
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

A Case Study on implementation Mobile Software
Engineering in Cloud Environment

Kiran Kalathoti1, M. Kiran Kumar2

1, 2 Computer Science Engineering, Guntur Engineering College, Guntur, India

Abstract: Since the inception of Smart phone software Engineering, Mobile software industry has seen rapid changes and a great
success, mainly by the Apple’s iPhone introduction to next android by Google. Cloud computing has widened many unknown business
models and services with its unique architectures and implementation. in these paper, we tried to provide a case study as a context of
mixing both the technology paradigms, we built a music streaming application prototype system based on Android platform and Google
App Engine to explore the impact and effect of cloud computing in mobile software environment.

Keywords: Software Engineering, Cloud Computing, Google App Engine, unique Architecture, Android Platform, Streaming

1. Introduction

Cloud computing is Internet based computing. From a
software engineering point of view, it is a paradigm shift
following the shift from mainframe to client-server in the
early 1980s. The similarity with client-server architecture is
that cloud computing is still sharing resources. The
difference is this “sharing” would be provided based on user
demand and charged on consumed quota. The advantage is
that it reduces the expertise and cost for establishing and
maintaining the server infrastructure from users, thus
allowing them to focus on business application development.
The disadvantage is that it may lock the user to a specific
cloud service provider due to the poorer portability caused by
the lack of a standard interface, thus brings up feasibility and
security concerns to many potential users. [3]

Mobile software, helped by the astonishing success starting
from Apple iPhone’s debut to Google Android’s follow-up,
has become a new software growth area. While mobile
software carries inherent mobility and accessibility, it is also
limited by the physical device size and resource constrains
(both storage and computing power). Compared to the
desktop PC world, the mobile OS is even diversified and
segmented. The major OS with a considerable installation
base include iPhone iOS, Android, BlackBerry, Symbian,
Windows Mobile, BREW, and Palm OS.

When cloud computing becomes mobile, it means the mobile
device tries to access a shared computing power or storage
on demand. On one hand, cloud computing is an expansion
of the mobile device to supplement its relatively limited
computing resources, but on the other hand, mobile cloud
computing is also limited by slower or interrupted Internet
connections in 3G or Wi-Fi networks. [4]

The solutions are being developed and evolved. One of the
promising technologies is HTML5 as it offers off-line data
caching and lets cloud-based web applications have the same
behaviour when the Internet connection goes down.

Furthermore, HTML5 enables updating the cached data from
server for the changes happened during the off-line period. It
aims to smooth the user experience and reduce the server
load if the real time information is not critical. Device-based

mobile applications can also adopt proactive downloading
based on user subscription and device condition and policy
settings. To aggregate these features, a “rich-client” or “thick
client” agent-based model could be built to provide
systematic services to all device-based applications for
accessing cloud computing resources. In contrast, “widget”
based technique is often used for singleton task which
delivering cloud connection and rich user interface. [5][6]

2. Architecture, Technologies, and Process

In this section, we will present the CMPlayer (Cloud Music
Player), an Android smart phone music streaming application
prototype system with Google App Engine in the backend.
The prototype system is served as a major study subject
facilitating in exploring the mobile software engineering
advances in cloud computing environment.

2.1 Architecture

The CMPlayer adopts the 3-tier client-server architecture and
design pattern in which the presentation tier, business logic
tier, data storage/access tier are developed and maintained as
independent modules so that each modules can be updated or
replaced independently. The prototype enables Android
smart phone users to access to the Google App Engine
(GAE) cloud space for music streaming and uploading
services.

Figure 1: Overall System Architecture

Paper ID: 15101412 2318

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

1) Overview

The presentation tier is a standard Android Java application.
This is the top level of the application which users can access
the system main functionality – “streaming music from
cloud”, “generating playlist from cloud”, and “uploading
local music to cloud”.

The logic tier is across Internet between two end points:

Android smart phone and J2EE web application. It executes
the user commands by sending a HTTP request to server end,
invoking server end components execution, and retrieving
back the result in a HTTP response.

The data tier adopts Google App Engine as the server end
framework. It uses GAE Blobstore service for music file
storage and uses GAE Datastore service for music metadata
storage. Furthermore it uses GAE Jetty Web Server to hold
the CMPlayer web application which is the server part of the
logic tier.

2) System Building Block

To prototype streaming music from the cloud, CMPlayer has
the following building blocks shown in Figure 2.

On the server end, or GAE cloud space, the CMPlayer web
app consists of several J2EE servlets for music downloading,
uploading, playlist generating, and user authentication
services. The web app is hosted in the Jetty HTTP server.
Jetty is adopted by GAE framework to serve as a java-based
HTTP server and javax.servlet container. GAE provides
essential quota-based cloud computing components in which
Datastore and Blobstore services are used by CMPlayer web
application.

Figure 2: System Building Blocks

On the client side, the CMPlayer client app contains the
corresponding activities to server end servlets, and presents a
user interface to navigate the end user accessing to the
services. The Music Playback Service widget is one of the
main OS framework services used by the client application.

Over the cloud, the HTTP protocol is used by both command
and data channels. By contrast, the command channel is
explicitly established between the CMPlayer client and
server components and maintained by the CMPlayer client
for command request and information exchange. The data
channel, dedicated to music data streaming, is established
between the Android Music Playback service and the GAE
Blobstore service. The streaming protocol used by the
CMPlayer prototype is the HTTP Progressive Download.

3) System Interface

The CMPlayer client is built upon the Android Application.
Framework and runs as a standalone J2SE Java application
on the user’s Android smart phone device. Android also
supports browser based web applications which can be
adopted as the front end to the CMPlayer server. A
standalone Java application can accomplish richer user
interfaces and flexible application flow control compared to
the HTML based web applications.

Within the CMPlayer client application, each task is
presented to the end user as an activity, which is a basic user
interface component in Android Application Framework.
User interface rendering is carried by the Android View
System and the Window Manager. Activity navigation is
managed by the Activity Manger. Music streaming (or
playing) is hooked with the Android native Media Player
which in turn powered by the underlying Android Media
Framework. The music streaming data source, which is
pointed to the CMPlayer server, is wrapped in form of
Android Content Provider service. The music uploading
feature for internet communication and data transfer is
powered by an Apache open source project – HTTP Client.
Furthermore, user authentication can be directly built upon
the Google user account to reach seamless integration
between the client and the server as both of them are
powered by Google products.

The CMPlayer server is architected as a J2EE web
application consisting of corresponding servlets and JSPs to
fulfill the client requests. Even though Google App Engine
supports both Java and Python server side technologies,
using Java API seems to be a nature choice since the
CMPlayer client uses Java technologies.

Since GAE can only execute code called from an HTTP
request, the CMPlayer client will interact with the CMPlayer
server by invoking the server side JSP interfaces. Upon
receiving client end HTTP requests, the Jetty web server at
the server end will launch corresponding servlets for music
upload, download/streaming, playlist population, and user
authentication services, and reply back the HTTP response
for the command execution results.

Within the CMPlayer web application, servlets act as the
logic tier to parse the client requests and make business logic
decisions. If necessary, it will communicate with the data tier
for the data access services. The Java runtime environment
provides APIs for various App Engine services. Among these
services, the CMPlayer utilizes the Datastore service for
storing and fetching music meta-data, utilizes the Blobstore

Paper ID: 15101412 2319

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

service for storing and serving the music files, and utilizes
the User service for authentication.

2.2. Technologies

1) Client Technologies
The client development is carried using the Android J2SE
technologies and Application Framework. In contrast to iOS,
Android is an open mobile platform which allows developers
developing application in Java language. The CMPlayer
client application consists of self-defined activities for the
user interface design and utilizes the Android system Media
Player service for the music playback/streaming. The
CMPlayer middle tier networking components are built upon
the Apache HTTP Client library which is essentially based
on the WebKit native runtime library. The server response
data is wrapped in form of XML format so that the Android
XML parser is also used in the client application. The rich set
of the Android application framework makes it possible to
build a rich featured cloud based application in mobile phone
device.

2) Server Technologies
The server development is carried using J2EE technologies
(JSP/Servlet) and integrated with GAE services. In contrast
to Amazon Web Service, the GAE is also hosting our web
app directly and providing load balancing, etc. Similar to
Android platform, Eclipse IDE is the preferred development
environment for App Engine based web application. The
Google Plugin for Eclipse is bundled with the App Engine
Software Development Kit (SDK) and facilitates the
development and deployment, such as new project wizard,
debug configuration, and App Engine deployment.

3) Data-Tier Technologies
The prototype relies on GAE Datastore and Blobstore for
metadata and music file storage, respectively. In contrast to
Amazon AWS S3, Google’s database is not a relational
database but with the similar interface, and bears with certain
constrains, such as maximum 1MB data object in Datastore
and maximum 2GB data object in Blobstore. Even with free
quota for experimentation, to enable Blobstore API,
developer has to fill in the billing information first – not
ideal, but still better than AWS, which has no free quota to
kick of the prototype project.

3. System Design

3.1 Client Design

The client side design is depicted in the natural navigation
order of the tab view for the application tasks: streaming,
download, upload, and WebView test bed. The PlayerView
activity is to build a music player for music streaming. The
main components are VideoView and MediaController
which in turn are native widget classes built upon the native
MediaPlayer technology.

Figure 5: PlayerView and Playlist Activities

The Android MediaPlayer can play remote music file if the
server supports the HTTP Progressive Download protocol.
To client, this means feeding the player with a streaming
URL pointing to the CMPlayer server music file. The
streaming URL is composed based on runtime configuration
and the blob key inside the song’s Record class. Once the
song starts play, the streaming will be handled by the media
player instance.

The Playlist activity is to retrieve list of songs from the
CMPlayer server cloud space and presents them in the
ListView layout. User can select a song by touching the list
item. Upon the clicking event, the active view is switched to
PlayerView, and the current song’s Record will be set and
the play method of the PlayerView activity will be invoked.

This activity is the first view user will see after the
application gets launched. We are intended to use this
activity to prototype most of the download related tasks.
There are some highlights in regarding to building the
Playlist activity:

• A list view item adapter is required to attach the song’s

Record object to the UI list view item;
• A SAX style XML parser is necessary to populate song’s

Record collection from the playlist XML document;
• Both client and server application are object oriented

design but the HTTP transmission requires data
marshalling as XML is a common data exchange format
for HTTP request/response;

• The networking operations are carried in background with
an asynchronous task to prevent interfering with the GUI
operations.

Paper ID: 15101412 2320

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 6: Upload and WebView Activities

The Upload activity provides a simple user interface
allowing user uploading music to the CMPlayer server end
GAE Blobstore music database. This activity adopts Android
TableLayout for UI representation. The upload task is carried
by using the Apache HTTP client Multipart post method.
Once user clicks the submit button, the server end
corresponding JSP URLs will be invoked for the Web Form
data transmission. Since it usually takes longer time for
upload, the internet operations are invoked in an
asynchronous task.

3.2. Middle-Tier Design

The middle tier includes the CMPlayer client application that
has networking capabilities to interact with the client user
interface and send commands to the CMPlayer server.

We have seen the similarity for the architecture between
cloud space and traditional client/server structure. Indeed, the
communication channel over cloud is based on HTTP
request/response approach, mainly because the web app acts
like an isolation layer with the hosting cloud system.

3.3. Middle-Tier Design

The CMPlayer application stores music in the Google App
Engine cloud space. The metadata related to the music file
are store inside the GAE Datastore, while the music file itself
is stored inside the GAE Blobstore. The GAE uses
distributed database schema for fast data access and provides
SQL like query language for search, add, remove, and
replace actions.

Note the Blobstore has an embedded database to describe the
data blob. The Google App Engine console provides web-
based tools to access the database and facilitate the web app
management and maintenance.

4. Deployment and GAE Admin Console

4.1. Deployment

While we don’t plan to include implementation details in this
paper, it is worth to mention the project setup and
deployment as all evils are in the details.

The prototype project took the best practice by using
Eclipse IDE with plugins for AGE and Android, plus SDKs
for J2SE, GAE and Android on Windows XP machine. In
addition, we also use the Apache java library for
MultipartEntity HTTP POST method support.

To deploy the web app into the GAE cloud space, the
developer needs to get a unique application ID from the GAE
and apply it to the web app, and then click the “Deploy”
button from the Eclipse IDE. The Eclipse will clean up the
project and recompile it before delivering the output folder to
the cloud.

4.2. GAE Admin Console

The Google App Engine offers admin console in both cloud
space and local development environment. Once the web app
is deployed to the Google App Engine cloud space,
developer can take advantage of the free out of box admin
console to set up the server end application configures,
permissions, and security settings, to monitor the cloud
resource quota allocation usage statistics and log dump, and
to manage the database with Datastore and Blobstore
viewers. The default application domain is assigned as
“http://cmplayerserver.appspot.com/” for our prototype with
AppSpot signature inside.

5. Advances and Glitches

Even though Cloud Computing has been evolved for a
couple of years, there are still fields need to be improved,
especially in the Mobile Software segment, as the available
APIs are still mainly targeting on desktop web based
application clients. For example, Google App Engine, as a
PaaS, provides simplicity but does not support full J2EE API
spec and the HTTP request/response control flow seems hard
to fit well with Android native applications; While Amazon
AWS, as an IaaS, is more flexible but needs considerable
time and efforts for the server maintenance and tune-up, and
does not eliminate the initial setup const. Another concern is
the “lock” effect - porting from one platform to another is not
a trial task as there is no common API standard adopted by
various cloud environments, and the big players have little
stimulation to remove the preparatory barrier. We do notice
that RESTful API [9] is promising, but due to the time
constrain and/or API maturity, we haven’t made a lot of
progress on Android platform for our prototype; HTML5
seems to be another promising technique, but if you have a
powerful native Java-based Application Framework support,
why would anyone build a web-based application? Before
WiFi or 4G becomes ubiquity, cloud computing applications
would be seriously limited by the network stability and
latency.

Paper ID: 15101412 2321

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

During the prototype development, we were benefited from
the free “out of box” GAE admin console - it reduced the
server side maintenance work. We also took advantage of the
free quota of the GAE cloud resources (CPU and storage)
throughout the entire development process and ended up with
zero cost - this PaaS platform does helped us in making the
best-ever cost saving on server holding. We want to point out
that the streaming capability of the Blobstore API and the
Jetty servlet container really speeded up the web app
development which is unlikely with AWS.

While we were focusing on the technical details with the
prototype modeling and implementation, we do look at the
mobile cloud impact to business model and management
process. There is no doubt that mobile cloud computing
opens a wide door enabling innovations, while the successful
application seems still rare with the exception of Salesforce’s
PaaS platform when it comes with suitable application use
cases. Our research is limited but it is interested to follow the
industry evolvement and, watch how the Google and
Amazon “Cloud Player” applications impact our life style (at
this editing time).

6. Conclusions

Disregard of the debate whether Software Engineering is an
art or a science, or a best practice [1], this paper presents an
experimental approach focusing on technical advances and
dabbling into intersection of these two hot areas [2]. It is not
a surprise that we have seen some glitches during integration,
and we may raise more questions than what we could
answer, but as long as both Mobile Software and Cloud
Computing are heating up, we expect more advances in this
industry microenvironment. Throughout the CMPlayer
prototype development, we get acknowledged about the state
of the art of the intersection of these two software computing
segments with first hand concrete feeling about the industry
pulse.

References

[1] Bourque, P.; Dupuis, R.; Abran, A.; Moore, J.W.; Tripp,

L.; , "The guide to the Software Engineering Body of
Knowledge," Software, IEEE , vol.16, no.6, pp.35-44,
Nov/Dec 1999, doi:10.1109/52.805471 URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber
=805471&isnumber=17458

[2] Christy, P. Gartner Identifies the Top 10 Strategic
Technologies for 2010. Gartner Symposium/ITxpo,
October 18-22, in Orlando. Retrieved November 20,
2010, from
http://www.gartner.com/it/page.jsp?id=1210613

[3] WiKi Analysis, Cloud Computing. Wiki Invest. Retrieved
November 20, 2010, from
http://www.wikinvest.com/concept/Cloud_Computing

[4] Perez, S. Why Cloud Computing is the Future of Mobile.
(2009, August 4). Retrieved July 10, 2010, from
http://www.readwriteweb.com/archives/why_cloud_comp
uting_is_the_future_of_mobile.php

[5] Fabrizio, C. Five Reasons To Care About Mobile Cloud
Computing, International Free and Open Source Software
Law Review, Vol 1, No 2 (2009). Retrieved November

20, 2010, from
http://www.ifosslr.org/ifosslr/article/view/24/47

[6] Kovachev, Dejan; Renzel, Dominik; Klamma, Ralf; Cao,
Yiwei; , "Mobile Community Cloud Computing: Emerges
and Evolves," Mobile Data Management (MDM), 2010
Eleventh International Conference on , vol., no., pp.393-
395, 23-26 May 2010 doi:10.1109/MDM.2010.78 URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber
=5489731&isnumber=5489227

[7] David, L. How to gauge cloud computing performance.
(2010, January 28). Retrieved November 16, 2010, from
http://www.infoworld.com/d/cloud-computing/how-
gaugecloud-computing-performance-722

[8] Cloud Harmony. Disk IO Benchmarking in the Cloud.
Retrieved November 20, 2010, from
http://blog.cloudharmony.com/2010/06/disk-
iobenchmarking-in-cloud.html

[9] eFreedom. Android: restful API service. Retrieved
November 20, 2010, from
http://efreedom.com/Question/1-3197335/Android-
Restful-API-Service

Author Profile

Kiran Kalathoti Obtained the B.Tech degree in
Computer Science and Engineering (CSE) from Sri
Vasavi Engineering College, Tadepalligudem. At
present he is pursuing M.Tech in Computer Science
and Engineering (CSE) at Guntur Engineering College,

Guntur.

M. Kiran Kumar obtained B.Tech degree from
RVR&JC College of Engineering and M.Tech (CSE)
from Nalanda Institute of Engineering & Technology
(J.N.T.U.K). He has 6 years of teaching experience and
working in Computer Science and Engineering (CSE)

Department at Guntur Engineering College, Guntur.

Paper ID: 15101412 2322

