
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

An Analytical Survey of Real Time System
Scheduling Techniques

Ayeni, J. A.1, Odion A. E. 2, Ogbormor-Odikayor I.F3

1Department of Physical Sciences, Ajayi Crowther University,Oyo, Oyo State, Nigeria

2, 3Department of Computer Science and Mathematics, Benson Idahosa University, Benin City, Edo State, Nigeria.

Abstract: Real-time systems are systems that are time dependent. The time dependency nature of these systems compared to
conventional operating systems such as the Unix time sharing multiuser and multitasking systems and its variants, single user and
multitasking Microsoft windows systems and single user and single task palm and handheld device systems has given rise to several
techniques in the management of computer resources. Scheduling is that all-important functionality of the operating system that ensures
Operating system’s and computer’s resources are managed in such a way as to ensure none of the competing processes is starved of
such resources at any given point in time. In real time system, scheduling is effected using certain criteria that ensure processes
complete their various tasks at a predetermined stipulated time of completion. The scheduling techniques depend on the two basic types
of the existing real time systems; Hard and Soft Real-Time System. The pre-determined time of completion of tasks must be met in Hard
Real Time Systems otherwise the resultant effect can be disastrous. Tasks in Real Systems that fail to complete within the pre-determined
completion time are tolerable but not often desirable. In these two known types of Real-Time System, pre-emption and multitasking
techniques are often used. In this study, a critical analysis of these scheduling techniques and their performance (strengths and
weaknesses) in existing systems will be carried out and highlighted. The various scheduling techniques and their associated parameters
are examined and analysed. In addition, a survey of known scheduling techniques in real time systems and approaches used by the
different techniques are presented.

Keywords: scheduler, pre-emptive, tasks, hard, soft, critical

1. Introduction

A real-time system is one whose correctness is based on
both the correctness of the outputs and their timeliness [1],
as a computation output of a real time system after the
allocated time of execution (deadline) is of no value and
could be catastrophic. Scheduling could be defined as the
process of assigning computer and operating systems’
resources to a set of tasks or processes on a given system in
accordance to predetermined rules on a given system. In the
conventional operating systems environment where tasks are
not being subjected to a pre-determined (deadlines)
completion time, scheduling is less complex. In real-time
systems, scheduling is the most important task and the
selection of an appropriate task scheduling algorithm is
central to its proper functioning [2]. The selection of an
appropriate scheduling algorithm in meeting the time
constraints of task is the basic technique employed by a real-
time system. The objective of a real-time task scheduler is to
guarantee the deadline of tasks in the system as much as
possible. Mostly all the real-time systems in existence use
pre-emption and multitasking [3].Generally, tasks in real-
time systems are classified as real-time tasks and possess
certain degree of urgency and as such mission-criticality.
The urgency and mission-critical nature of real-time tasks
(applications) depend on the results of their executions and
could be classified into the following two classes; hard and
soft. A hard real-time task must meet its deadline to avoid
disaster or damage while a soft real-time task equally has an
associated deadline that is not mandatory but essentially
could be allowed to complete for a desirable result even if
the deadline is missed. A real time system is expected to
change its state in real time even after the controlling
processor has stopped its execution [4]. A deadline is
defined as the bound in which real time applications are

needed to respond to the change of event in their
environment.

2. Related Works

The recent advances in embedded systems the past decades
have resulted in several researches in the field of real-time
systems and real-time operating systems. An embedded
system has been described as a typical example of real-time
systems and a system within a larger system. An embedded
system is a combination of hardware and software and
perhaps a mechanical part to perform certain function [5].
Such system sits are being controlled by Real-Time
Operating System. A Real-Time Operating system (RTOS)
and the Real-Time Scheduler are the basic components of an
embedded system which offers an easy design and
expansion of real-time applications. Most embedded systems
also have real-time requirements demanding the use of Real-
Time Operating systems capable of meeting the embedded
system requirements [5].

Khera and Kakkar in [4], carried out a comparative study of
scheduling algorithms for real time environment. In the
study, the various scheduling techniques based on different
parameters were classified and the techniques used for
scheduling in real time environment were analysed and
comparison between different techniques also presented.
Kaladevi and Sathiyabama [3] compared scheduling
algorithms for real-time tasks and stated that Real-time
systems have well defined, fixed time constraints i.e.,
processing must be completed within the defined constraints
otherwise the system will fail. In their paper, real-time
scheduling techniques were classified into two categories:
Static and Dynamic. Static algorithms assign priorities at
design time and all assigned priorities remain constant for

Paper ID: 02013837 1774

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

the lifetime of a task. Dynamic algorithms assign priorities
at runtime, based on execution parameters of tasks which
could be either with static priority or dynamic priority. A
research into priority based round robin scheduling
algorithm for real time systems was carried out by Rajput
and Gupta [6] with the main objective of developing a new
approach for round robin CPU scheduling algorithm which
improves the performance of CPU in Real Time Operating
System. They also presented a comparative analysis of the
proposed algorithm with existing round robin scheduling
algorithms on the basis of varying time quantum, average
waiting time, average turnaround time and number of
context switches and concluded that the proposed algorithm
is more efficient than the simple round robin in the context
of the stated metrics [6]. Larsson and .Hargglund [7]
researched into two RTOS, namely RTLinux and Chimera.
The comparative study of scheduling techniques of these
two systems with emphasis on their scheduling methods was
carried out. It was concluded that the two real time operating
systems “are very different in many regards, mainly
flexibility; the modularity and customizability of RTLinux,
together with its ability to cooperate with regular Linux,
makes it a generalist system that can be used in almost any
situation whereas Chimera is more limited but probably also
more efficient” [7]. Nandanwar and U. Shrawanka [8]
proposed an adaptive algorithm for scheduling of hard real
time system with single processor and pre-emptive task sets
and introduced the concept of EDF, ACO and FPZL and
combined this approach to get the algorithm. The advantage
of the proposed algorithm is it will automatically switch
between the algorithm and overcome the limitation of
existing algorithms. The adaptive algorithm is very useful
when future workload of the system is unpredictable [8]. In
all the above cited works, the researchers laid emphasis on
the techniques of the various existing real time schedulers.
There are some advantages of these techniques and
performance gain of some real-time applications that make
use of them and depend on the urgency and mission critical
nature of the applications.

3. Real Time Systems

Real-Time systems have been defined in several literatures
in different ways and the core objective of these definitions
present a real-time system as a system with timeliness with
correctness of logical results in/of the execution or its tasks;
have deadlines for completion. According to Jane [9], real–
time systems are those systems in which the correctness of
the system does not depend only on the logical results of
computations but also on the time at which the results are
produced. Laplante in [10] defined a real-time system as one
whose correctness involves both the logical correctness of
the outputs and their timeliness. Barr[11] also defined a real-
time system as computer system that has timing constraints
and is partly specified in terms of its ability to make certain
calculations or decisions in a timely manner. There are two
basic types of real-time system and its classification depends
on their timeliness and capacity of producing outputs before
their deadlines; hard and soft real-time systems. In hard
real-time systems, deadline must be met otherwise a system
failure that may lead to system degradation or catastrophe.
On the other hand, a soft real-time system has a non-
mandatory associated deadline that could be missed and

such tasks are allowed to complete as outputs could still be
useful. Tasks in real-time systems could be aperiodic or
periodic. Aperiodic tasks are those that have time constraints
(start/Stop) or both (start and stop). Periodic tasks are stated
to execute within a time period (i.e. every T secs). The main
operating system for real-time systems (such as embedded
systems) is the Real-Time Operating System (RTOS). An
RTOS differs from common Operating Systems (i.e. Single-
user and single task, single-user and Multitasking and
Multi-user), in that the user when using the former has the
ability to directly access the microprocessor and peripherals
and such ability of RTOS helps to meet deadlines [12]. The
Kernel is the core component of all operating systems and
provides task scheduling, dispatching and inter-process
communication. However, the Kernel perform differently in
these operating systems as different techniques and criteria
are used in the selection of tasks to run, dispatch and
perform error recovery functions. Desirable features of a
real-time operating system are [12]: ability to schedule tasks
and meet deadlines, ease of incorporating external hardware,
recovery from errors, fast switching among tasks, small size
and small overheads. The short-term scheduler is the core of
a real-time system, fairness and minimising average
response time are not the only paramount characteristics of
real-time systems but equally important is the fact that all
hard real-time tasks complete (or start) by their deadline and
that as many as possible soft real-time tasks also complete
(or start) by their deadlines [13].

3.1 Real-Time Scheduling

There are two approaches to scheduling techniques in real-
time systems; Static and dynamic algorithm approaches. The
static approach assigns priority to tasks at design time and
requires pre-knowledge of the characteristics of the tasks
while the dynamic algorithm approach assigns priority at
run-time with a greater run-time cost compared with the
static approach [14]. The appropriateness or suitability of the
algorithm for a real time system is a matter of choice for the
developers and equally depends on the type of real-time
system. Certainly in safety critical systems it is reasonable to
argue that no event should be unpredicted and that
schedulability should be guaranteed before execution and
this implies the use of a static scheduling algorithm while
dynamic approaches are particularly appropriate to soft
systems; could form part of an error recovery procedure for
missed hard deadlines and could be used if the application’s
requirements fail to provide a worst case upper limit (for
example the number of planes in an air traffic control area)
[15]. Mohammadi and Akl [16] classified scheduling
techniques in uniprocessor real-time systems into two
subsets; offline scheduling algorithms and online scheduling
algorithms. A scheduler is static and offline if all scheduling
decisions are made prior to the running of the system. A
table is generated that contains all the scheduling decisions
for use during run-time and relies completely upon a priori
knowledge of process behaviour[15]. Off-line scheduling
algorithms (Pre-run-time scheduling) generate scheduling
information prior to system execution and the information is
then utilized by the system during runtime [16]. Fohler,
Lenvall and Buttazzo [17] provided examples of an Earliest
Deadline First (EDF) and the off-line algorithm in their
research into real-time scheduling techniques. Online

Paper ID: 02013837 1775

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

scheduling algorithm makes scheduling decisions at run-
time state of the system and can be either static or dynamic
which is based on both process characteristics and the
current state of the system in runtime [16].

3.1.1 Static Table-Driven Approach
A Static Table Driven scheduling technique takes all
scheduling decisions before the running of the system,
generating a table for use during run-time with a total
reliance on its pre-knowledge of the process behaviour. A
typical pattern in scheduling algorithms is to determine
whether a schedule is produced by a schedulability analysis
that may result into tasks being dispatched at run-time. A
proven example of an offline scheduling that produces a
schedule is the table-driven approach. The priority-based
approach is also an example of offline scheduling where no
explicit schedule is constructed; at run time, tasks are
executed in a highest-priority-first basis and are much more
flexible and accommodating than table-driven approaches
[18].The Static Table-Driven scheduler is often used to
implement periodic tasks with requirements such as;
periodic arrival time, finishing deadline, execution time and
the priority for each task. The scheduler attempts to develop
a schedule that enables it to meet the requirements of all the
periodic tasks [13]. Although a table-driven scheduler is
inflexible as any change in a periodic task’s requirements
would necessitate the entire schedule process to be redone, it
is a predictable approach that guarantees system
performance. A typical example of such techniques exist for
tasks that have simple characteristics and the Earliest-
Deadline-First (EDF) or the Shortest-Period-First (SPF)
technique are usually used to construct such static tables
with required parameters known a priori.

3.1.2 Static Priority- Preemptive Approach
As earlier stated in section 3.1, scheduling decisions by
online schedulers are taken at run-time and can either be
static or dynamic and are determined not only by the
characteristics of the tasks but also by the current state of the
system. The preemptive scheduler can arbitrarily suspend
the execution of a currently running process and restart it
after the completion of the preempting process as a result of
the latter’s higher priority without altering the behaviour of
the preempted process. Preemption normally occurs when a
higher priority process becomes runnable and its major
effects are increasing the elapsed time of the preempted
process and that such a process may be suspended
involuntarily [15]. Unlike the conventional non-real time
systems that implement a priority driven preemptive
scheduling method of assigning priority to processes based
on whether the process is processor bound or Input/Output
bound, assignment of priority in a real-time system is related
to the time constraints associated with each task.Rate
Monotonic scheduling Algorithm is an example of a priority
driven algorithm with static priority assignment, in the sense
that the priorities of all requests are known before their
arrival, the priorities for each task being the same and
known a-priori (they are determined only by the period of
task) [19].In the RMA, each task is assigned a (unique)
priority based on its period (completion time); the shorter
the period, the higher the priority. The RMA assignment is
optimal under preemptive priority-based scheduling. An
optimal scheduler is able to produce a feasible schedule for

all feasible process sets conforming to a given precondition
[15].Liu and Layland [21] also analysed Earliest-Deadline-
First (EDF), a dynamic priority-assignment algorithm as an
example of Static Preemptive Approach for real-time
schedulers: the closer a task’s deadline, the higher its
priority. This again is an intuitive priority assignment policy
[21]. It is worthy to state that when a task has completion
deadlines, a preemptive strategy will be most appropriate.
The real-time scheduling algorithm is represented
schematically in figure 1.0 below. The real-time scheduling
algorithm is represented schematically in figure 1.0 below.

Figure 1: Schematic Representation of Scheduling

Algorithm (Adapted from [17])

3.1.3 Static Priority- Non-Preemptive Approach
Unlike the preemptive scheduling approach, a non-
preemptive scheduler allows tasks to complete execution
without being suspended once execution is started. Tasks
that have associated deadlines fit best into the non-
preemptive scheduling approach as the responsibility of self-
blocking will be that of the tasks after completing the
mandatory or critical portion of its execution, allowing other
real-time starting deadlines to be satisfied [13].Jeffay [20]
suggested the treatment of a non-preemptable process
scheme in which non-preemptable processes are shown to be
scheduled by the earliest deadline heuristic if they can be
scheduled by any other non-preemptive scheduler. The
Earliest Deadline First (EDF) algorithm is the most widely
used scheduling algorithm for real-time systems, optimal for
a set of preemptive tasks (be they periodic, aperiodic, or
sporadic), and will always find a schedule if a schedule is
possible [21].It has been shown that the non-preemptive
scheduling is more efficient than the preemptive approach
especially for soft real-time applications and multithreaded
system applications. The non-preemptive approach equally
reduces the much needed switching overhead among
processes/ threads. The Earliest Deadline First (EDF)
approach is optimal for sporadic non-preemptive tasks, but
EDF may not find an optimal schedule for periodic and
aperiodic non-preemptive tasks; it has been shown that
scheduling periodic and aperiodic non-preemptive tasks is
NP-hard [22]. For a system not overloaded, EDF (non-

Paper ID: 02013837 1776

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

preemptive approach) has been shown to produce optimal
schedules for periodic and non-periodic (aperiodic) tasks.
With an overloaded system, it has been established that EDF
approach leads to dramatically poor performance [23].
Although the application of EDF to non-preemptive tasks
has not been given pre-eminence by researchers, it is fast
gaining research interests.

3.1.4 Dynamic Priority Planning Based Approach
The dynamic planning-based approaches provide the
flexibility of dynamic approaches with some of the
predictability of approaches that check for feasibility [24]. In
this approach, the execution of a newly arrived task does not
commence immediately, rather an attempt is made to create
a schedule that contains the previously guaranteed task and
the new task before execution commences. If the attempt in
creating a schedule fails and made sufficiently ahead of the
deadline, then there will be ample time alternative actions
for such task and the revision of the schedule to
accommodate the new task. In effect, an arriving task is
accepted for execution if it is feasible to meet its time
constraints and the result of the feasibility analysis is a
schedule or plan that is used to decide when to dispatch such
task [13].The Dynamic planning-based scheduling approach
dynamically performs feasibility checks for tasks when
selected for execution. Atask is guaranteed by constructing a
plan for task execution whereby all guaranteed tasks meet
their timing constraints, subject to a set of assumptions if
these assumptions hold, once a task is guaranteed it will
meet its timing requirements [24]. In general there are three
steps involved in dynamic planning approach and are stated
as follows; feasibility or schedulability analysis, schedule
creation and dispatching. These steps could be implemented
separated or jointly depending on the requirements of the
system. In some cases there are no distinguishable
delineation between the three steps. Feasibility or
schedulability analysis determines whether the timing
requirements (constraints) of a set of jobs at run-time can be
satisfied usually under a given set of resource requirements
and precedence constraints [25] Schedule construction is the
process of ordering the jobs to be executed and storing this
in a form that can be used by the dispatching step, and this
approach is a direct consequence of the feasibility analysis
[25].

3.1.5 Dynamic Best Effort Approach
In this approach, the scheduler does not carry out any
feasibility or schedulability check on new tasks that arrive in
the system; by implication all tasks are admitted into the
system upon their arrival and the scheduler tries its best to
ensure execution and therefore, there’s no guarantee of
task’s execution. The dynamic best effort approach uses the
deadlines associated with tasks to set their priorities and a
task could be preempted anytime during execution and
therefore, it is until the deadline arrives or the task finishes
execution one can know whether actually a timing constraint
had been met or not [26].The implementation technique of
the dynamic best effort approach looks similar to those of
priority based schedulers in non-real time systems except in
the method used in assigning priorities. In dynamic best
effort approaches two queues are maintained: a ready queue
and a wait queue [27]. While the ready queue is sorted in
priority order, tasks waiting for non-processor resources are

placed in the wait queue [27]. After the completion of a task,
the ready queue is re-adjusted (re-computation) based on the
arrival of another task from the wait queue depending on its
priority level. A currently executing task could be preempted
if the task from the wait queue has a higher priority than the
currently running task. Thus, the task priorities must be re-
computed each time a new task enters the ready queue and
the ready queue must be re-ordered based on the newly
computed priorities [27].

4. Conclusion

In this paper, we present the various existing approaches to
scheduling in real-time systems and real-time applications.
The static table-driven approach, static priority-driven
preemptive approach, static priority non-preemptive
approach, dynamic planning based approach and the
dynamic best-effort approach are presented. Examples of
existing schedulers based on these approaches have been
provided and elucidated. Generally, real-time systems have
found tremendous usage in systems such as command and
control systems, industrial process control systems, Space
Shuttle Avionics, flight control systems and some home
based systems such as micro waves and robotics.
Knowledge of these systems’ behaviour in real-time are
presumed to be available a priori and as such their
inflexibility and high cost because they are based on the
static technique in their development. It is proposed that
future systems should take into cognizance the importance
of developing systems that are dynamically based, more
predictable, flexible and more independent.

References

[1] F.,Schlindwein,(2002). EG7017 – Real-time DSP.
[Online], Available at:
<http://www.le.ac.uk/eg/fss1/real%20time.htm>

[2] Rajib Mall (2009)Real-Time Systems: Theory and
Practice, Pearson Education, India. May 1, 2009.

[3] M.Kaladevi, and .S.Sathiyabama (2010). A
Comparative Study of Scheduling Algorithms for Real
Time Task. International Journal of Advances in
Science and Technology, Vol. 1, No. 4, 2010

[4] I., Khera and A. Kakkar. Comparative Study of
Scheduling Algorithms for Real Time Environment.
International Journal of Computer Applications
44(2):5-8, April 2012. Published by Foundation of
Computer Science, New York, USA.

[5] P.M. Sagar and V. Agarval, (2002). Embedded
Operating Systems for Real-Time Applications,
M.Tech Credit Seminar report, Electronic Systems
Group, EE IIT, Bombay.

[6] I.S.Rajput and D. Gupta (2012), A priority based round
robin scheduling algorithm for real time systems.
International Journal of Innovations in Engineering
and Technology, Vol 1 Issue 3, 2 Oct. 2012.

[7] J. Larsson and J. Hargglund (nd), RTLinux and
Chimera: Comparative Study in Scheduling
Techniques, Technical Report – at
LinkopingsUniversitet

[8] J. Nandanwar and U. Shrawankar, (2012)An Adaptive
Real Time Task Scheduler International Journal of
Computer Science Issues, Vol. 9, Issue 6, No 1,

Paper ID: 02013837 1777

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Impact Factor (2012): 3.358

Volume 3 Issue 10, October 2014
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

November 2012 ISSN (Online): 1694-0814
www.IJCSI.org.

[9] J. W.S. Liu,(2001);Real-Time Systems, Pearson
Education, India, pp. 121 & 26, 2001.

[10] P.A.Laplante (1997), Real-Time Systems Design and
Analysis: An Engineer’s Handbook. Second Edition.
IEEE Press. 1997.

[11] M. Barr. (1999). Programming Embedded Systems in
C and C++ ,O’Reilly and Associates, Inc. U.S.A

[12] Yan Meng, (nd), A Survey of Real-time Operating
Systems, Technical Report. [Online], Available at:
<http://www.ece.stevens-
tech.edu/~ymeng/courses/CPE555/papers/rtos_paper.p
df >

[13] W. Stallings (2008) Operating Systems: Internals and
Design Principles, Prentice Hall, 2008, pp 453-459

[14] H. Kopetz (2011), Real-Time Systems: Design
Principles for Distributed Embedded Applications,
Springer Publishing. Coy. 2011. Pp. 240.

[15] N. Audsley and A. Burns (1990) Real-Time System
Scheduling. [Online]. Available at: <beru.univ-
brest.fr/~singhoff/cheddar/publications/audsley95.pdf >
, and on the ESPRIT BRA Project (3092), Predicatably
Dependable Computer Systems, Volume 2, Chapter 2,
Part II.

[16] A. Mohammadi and S.G. Akl (2005), Scheduling
Algorithms for Real-Time Systems, [Online] ,
Available at :<http://beru.univ-
brest.fr/~singhoff/cheddar/publications/audsley95.pdf>
, Technical Report No. 2005-499, School of
Computing, Queen’s University, Kingston, Ontario.

[17] G. Fohler, T. Lenvall and L. G. Buttazzo (2001),
Improved Handling of Soft Aperiodic Tasks in Offline
Scheduled Real-Time Systems using Total Bandwidth
Server, [Online], Available at:
<http://www.mrtc.mdh.se/publications/0316.pdf>,
Accessed on 14 October, 2013, Published in Emerging
Technologies and Factory Automation, 2001.
Proceedings: 2001 8th IEEE International Conference
on 15-18 Oct. 2001

[18] E.,Michta (2005). 174: Scheduling Systems. University
of Zielona Gora, Zielona Gora, Poland. Reproduced
from the Handbook of Measuring System Design. John
Wiley & Sons, Ltd, 2005. Available at:
<http//www.wiley.com/legacy/wileychi/hbmsd/pdfs/m
m823.pdf >

[19] D. Zmaranda, G. Gabor, D.E. Popescu, C. Vancea and
F. Vancea (2011). Using Fixed Priority Pre-emptive
Scheduling in Real-Time Systems, Int. J. of
Computers, Communications & Control, ISSN 1841-
9836, E-ISSN 1841-9844, Vol. VI (2011), No. 1
(March), pp. 187-195.

[20] K. Jeffay (1988), ‘On Optimal, Non-Preemptive
Scheduling of Periodic Tasks, Technical Report 88-10-
03, University of Washington, Department of
Computer Science (October 1988).

[21] C. L. Liu and J. W. Layland, (1973) “Scheduling
Algorithms for Multiprogramming in a Hard-Real-
Time Environment”, [Online]. Journal of the ACM,
Vol. 20, No. 1, pp. 46-61.Available at:
<http://www.csie.ntu.edu.tw/~ktw/rts/ch-short-course-
uni.pdf>

[22] Wenming Li, Krishna Kavi and Robert Akl (nd) An
Efficient Non-Preemptive Real-Time Scheduling,
[Online]. Available at:
http://www.cse.unt.edu/~rakl/LKA05.pdf , Department
of Computer Science and Engineering, University of
North Texas, U.S.A.

[23] C. D. Locke (1986), Best-effort Decision Making for
Real-Time Scheduling, CMU-CS-86-134 (PhD
Thesis), Computer Science Department, Carnegie-
Mellon University, 1986.

[24] K., Ramamritham and J., Stankovic (1994), Scheduling
Algorithms and Operating Systems Support for Real-
Time Systems, [Online], Proceedings of the IEEE, vol.
82. No. I, January 1994 5..Available at:
http://www.dca.ufrn.br/~affonso/DCA_STR/aulas/stan
kovic2.pdf

[25] John, A. Stankovic (1998) .Deadline Scheduling for
Real-Time Systems: EDF and Related Algorithms,
Springer Publisher. Pg. 98 – 100

[26] Robert Oshana (2006). .DSP Software Development
Techniques for Embedded and Real-Time Systems,
Newnes Publishers, Jan 9, 2006, pg. 299

[27] C. Siva Ram Murthy and G. McNamara (2001).
Resource Management in Real-time Systems and
Networks, MIT Press. Pg. 53-55

Author Profile

Ayeni Joshua received the BSc. and MSc degrees in
Computer Science from the Universite de Paris VIII at
St. Denis, (Paris suburb) in 1987. He worked briefly as
a programmer, then later system analyst and finally as

Chief Project Engineer with France Organisation and Commercial.
He has just concluded his Ph.D programme and currently a Senior.
Lecturer at Ajayi Crowther University, Oyo, Nigeria. His research
interests include Distributed systems and Realtime computing.

Andrew Ebhomien Odion obtained B.Sc (Ed)
Chemistry from University of Lagos, Nigeria in 1988,
PGD Computer Science 1993, MBA (Information
Management Technology) from Federal University of
Technology Owerri, Nigeria 2004 and M.Sc

(Computer Science) 2012 from University of Benin City Nigeria.
He is currently running M.Phil (Computer Science), University of
Benin, Benin City, and teaches Computer Science in Benson
Idahosa University, Benin City Nigeria. His area of interest is
Programming Languages and Web Application.

Ogbomo-Odikayor. I.F. obtained B.Sc in Computer
Science from University of Benin, Benin City
1999.PG (Ed) in 2007 and Master of Science in
Information Technology in 2012 and currently

working on her PhD Thesis.

Paper ID: 02013837 1778

