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Abstract: We have examined the location and linear stability of triangular points in photogravitational restricted three body problems, 
bigger primary is an oblate spheroid. We observe that the triangular points L4, L5 form equilateral triangle with the primaries and are 
linearly stable if the mass ratio � is less than the critical mass value �� = �.�������… … …      . 
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1. Introduction 
 
The present work “Location and stability of equilibrium 
points in a Photogravitational restricted three body problem, 
bigger primary is an oblate spheroid” deals with the equation 
of motion and the triangular stability. Here, both the 
primaries are taken as sources of radiation and the bigger 
primary as an oblate spheroid. The perturbations in coriolis 
and centrifugal forces are taken into consideration. 
 
(A) Equations of motion and Location of triangular 
points:- 
The equations of motion of a perturbed photogravitational 
restricted three body problem in bigger primary is an oblate 
spheroid is obtained as: 

 

x� − 2αy� =
∂Ω
∂x
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                                                   ………….(1) 
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and 
q� = 1 − δ�;  0 < δ� < 1  
      
q� = 1 − δ�;  0 < δ� < 1                                                                                                       
……….                                                                                (3) 
α = 1 + ϵ�; |ϵ�| ≪ 1  
β = 1 + ϵ�; |ϵ�| ≪ 1  
and 
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The coordinates of the triangular equilibrium points, upto 
the first order terms in the parameters  ϵ�,   q�, q�and A  are: 
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(B) Stability of triangular points :- 
Differentiating (4), we have 
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Now differentiating (2) partially with respect to x, we get 
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Substituting these values in (9), (10) and (11), we get 
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Using these values, we obtain 
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The characteristic equation for the triangular equilibrium 
points, therefore, takes the form 
λ� + (1 + 8ϵ� − 3ϵ� − 3μA)λ� + ��
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This is a quadratic equation in λ2. The discriminant D of the 
quadratic equation (10) is given by 
D = b� − 4ac 
where      b = 1 + 8ϵ� − 3ϵ� − 3μA 
a = 1 
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In order that λ should be pure imaginary in conjugate pair, λ2 
must be negative quantity. 
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The roots are pure imaginary if  D ≥ 0. 
This inequality may be written as  
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where ϵ is a positive quantity whose limit is zero.  
The equation (11) may be written as 
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Since μ represents the mass which is less than one half, the 
negative sign must be taken. At the limit ϵ =0  
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The critical value of μ is easily obtained as  
μ� = 0.1371742 − 0.0070111δ� − 0.0070111δ�

− 0.02560585A − 0.500480105ϵ�
− 0.2664228ϵ� 

 
Thus, when 0 ≤ μ < μc , D ≥ 0, the values of λ2 given by the 
characteristic equation are negative and all the four roots of 
the characteristic equation are purely imaginary. Thus the 
triangular equilibrium points are stable. Moreover the range 
of stability of triangular equilibrium points decreases on 
account of oblateness and photo gravitational effect of the 
primaries. When oblateness and radiating effects are 
ignored, the critical value reduces to μc = 0.0385209…… 
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