., Flavonoids and phenolic compounds, Antioxidant activity, Callus

1. Introduction

Fenugreek (Trigonella foenum-graecum L.) belongs to family Fabaceae (Leguminosae). It is annual crop mainly grown for use as a spice in many parts of the world [1]. Herbs and spices have been extensively used as food additives for natural antioxidants. Spices and aromatic herbs are considered to be essential in diets or medical therapies for delaying aging and biological tissue deterioration [2]. T. foenum-graecum leaves and seeds have been used extensively to prepare extracts and powders for medicinal uses [3]. The medicinal value of plants lies in some chemicals active substances that produce a definite physiological action on the human body [4]. Secondary metabolites produced in plants are low molecular weight natural products [5]. Flavonoids and phenolic compounds are widely distributed in plants that have been reported to exert multiple biological effects including antioxidant, free radical scavenging, anti-inflammatory, and anticarcinogenic [6]. T. foenum-graecum categorized as one of Asian vegetables which contain high phenolic contents with very high antioxidant activity [7]. Plant cell cultures are an attractive alternative source to whole plant for the production of high value secondary metabolites [8];[9]. In vitro propagated callus cultures can become an alternative to plants grown in their environment due to the fact that under controlled condition, plant tissue can produce significant amounts of metabolites of interest [10]. However, a considerable progress has been made to stimulate production and accumulation of secondary metabolites using plant cell cultures [11]; [12].

Several strategies have been adopted for the enhancement of bioactive metabolite production in in vitro cultures; one of them is using growth regulators which are often a crucial factor in secondary product accumulation [13]. The type and concentration of auxin or cytokinin or the auxin/cytokinin ratio may alter dramatically both the growth and the product formation in cultured plant cells [14]. Therefore, it is of great interest to evaluate the antioxidant activity and poly phenolic compounds of T.foenum graecum callus and seeds. It has been mentioned that the antioxidant activity of plants might be due to their phenolic compounds [15].

2. Materials and Methods

2.1 Plant Materials

The mature seeds of T. foenum-graecum were purchased from local market of Khartoum city, Sudan

2.2 Seeds Surface Sterilization and Germination

Seeds of T. foenum-graecum were surface sterilized in 70% ethanol for 30 sec with hand shaking and rinsed 3 times in sterile distilled water to remove trace of alcohol, then seeds were soaked in 20% Clorox (0.5% free chlorine) with two drops of Tween-20 for 15 minute, and rinsed 3-5 times in sterile distilled water. After surface sterilization, the seeds were directly cultured in the germination basal medium MS [16] at 25±2°C and photoperiod of 16 hrs light and 8 hrs dark for 10 days.
2.3 Callus Induction

The hypocotyls and cotyledons were used as explants of fenugreek (T. foenum-graecum) in this study for callus induction. To induce callus from explants, MS medium was supplemented with 2mg/l of different auxin (2,4-D or NAA) + 0.5 mg/l Kinetin. Each of the sterilized explants were cut into 2-3 mm pieces using sterile scalpel. Four pieces were inoculated in each vial containing sterile culture MS medium with different combinations of growth regulators. The calli were incubated for 6 weeks in 16 hrs light and 8 hrs dark at 25±2°C, and tissues were subculture at three week intervals.

2.4 Preparation of Plant Crude Extract

20 gm of dry T. foenum-graecum seeds were cleaned and ground using a mortar and pestle. The extraction was carried out by soxhlet method. The fine powder was packed tightly in a soxhlet extractor and petroleum ether 200 ml was used as solvent for extraction. The process was carried out for 6 hrs. The fine powder was re-extracted under the same conditions by methanol. The obtained extracts were evaporated by Rot-evaporator under reduced pressure at 60°C to get a dried solid product then stored in dried bottles.

2.5 Preparation of Callus Crude Extracts

This is done in a fashion similar to that of plant extraction except the callus was dried at first by freeze drying using Freeze dryer and then powdered and extracted with two different solvents, petroleum ether and methanol in soxhlet apparatus.

2.6 Antioxidant Activity

2.6.1 Thin Layer Chromatography (TLC) Analysis Antioxidant Constituents:
The antioxidant constituents were analysed using thin layer chromatography (TLC) followed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) technique [17]. The plates were developed in Ethyl acetate: Formic acid: Water (100:11:11:26, v/v/v/v) [18], then the surface of developed TLC plates were sprayed with 0.05% of DPPH solution in methanol. The active antioxidant constituents of the extracts were detected as yellow spots produced via reduction of DPPH by resolved bands against purple back ground on the TLC plates.

2.6.2 DPPH Free Radical Scavenging Activity:
The antioxidant activity of the seeds or callus extracts and the standard (Ascorbic acid) were assessed based on the inhibition of the radical scavenging effect of the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical activity by modified method of Braca et al.,[19].

2.6.3 Quantitative Analaysis of Total phenol, Flavonoid and Tannin Contents of Fenugreek Seeds and Callus Extracts:

Determination of Total Phenolic Content
The total phenolic content was estimated according to the method of Wolfe et al.,[20]. Total phenolic content was calculated and expressed as mg/l Gallic acid equivalent of phenols.

Determination of Total Flavonoid Content
Total flavonoid content was determined by the aluminum chloride colorimetric method of Singleton and Rossi [21]. Total flavonoid content was expressed as mg/l quercetin equivalents of flavonoid.

Determination of Total Tannin Content
The tannin contents were determined by using Fecl3 and gelatin test of Shivakumar et al.,[22]. Total tannin contents were calculated as mg/l tannic acid equivalents of tannin.

2.6.6 Statistical Analysis
Data were analysed by SPSS statistical package software [23]. The results are presented as mean ± standard error of three replicates, and analyzed with Duncan LSD.

3. Results and Discussion

3.1 Antioxidant Activity

3.1.1 Screening of Antioxidant Constituents of Fenugreek Seeds and Callus using Thin Layer Chromatography

Thin layer chromatography (TLC) was performed as a preliminary screening process to get an idea about the antioxidant potentiality of different extracts from T. foenum graecum seeds and hypocotyls and cotyledons callus. TLC plates were developed in Ethyl acetate: Formic acid: Acetic acid: Water (100:11:11:26, v/v/v/v) to separate the various constituents of the extracts. The Plates were sprayed with 0.05% 1,1-Diphenyl-2-picrylhydrazyl(DPPH) reagent.

Purple colour of DPPH reagent was bleached by yellow spots which was the indication of positive antioxidant activity. Results provided a clear indication of the presence of free radical scavenging compounds in the methanolic and petroleum ether extracts of T.foenum graecum seeds as well as methanolic extracts of hypocotyls and cotyledons derived callus. All extracts displayed antioxidant spots with variable polarities indicative of their different chemical nature. Both callus extracts revealed more antioxidant spots than extracts of plant seeds. The petroleum ether extract of plant seeds exhibited non-polar antioxidant spot whereas, that of methanolic extract of seeds showed less polar antioxidant ones. However, methanolic extracts of callus hypocotyls and cotyledons displayed polar and less polar types of compounds suggesting that callus extracts constitute different types of antioxidant agents. Less polar solvents are particular useful for the extraction of less polar flavonoid aglycones such as flavanone, dihydroflavonole, flavones and flavonols, which are highly methylated while the more polar plant metabolites are generally, isolated from plant materials by extraction with polar solvents like ethyl acetate and alcohol[24].
3.1.2 DPPH Free Radical Scavenging Activity:
The methanolic and petroleum ether extracts of T. foenum-graecum seeds and methanolic extracts of callus derived of hypocotyls and cotyledons segments were evaluated for their in vitro antioxidant activity using DPPH method and compared with standard ascorbic acid. Percentage inhibition of DPPH free radical scavenging activity of the tested extracts were concentration dependent. Maximum antioxidant effect was observed in highest concentration (2mg/ml) of all tested samples. Significant differences (p<0.05) were detected among different antioxidant potential of T. foenum-graecum callus and plant seeds extracts. The highest scavenging activity was obtained from the methanolic extract of cotyledons derived callus (91.5±0.16%) followed by methanolic extract of hypocotyls derived callus (85.46±0.29%) and methanolic extract of plant seeds (80.53±0.01%). These results suggested that the methanolic extracts contain compounds that are capable of donating hydrogen to a free radical in order to remove odd electron which is responsible for radical's reactivity. However, the petroleum ether extract of seeds demonstrated weak antioxidant activity with inhibition percentage 24.56±0.12%.

The IC50 values were also calculated for extracts of seeds and callus and compared with that of ascorbic acid. A lower value of IC50 indicates a higher antioxidant activity. The IC50 values of DPPH scavenging capacity of methanolic extracts were evaluated in descending order, plant seeds (1.1185 mg/g)> hypocotyls derived callus (0.7159mg/g)> cotyledons derived callus (0.4914mg/g)> ascorbic acid (0.1874mg/g) (Fig.2). Thus, calli cultures derived from T. foenum-graecum were accompanied by an increasing in free radical scavenging activity suggesting that callus formation enhanced the antioxidative secondary metabolites production in T. foenum-graecum. Similar responses were observed for in vitro cultures of Salvia officinalis and Rosmarinus officinalis where callus demonstrated higher antioxidant activity than the mother plant [25].

3.1.3 Total phenol, Flavonoid and Tannin Contents:
Figure (3) represented the total phenolic, flavonoid and tannin contents in methanolic and petroleum ether extracts of seeds and methanolic extracts of callus derived from hypocotyls and cotyledons segments of T. foenum-graecum. The highest phenolic content was observed in methanolic extract of seeds 424.951 mg/l followed by 217.285 mg/l in methanolic extract of cotyledons derived callus and 95.92 mg/l in methanolic extract of hypocotyls derived callus. The amounts of flavonoid content were calculated as mg/l quercetin equivalent of flavonoids. ALjawfi et al., [28] found in their results the total flavonoid contents in T. foenum-graecum seeds were 4.99 g/100g dry weight. This variation in the phenolic and flavonoid contents may be due to the variety of T. foenum-graecum or the differences in environmental conditions.

Tannin contents were detected only in the plant seeds, where the methanolic extract showed 116.259 mg/l of tannin content calculated as tannic acid equivalent of tannins. Moreover, the antioxidant effect of this valuable medicinal plant is strongly supported by the presence of phenolic compounds like quercetin[29]. However, the higher antioxidant activity of callus tissues observed in this study might be correlated with the increase in their phenolic composition and it was in accordance with previous studies [30]; [31]; [32] whom demonstrated a significant correlation between phenolic composition and antioxidant activity.

Seasotiya et al., [26] reported high value of phenolic contents 186 mg gallic acid/g dry weight in methanolic extracts of T. foenum-graecum seeds, whereas Taj al-deen [27] recorded low value of total phenolic content 128.67 mg/g of dry weight in alcoholic extract of callus derived from hypocotyls of T. foenum-graecum.
Figure 1: DPPH radical-scavenging activity of seeds and callus (hypocotyls and cotyledons) extracts of *T. foenum-graecum*. PE, petroleum ether extract; ME, methanol extract; values represent the mean ± S.E. M. (n= 3).

Figure 2: IC$_{50}$ values of DPPH radical-scavenging activity of seeds and callus (hypocotyls and cotyledons) extracts of *T. foenum-graecum*. PE, petroleum ether extract; ME, methanol extract; IC$_{50}$ values expressed as mg/g.

Figure 3: Total phenol, flavonoid and tannin contents in seeds and callus (hypocotyls and cotyledons) extracts of *T. foenum-graecum*. PE, petroleum ether extract; ME, methanol extract.
4. Conclusion

Methanolic extracts of callus derived from hypocotyls and cotyledons of *T. foenum-graecum* showed higher antioxidant activity than methanolic extracts of seeds. The amount of phenolic contents in methanolic extracts of calli were more, when compared with that of methanolic extracts of *T. foenum-graecum* seeds.

References

