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Abstract: Adaptive equalization techniques compensate for time dispersion introduced by band limited or frequency selective 
communication channel and combat the resulting inter-symbol interference (ISI) effect. When signals are transmitted on broadband 
power-line (BPL) channel, they undergo severe distortions. Typically, adaptive equalizers used in digital communication systems like 
BPL systems require an initial training period, during which a known data sequence is transmitted. A replica of this sequence is made 
available at the receiver in proper synchronization with the transmitter, making it possible for adjustments to be made to the equalizer 
coefficients in accordance with the adaptive filtering algorithm. However, in this paper, three algorithms for adapting transversal filter 
coefficient were studied, to compare their adaptation rate and BER performance on BPL channel. It has been shown that normalized 
least mean square (NLMS) algorithm performs better with a rate of convergence of about 150 iterations with an approximate MSE 
value of 25dB and with an Eb/No of 13dB NLMS algorithm achieve a BER of 10-5 compared to least mean square (LMS) and recursive 
least square (RLS) having a BER of 5×10-5 and 10-2 respectively. 
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1. Introduction 
 
Broadband power-line communication (BPLC) system is an 
exciting new variation of an old idea that proposed to use 
wires of electric power systems to transport high speed 
internet (broadband) data signals for public customers and 
other applications. The application of the PLC would be a 
case where wiring would impose the main expenses and a 
radio based system would not be feasible and/or expensive.  
 
BPLC networks offer the realization of more sophisticated 
telecommunication services; multiple voice connections, 
high-speed data transmission (data rate of more than 2 
Mbps), transfer of video signals, and narrowband services as 
well [1].  However, electrical supply networks are not 
designed for information transfer and there are some limiting 
factors in the application of BPLC technology. The distances 
that can be covered, as well as the data rates that can be 
realized by PLC systems, are limited [2].  
 
Since the power wiring system was originally intended for 
transmission of AC power, the power wire circuits have only 
a limited ability to carry higher frequencies [3]. Overhead 
cable are unshielded and will act as antennas for the signals 
they carry, and have the potential to interfere with shortwave 
radio communications. For such a case, a novel method 
using OFDM for data communication over power-line is 
presented. OFDM modulation, allows to mitigate 
interference with radio services by removing specific 
frequencies used [4]. 
 
For the realization of BPLC, better equalization algorithms 
are required to mitigate the effect of frequency-selective 
fading so that a high speed data signal can be achieved. Of 
course there are various adaptive equalization algorithms, 
but due to time-varying factor of a BPLC channel some are 
not suitable for mitigating this effect of multipath. 
Adaptively these algorithms will adjust the coefficients so as 
to mitigate the effect of signal distortion at the receiver as 

the number of load to the Power-Line Communication 
network increases [5]. 
 
The requirement for fast adaptation equalization algorithm 
turns out to be the most important factor in applications 
where the changes in channel characteristics could be quite 
rapid. This is the basic stimulus for the utilization of 
adaptive equalization algorithms, which have a good rate of 
adaptation, probably at the price of low computations and 
stability. 
 
2. General communication model 
 

Referring to figure 1, signals )(ns from source are 
modulated and are transmitted through the channel. Output 

of channel is then corrupted by BPL noise )(nv . Received 

signal )(nr is expressed as:- 
)()()()( nvnhnsnr   (1) 

where, )(nh  is impulse response of BPL channel 

The received signal is demodulated, and then output of a 
receiver )(ny  is processed by adaptive equalizer and an 

estimate of input, )(ˆ ns is generated.  



)(ns )(nu

)(nv

)(nr)(ny

)(nt

)(ˆ ns

 
Figure 1: A representation of a general communication 

model for adaptive equalization 
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2.1 OFDM System Model 
 
OFDM signal can be realized through IFFT/FFT processing 
block to which mapped original data is applied. However, 
several complementary operations have to be achieved and 
applied to the information bits before they are submitted to 
IFFT processing, as illustrated in figure 2. OFDM model 
consists of transmitter and receiver. The receiver basically 
does the reverse operation to that of transmitter.  

 
Figure 2: OFDM transmitter and receiver 

 
2.2 OFDM simulation 
 
Table 1 shows the OFDM system parameters that are used in 
simulation and Figure 3 below, shows the OFDM signal 
ready to be coupled on PL channel.  
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Figure 3: OFDM signal 

Table 1: OFDM system parameters used in programming 
Parameter Value 
Carrier Modulation used 64 QAM 
FFT size 1024 

Guard interval 1/8 
 
2.3 Channel modeling 
 
Power line network configuration is shown in figure 3, 
with channel effect simulated on line nm.  

 
Figure 3: General power-line network with distributed 

branches [6]. 
 

Channel model that will be presented in this paper is BPL 
channel, and transfer function for this channel is given in [7]. 
 
2.4 Channel impulse response 
 
The channel impulse response was considered on the link1; 
the transmitter was a 2V rectangular pulse, with 0.9µs and 
shifted by 0.1 µs was applied to the network with source 
impedance terminated in characteristic impedance. Figure 5 
show the channel impulse response terminated in 100Ω. 
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Figure 5: Impulse response of a channel 

2.5 Noise in PL networks 
 
PL channel is affected by impulsive noise interferences that 
are generated from connected electrical systems plus 
background noise. They influence digital communications in 
BPL channels. The impulsive noise may cause bit/burst 
errors in data transmission. Middleton’s Class A noise model 
is an appropriate model for impulsive noise environment. 
Based on the model, the combination of impulsive plus 
background noise is a sequence of i.i.d complex random 
variables with the probability density function (pdf) of Class 
A noise as given in [8].  
 
2.6 Transversal filter 
 
Besides the adaptation algorithm, the filter structure 
constitutes an essential feature of an adaptive signal 
processing system. The transversal adaptive equalizer can be 
split into two main parts, the filter part and the update part. 

 

 
Figure 6: Transversal adaptive equalizer structure 
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The function of the former is to calculate the filter 
output )(ˆ ns , while the function of the latter is to adjust the 

set of N filter coefficients 1,...1,0),(  Ninwi  (tap 

weights) so that the output )(ˆ ns  becomes as close as 

possible to a desired signal )(nd . The filter part processes a 

single input sample )(ny  and produces a single output 

sample )(ˆ ns  (assuming sample per sample 

implementation). The filter output is calculated as a linear 
combination of the input sequence 

1,...1,0),(  Niiny  composed of delayed samples of 

)(ny  and the filter coefficients )(nw , as given in the 

equation below:- 







1

0

)()()(ˆ
N

i
i inynwns                       (2) 

Expressing the set of N filter coefficients at time index n and 
the sequence of delayed input samples in vector notations 

such that  TN nwnwnwnw )()...()()( 110 
  and 

 TNnxnwnxnx )1()...1()()( 


, where T(.)  is 

the vector transpose operator, equation 2 can be written as 

)(.)()(.)()(ˆ nwnxnxnwns TT


  

The transversal filter structure is a linear temporal filter that 
processes the temporal samples of its input signal )(ny  to 

produce the temporally and consequently spectrally modified 
(filtered) output )(ˆ ns . In adaptive equalizer applications, 

regardless of the optimization method, it is usually desired to 
adjust the equalizer coefficients such that the filter output 

)(ˆ ns  resembles a desired signal )(nd , or equivalently, the 

error signal )(ne  must be minimized [9]. 

2.7 Choice of step-size 
 
Step-size parameter i.e. μ controls how far the algorithm 
move along the error function surface at each update step. μ 
certainly has to be chosen μ > 0 (otherwise we would move 
the coefficient vector in a direction towards larger squared 
error). Furthermore, too large a step-size causes LMS 
algorithm to be unstable, i.e., the coefficients do not 
converge to fixed values but oscillate. Closer analysis [10] 
reveals, that the upper bound for μ for stable behavior of the 

LMS algorithm depends on the largest eigenvalue max  of 

the tap-input auto-correlation matrix R and thus on the input 
signal. For stable adaptation behavior the step-size has to be: 

max

2
0


                    (3) 

 
2.8 Simulation parameters of algorithms 
 
Table 2 shows the parameters used during the simulation of 
algorithms. 
 
 

Table 2: Parameters used for algorithms simulation 
Parameters Value

Number of bits 3000 
Iterations 125 

Filter length 5 
Step-size 0.1 

 
2.9 LMS algorithm 
 
LMS algorithm is an approximation of the steepest descent 
algorithm which uses an instantaneous estimate of the 
gradient vector of a cost function. The estimate of the 
gradient is based on sample values of the coefficient vector 
and an error signal. The algorithm iterates over each 
coefficient in the filter, moving it in the direction of the 
approximated gradient [11][12]. For LMS algorithm to 
archive a desired output, it is necessary to have a reference 
signal )(nd representing the desired filter output. The 

difference between the reference signal and the actual output 
of the transversal filter shown in equation 4 is the error 
signal. 

)()()()( nynwndne T                    (4)  

where )()()(ˆ nynwns T  

The task of LMS algorithm is to find a set of filter 
coefficients w that minimizes the expected value of the 
quadratic error signal, i.e., to achieve LMS error.  

  wyywydwdywde TTTT  2222         (5) 

][]2[][][ 22 wyywEydwEdEeE TTT   

wyyEwdyEwdE TTT ][][2][ 2   

The squared error 2e  is a quadratic function of the 
coefficient vector w, and thus has only one (global) 
minimum (and no other (local) minima), that theoretically 
could be found if correct expected values in equation 5 were 
known. The gradient descent approach demands that the 
position on the error surface according to the current 
coefficients should be moved into the direction of the 
‘steepest descent’, i.e., in the direction of the negative 

gradient of the cost function )( 2eEJ  with respect to the 

coefficient vector. 

wyyEdyEJ T
c ][2][2                       (6)  

where Jc  is a negative gradient of cost function J  

The expected values in this equation 6, the cross-correlation 
vector between the desired output signal and the tap-input 
vector i.e. pdyE ][  and the auto-correlation matrix of the 

tap-input vector i.e. RyyE T ][ , would usually be 

estimated using a large number of samples from d  and y . In 

LMS algorithm, however, a very short-term estimate is used 
by only taking into account the current 

samples: dydyE ][ , and TT yyyyE ][ , leading to an 

update equation for the filter coefficients 

))((2 wJww c
oldnew             (7) 

 )( wydyw Told    

 yew old    
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In equation 7, ‘step-size’ parameter i.e. μ are introduced, 
which controls the distance that the algorithm move along 
the error surface. In LMS algorithm the update of the 
coefficients in equation 7, is performed at every time instant 
n, 

)()()()1( nynenwnw       (8)  

 
2.9.1 Simulation results of LMS algorithm  
In figure 7 LMS algorithm shows a high rate of convergence 
of about 50 iterations with an approximate MSE value of -
23dB, and a good BER performance on tracking mode figure 
8. 

 
Figure 7: Convergence of LMS algorithm 

 
Figure 8: BER performance result of LMS algorithm 

 
2.10 NLMS Algorithm 
 
NLMS algorithm is a variety of LMS algorithm where the 
updating equation of the LMS algorithm may employ a 
variable convergence factor μn in order to improve the 
convergence rate. But in this case, the updating formula is 
expressed in equation 9 with fixed convergence factor μ so 
that each algorithm can be compared with the same step-size 
parameter. 

)(ˆ)()()(2)()1( nwnwnynenwnw        (9)  

Substituting )(ˆ)()(ˆ nwnwnw  and 

)()(ˆ)( 222 nenene 


 so as to achieve a good 

convergence rate, the motive is to make )(2 ne  

negative and minimum by appropriately choosing . The 

objective behind this strategy is that the instantaneous 
squared error is a good and simple estimate of the MSE.  

Also by replacing )()(2)(ˆ nynenw   in equation 

9, it follows that:- 

 22222 )()()(4)()()(4)( nynynenynynene TT    (10)  

The value of   is given in equation 10 in such a way 

that 0
)(2







ne
: 

)()(2

1

nynyT
                               (11)  

This value of   leads to a negative value of )(2 ne , and, 

therefore, it corresponds to a minimum point of )(2 ne . 

Using this fixed convergence factor, the updating equation 
for LMS algorithm is then given by 

)()(

)()(
)()1(

nyny

nyne
nwnw

T
                   (12) 

Usually a fixed convergence factor   is introduced in the 

updating formula in order to control the misadjustment, since 
all the derivations are based on instantaneous values of 
squared errors and not on the MSE. Also a parameter 
 should be included, in order to avoid large step sizes when 

)()( nynyT  becomes small. Then the coefficient updating 

equation of LMS algorithm becomes NLMS and is then 
given by 

)()(
)()(

)()1( nyne
nyny

nwnw
T





      (13) 

 
2.10.1 Simulation results of NLMS algorithm  
In figure 9 NLMS algorithm shows a high rate of 
convergence of about 150 iterations with an approximate 
MSE value of 25dB, and good BER performance on tracking 
mode figure 10. 

 
Figure 9: Convergence of NLMS algorithm 
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Figure 10: BER performance result of NLMS algorithm 

 
2.11 RLS Algorithm  
 
In contrast to LMS algorithm, the RLS algorithm uses 
information from all past input samples (and not only from 
the current tap-input samples) to estimate the (inverse of the) 
autocorrelation matrix of the input vector. To decrease the 
influence of input samples from the far past, a weighting 
factor for the influence of each sample is used. This 
weighting factor is introduced in the cost function in 
equation 14: 

2

1

],[)( nienJ
n

i

in


              (14) 

where ),( nie  is the error signal and is computed for all 

times 1 ≤ i ≤ n using current algorithm coefficients 
)( nw and  is called the forgetting factor.  

)()()(),( iynwidnie T              (15) 

When 1 the squared error for all sample times i  up 

to current time n  is considered in the cost function 
J equally. If 0 < ρ < 1 the influence of past error values 

decays exponentially: method of exponentially weighted 
least squares.  
Analogous to the derivation of the LMS algorithm we find 
the gradient of the cost function with respect to the current 
weights 

 


 
n

i

Tin
c nwiyiyEiyidEnJ

1

)())()((2))()((2)(    (16) 

We now, however, do trust in the ability to estimate the 

expected values   pdyE   and   RyyE T   with 

sufficient accuracy using all past samples, and do not use a 
gradient descent method, but immediately search for the 
minimum of the cost function by setting its gradient to zero 

0)(  nJc . The resulting equation for the optimum filter 

coefficients at time n is given in equation 17: 
    )()()( nznwn                (17) 

)()()( 1 nznnw                (18) 

With  


n

i

Tin iyiyn
1

)()()(   and 

 


n

i

in iyidnz
1

)()()(   

Both )(n  and )(nz  can be computed recursively: 

)()()1()( nynynn T  and 

)()()1()( nynynznz     

To find the coefficient vector i.e. )( nw , we need the 

inverse matrix )(1 n . Using a matrix inversion lemma, 

a recursive update equation for )()( 1 nnP  is 

found as: 

)()()1()( 11 nynknPnP            (19) 

with 
)()1(1

)()1(
)(

1

1

nynPy

nynP
nk

T 


 






 

Finally, the weights update equation is 

 )1()()()()1()(   nwnyndnknwnw T     (20)  

 
2.11.1 Simulation results of RLS algorithm  

 
Figure 11: Convergence of RLS algorithm 

 
In figure 11 RLS algorithm shows a low rate of convergence 
of about 1500 iterations with an approximate MSE value of -
20dB, and poor BER performance on tracking mode figure 
12. 

 
Figure 12: BER performance result of RLS algorithm 

 
3. Convergence and BER Performance 
Comparison 
 
Figure 13 compares convergence speed among all 
algorithms, with parameters as shown in table 2.  
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Figure 13: Convergence of LMS, NLMS and RLS algorithm 
 
It appears that the convergence speeds of these algorithms 
are in the following order: LMS, NLMS, and RLS. Although 
the convergence rate of the LMS algorithm is slightly 
inferior to that of NLMS and RLS algorithms but this 
algorithm and RLS has much MSE value of -23dB 
respectively compared to NLMS of -25dB. This shows that 
NLMS algorithm has low MSE value of -25dB than the rest 
of algorithms. 

In figure 14 comparisons of the BER performance among the 
algorithms are presented, it is shown that with an Eb/No 

13dB, NLMS algorithm achieve a BER of 10-5, LMS achieve 
a BER of 5×10-5 and RLS achieve a BER of 10-2 .  
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Figure 14: BER performance result of LMS, NLMS and 

RLS algorithm 
 
4. Conclusion  
 
This paper presents the data communication over the 
broadband power-lines networks. With the advent of new 
technologies in BPLC system, and in general, in the field of 
communications, adaptive equalizers have really proved to 
be very powerful in combating ISI effect. Effect of ISI from 
the BPL channel can be decreased (mitigated) using a NLMS 
algorithm rather than remaining algorithms that have been 
discussed on this paper. The simulations show that the effect 
of ISI causes an increase of BER. By applying adaptive 
equalizer, BER can be decreased. In Figure 13 and figure 14, 

shows that NLMS has better BER performance and nearly 
much faster rate of convergence compared to the remaining 
algorithms. For future work, performance of Normalized 
Least Mean Squares filter (NLMS) be analyzed so as to 
improve its BER performance and its convergence rate. 
 
References 
 
[1] Hrasnica, H., Haidine, A., Lehnert, R. (2004), 

Broadband Powerline Communications Networks-
Network Design, John Wiley & Sons Ltd, The Atrium, 
Southern Gate, Chichester, West Sussex PO19 8SQ, 
England. 

[2] Amirshahi, P. and Kavehrad, M. (2007), “System 
Design Considerations for High data Rate 
Communications Over Multi-wire Overhead Power-
lines”, The Pennsylvania State University, Department 
of Electrical Engineering, Center for Information & 
Communications Technology Research (CICTR) 
University Park, PA 16802. 

[3] Anatory, J. and Theethayi N. (2010), Broadband Power 
line Communication System: Theory and Applications, 
WIT Press, Ashurst Lodge, Ashurst, Southampton, 
SO40 7AA, UK. 

[4] Malowanchuk, B. (2004), “Broadband Over Power-line 
(BPL) interference: Fact or Fiction?”, Canada’s 
Amateur Radio Magazine, Vol. , No. , pp. 39-44. 

[5] Paulo S.R. D. (2008), Adaptive Filtering Algorithms and 
Practical Implementation, (Third Edition), Springer 
Science+Business Media, LLC, 233 Spring Street, New 
York, NY 10013, USA. 

[6] Anatory, J., Theethayi, N., Thottappillil, R., and 
Mvungi, N. H. (2009), “A Broadband Power-Line 
Communication System Design Scheme for Typical 
Tanzania Low-Voltage Network”, IEEE Transaction on 
Power Delivery, Vol. 24, No. 3, pp. 1218-1224. 

[7] N. Mtonyole, J. Anatory and A. Mvuma, “Effects of 
Multipath on MC-CDMA for Broadband Power-line 
Communications” Journal of Informatics and Virtual 
Education, ISSN 1821-7087 ,Vol. 2, No. 01, November 
2012 , pp 15-23. 

[8] Frias-Velazquez, A. and Romero-Troncoso, R. J. 
(2005), “Algorithm for Convergence Criteria Simulation 
on LMS Adaptive Filters”, Telecommunications And 
Radio Engineering C/C Of Elektrosviaz' And 
Radiotekhnika, Vol. 64, No. 7/12, pp. 537-542. 

[9] Garas, J. (2000-2002), The Adaptive Signal Processing 
Toolbox: For use with Matlab, ASPT User Manual 
Version 2.1, DSP ALGORITHMS. 

[10] Haykin, S. (1996), Adaptive Filter Theory, (Third 
Edition), Prentice-Hall, Inc., Upper Saddle River, NJ. 

[11] Hormis, R., Berenguer, I. and Wang, X. (2006), “A 
Simple Baseband Transmission Scheme for Power Line 
Channels”, IEEE Journal on Selected Areas in 
Communications, Vol. 24, No. 7, pp. 1351-1363. 

[12] Huaiyu, D. and Vincent, H. P. (2003), “Advanced 
Signal Processing for Power line Communications”, 
invited paper, IEEE Communications Magazine, Vol. 
41, No. 5, pp. 100-107.  

Paper ID: 18101403 1749




