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Abstract: A system was developed to efficiently schedule aircraft into congested resources over long ranges and present that schedule 
as a decision support system. The scheduling system consists of a distributed network of independent schedulers, loosely coupled by 
sharing capacity information. This loose coupling insulates the schedules from uncertainty in long distance estimations of arrival times, 
while allowing precise short-term schedules to be constructed. This paper also proposes a covered flight scheduling by analysis accident 
dataset. The CART algorithm is implemented to the scheduling Air traffic by identified patterns of factors which are significantly 
associated with incidents or accident. The achieved result shows the proposed Population Heuristics with CART Algorithm provide
much improved result in Speed and Accuracy than existing algorithm 
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1. Introduction  
 
The Air Traffic Control (ATC) system has the responsibility 
of maintaining a safe and orderly flow of aircraft in the 
National Airspace System (NAS) of the United States. An 
important part of this responsibility is the planning of airport 
operations, such as the arrival and departure of aircraft. In 
this paper, we present a procedure for computing safe and 
efficient arrival schedules while taking into account several 
key operational consflights. Statistical analysis of aircraft 
arrivals at several major airports in the United States has 
shown that the distribution of times between estimated 
arrival times of successive aircraft (estimated when the 
aircraft are 100 miles from their final destinations) is nearly-
exponential. 

 
2. Problem Definition 
 
Traditionally, scheduling problems have been confined to 
the airport and sometimes the arrival fixes into the airspace 
surrounding the airport (A1–A4) [6-7]. The arrival fixes 
mark the entry into the TRACON, where the aircraft are 
under the control of specialized arrival controllers. Outside 
of this area, the aircraft are managed by air traffic controllers 
in one or more centers. Such uncertainties mean that 
schedules produced over long ranges may be inaccurate or 
infeasible. Methods based on releasing aircraft from ground 
holding typically assume that the unimpeded flight times are 
deterministic. What seems to be needed instead is an 
adaptive approach, where schedules can be adjusted as the 
uncertainties are resolved. An alternative is to use a 
stochastic approach, where the uncertainties are modeled 
into a distribution and decisions made to control the 
probability of particular undesirable conditions from 
occurring. 

3. Related Work
 
Andreatta [1] proposed ground holding to free flight: An 
exact approach. In which observes the congestion in air 

traffic networks is a serious problem and has received a lot 
of attention both from the aviation authorities and from the 
scientific research community. J Atkin [2] proposed On-line 
decision support methodology to tackle the complex 
problem faced every day by runway controllers at London 
Heathrow Airport. Aircraft taxi from stands to holding areas 
at the end of the take-off runway where they wait in queues 
for permission to take off. J Beasley [3] proposed on 
displacement problem arises when we have to make a 
sequence of decisions and each new decision that must be 
made has an explicit link back to the previous decision that 
was made. This link is quantised by means of the 
displacement function. D Bertsimas [4] proposed the model 
decides on the departure time and sector occupancy time of 
each aircraft. The model enables very efficient computation 
of optimal solutions, since several of the consflights provide 
facets of the convex hull of solutions. H Idris [5] adapted a 
refined benefits assessment of multicenter traffic 
management advisor for philadelphia and new York. One of 
the major goals of the Federal Aviation Administration 
(FAA) is to ensure the safe, efficient, and orderly movement 
of air transportation through the air traffic management 
(ATM) system, including both domestic and oceanic 
airspace. 
 
4. Proposed Architecture 
 

The Proposed System will consider more input parameters 
for rate profiles and for long resource scheduling. The 
proposed method is applied to the maximization of aircraft 
arrivals and minimization of delays in the arrival airspace 
due to exogenous capacity reductions. The objective 
function measurements [8] to iteratively update system 
control parameters until parameter values are reached which 
locally optimize the objective function. In proposed system 
CART algorithm were used to prevent the accident and 
incident vectors and identified patterns of factors which are 
significantly associated with accidents or with incidents. The 
findings were ranked using Cluster similarity measure. 
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Results of the analyses conducted on multiple databases 
were compared at the end 
 
4.1 Data Pre-Processing 
 
Our study analyzed the underlying factors of accidents and 
incidents. The historical data on incidents is large enough to 
represent these factors qualitatively. Also, we consider all 
factors that are present in the events, primary or 
contributory. This minimizes the impact of the bias in 
reporting a factor as contributory versus primary. We first 
developed a common taxonomy across the accident and 
incident databases to identify common fields (factors) 
between the two classes of events. We then transformed 
each report into a vector consisting of the common fields 
populated with their corresponding values for each report. 
We applied the CART algorithm to the accident and incident 
vectors and identified patterns of factors which are 
significantly associated with accidents or with incidents. The 
findings were ranked using Cluster similarity measure. 
Results of the analyses conducted on multiple databases 
were compared at the end. 
 
4.2 CART Algorithm 
 
CART stands for classification and regression trees, a non-
parametric statistical algorithm developed by Leo Breiman 
et al. The non-parametric approach of CART does not 
depend on any function to describe the relation between data 
sets. CART can be used to predict or analyze both 
categorical (classification) and continuous or numerical 
(regression) data. A unique feature of CART is that it 
illustrates the data in the form of a decision tree, unlike other 
statistical analysis procedures. The tree structure allows 
CART to handle complex data, presenting the output in the 
form of diagrams that are easy to understand. CART does 
not require variables to be selected in advance. CART is a 
binary recursive partitioning technique. The term binary 
implies that each data set is represented by a node in a 
decision tree, which can only be split into two subsets; the 
tree starts from the root node containing the data objects, 
which is split into two child nodes. Thus each resulting node 
can be split into another two child nodes, depending on the 
splitting criterion for the variable selected from the group of 
independent or explanatory variables. CART is recursive 
because binary partitioning can be repeated to split the data 
into additional children nodes. The result of the split can be 
a terminal node, which implies that it cannot be split further, 
or a parent node, which consists of objects to be divided 
again into two child nodes. This process of splitting is 
repeated until resulting child nodes are homogeneous; the 
condition that requires the objects in the node to be similar 
or the child node should contain a predefined number of 
objects. 
 
The following is a pseudo procedure:  
Step 1: 
Start with root node (t = 1) 
Step 2: 
Search for a split s* among the set if all possible candidates 
s that gives the purest decrease in impurity. 
Step 3:  
Split node 1 (t = 1) into two nodes (t = 2, t = 3) using the 
split s*. 

Step 4:  
Repeat the split search process (t = 2, t = 3) as indicated in 
steps 1-3 until the tree growing the tree growing rules are 
met. 

 
4.3 Ranking Using Clustering Algorithm 
 
Once significant factor-sets were identified by the algorithm 
[9] m, we ranked them based on the fuzzy cluster measure. 
We calculate the Factor Support Ratio for each factor-set as 
the ratio of the factor-set’s support in accident dataset over 
its support in the incident dataset. The information conveyed 
by this measure about the factor-set is different than that of 
the deviation (the difference between the factor-set’s 
accident and incident supports) that is used in the algorithm. 
The Support Ratio is the probability of a factor-set being 
involved in an accident divided by its probability of being 
involved in an incident. Consider factor sets A and B and 
their corresponding measures. 
 
4.3.1 Algorithm 
The process of growing the tree by CART is summarized as 
follows: 
 
 Assign the data objects to a root node. 
 Select splitting criterion and explanatory variable that 

reduces impurity. 
 Split the root node into two child nodes by dividing the 

data objects according to splitting criterion and 
independent or explanatory variable selected from the 
group of data objects. 

 Repeat the above two steps considering each resulting 
node as a parent node until the maximum size tree is 
obtained. 

 Prune the tree by eliminating a group of nodes using cross 
validation and cost complexity. 

 
The process of tree building begins by splitting the root node 
into two child nodes. CART computes the best split by 
considering all probable splits for each independent or 
explanatory variable. The best split is obtained when the 
impurity function, which exists between the parent node and 
two child nodes, is minimized. For a classification tree, the 
impurity measure i(t) is computed using different criteria 
such as the Gini Index, Entropy Index ,and Towing rule, 
which determine the best split. For a regression tree, where 
the response variable is numerical, Least-Square where 
Nw(t) is the measure of the weighted number of objects in 
node t, wi is the value of the weighting variable for object i, 
ft is frequency variable, yi is the value of dependent or 
response variable, and y(t) is the mean of the values of 
objects in node t . Using best split, which reduces impurity 
as a splitting criterion, an over large or complex tree is 
grown following recursive partitioning of the nodes. This 
process of tree building continues until the values of all the 
objects in all of the terminal nodes are homogeneous or 
similar or when the objects in the terminal nodes reach a 
predefined number, in the case of a regression tree. The tree 
building process in case of a classification tree stops when 
all the objects in the terminal node belong to same class. 
 
4.3.2 Algorithm 
If D contains only leaf node training examples of the same 
class Cj then make T a labelled with class Cj CART 
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Algorithm After getting the accident dataset and candidate 
set, we will build the decision ladder. First, we resort to the 
association rules to sort the category, for example with the 
rule {ti}→{ci}, if we get {ti} in one document then we can 
make ti a decision node and make it left child labelled with 
ci , and for every ti , if we have the rule ,we name it effective 
rule. And then we start with the most frequent category to 
find the decision tree node. If we cannot find any effective 
rule, we compute the entropy of each attribute and find the 
most proper attribute as the decision node. Below give a 
detail description about how to make a the decision ladder 
 
4.4 Proposed population heuristic for Aircraft Landing 
for Scheduling 
 
The Population Heurisic that we have developed for the 
aircraft landing problem. For reasons relating to commercial 
confidentiality however, we have had to omit from our 
discussion a number of the computational devices we 
adopted to speed the convergence of our population 
heuristic. In order to explain our PH we introduce the 
following notation: 
 
P be the number of aircraft 
Ei be the earliest landing time for aircraft i  
(i=1,. , P) 
Li be the latest landing time for aircraft i  
(i=1. . . P) 
Ti be the target (preferred) landing time for aircraft I (i=1. . . 
P) 
Sij be the required separation time (>=0) between aircraft I 
landing and aircraft j landing (where aircraft i lands before 
aircraft j), i=1, . . . ,P; j=1, . . . , P;i != j.  
 
All of the above have known values in any given situation 
and typically all times are expressed in seconds. Our 
decision variables (what we are trying to decide) are: xi the 
scheduled landing time for aircraft i. The problem therefore 
is to decide values for the xi which lie in the time windows 
[Ei, Lj] and satisfy the separation criteria, whilst attempting 
to ensure that aircraft land at (or before) their target time. 
Below we discuss the elements of our PH relating to: 
 
 Representation, how we represent a solution to the 

problem in our PH 
 Fitness, assessing the value of a solution; 
 Parent selection, choosing who shall have a child; 
 Crossover, having a child from parents; 
 Dealing, with the separation constraints; 
 Population replacement, placing the child in the 

population. 
 

5. Experimental Results 
 
The dataset of “national” size consider 30 airports, 10 of 
which are hubs, 145 sectors and 22 time periods. All the 
instances involve 6,475 flights with 5,180 connecting flights 
(80%). For these instances the nominal capacity of the sector 
is set to 130 per period. The capacity of sectors affected by 
the weather front is reported in the first column of Tables 2 
and 3 as a percent of this nominal capacity of 130. 
 

In order to compare the results achieved by our PH and Cart 
algorithm with CSP and DS sequencing decisions the case 
where aircraft land in the same order as they did on the day 
in question, but respecting time windows and with the 
minimum possible separation time, we refer to as the 
ACTUAL case. By using the minimum possible separation 
time here we are able to compare the controller sequencing 
decisions against the PH sequencing decisions with any 
effects due to aircraft not landing with the minimum 
possible separation time removed from the comparison. In 
order to get a numeric evaluation of the results of our PH 
with CART as compared with the CSP and DS case we 
consider: 
 
Time span D the time to land all the aircraft, max[xi 
jiˆ1;...;P] 

Average delay =  
 
Maximum delay - Dmax[Di ji ˆ 1;...;P] 
 
Timespan was felt to be of importance as it gives some 
insight into the possibility of gaining extra capacity in the 
long term. Average delay and maximum delay give insight 
into the immediate effects of improved sequencing 
decisions. 
 
 Comparing the PH solution shown in Figure with the 
ACTUAL case timespan decreased from 1894 to 1853 s (ie 
41 s were saved), average delay decreased by 40 s, but the 
maximum delay increased by 187 s. The significance of 
these results depends upon your viewpoint. From the 
viewpoint of an aircraft passenger a reduction in average 
delay of 40 s is hardly significant=noticeable. However, 
from the viewpoint of London Heathrow, and of NATS, 
reducing the timespan by 41 s equates to a percentage time 
saving of 100(41=1894) 2.16 %, since in the ACTUAL case 
the last aircraft landed 1894 s after the start of the time 
period. Were this to be repeated across time such a saving 
would have the potential for Heathrow to cope with 
(approximately) one extra landing per h. This would be a 
significant improvement. 
 
The results quoted above (reduced time span and reduced 
average delay, but increased maximum delay) are indicative 
of the tradeoffs that occur in deciding a landing schedule. 
Indeed, across the data sets we considered in our 
investigation, we commonly found that time span an average 
delay could be reduced, provided we were prepared to see an 
increase in the maximum delay. The proposed Cart 
algorithm mines the data very fast to give alert for pilots 
within fraction on seconds. We had tested the algorithm with 
different no of records and output timing is provided as in 
Table 1.  
 
For the instance plotted in Table1 when the capacity is 40% 
of the nominal value, the reduction in assigned ground and 
airborne holding delay is more than 15%: the amount of 
ground delay assigned by the model drops from 699 time 
units without rerouting to 600 when rerouting is an option 
(scale on the diagram). Model with and without rerouting. In 
problem instances where congestion is limited, i.e., when the 
reduction of capacity is small, the effect of rerouting is null, 
as expected, because all aircraft can fly their preferred route.  
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Table 1: Accuracy Values 
No.  of  
DATA

CSP
Algorithm 

DS
Algorithm 

PH & CART 
Algorithm 

5000 500 m sec 490 m sec 469 m sec 
4000 450 m sec 439 m sec 412 m sec 
3000 375 m sec 366 m sec 355 m sec 
2000 235 m sec 224 m sec 201 m sec 
1000 112 m sec 102 m sec 98 m sec 

Table 2: Comparison of Speed and Accuracy
Algorithm Speed Accuracy 

 CSP  65.88 % 50.89% 
 DS 68.3 55.89 
 PH Cart algorithm 79.86 67.9% 

5.1 Cart Misclassification Rate 
 
Misclassification rate to decide on where to split the tree 
which is used in the pruning. The key term is the relative 
error (which is normalised to one for the top of the tree). The 
standard approach is to choose a value of a, and then to 
choose a tree to minimise 
 
Ra =R+ assize 
 
Where R is the number of misclassified points and the size 
of the tree is the number of end points. “cp” is a/R(root tree). 
 
Example:  
 
If Tree Size is R = 2000 
And no of data slip in Route Tree a = 3000 
ER=3000/2000 = 0.6667 

 
Table 3: Misclassification rates of CART 

Size of the Tree Error rate on Testing Error Rate after training
0 1.000 1.000 
1 0.5210 0.5245 
2 0.3120 0.3250 
4 0.2960 0.3050 
5 0.2920 0.3115 
8 0.2810 0.3120 
9 0.2785 0.3085 
13 0.2675 0.3105 
16 0.2615 0.3075 
20 0.2545 0.3105 
23 0.2495 0.3175 
25 0.2470 0.3195 
 

 
Figure 1: Misclassification rate 

6. Conclusion
 
The proposed distributed scheduler assigns delay such that 
no sector along the route of flight of a scheduled aircraft is 
given a problem that exceeds its capability to incur delay. In 
routine operations, this would translate into the absence of 
the need for airborne holding. However, there may still be 
cases of sudden, unplanned drops in capacity that would 
require delay on aircraft beyond the capability of the 
remaining sectors. In such cases airborne holding or 
extended vectors would need to be used, but the use of the 
system should significantly reduce unplanned airborne 
holding. This paper also proposes a covered flight 
scheduling by analysing accident dataset. Depending on the 
availability of the data, the studies could be extended to 
other regions. The Population Heuristic that we have 
developed for the aircraft landing problem, proper 
scheduling, speed and accuracy it done with the help of the 
CART algorithm implemented to the scheduling and 
incident vectors and identified patterns of factors which are 
significantly associated with scheduling or with incidents. 
Further this proposed work can be extend to model for 
multiple aircraft. The problem of routing under convective 
weather becomes much more complex in a congested 
airspace because both aircraft conflicts and traffic flow 
management issues must he resolved at the same time. 

7. Future Work 
 
Since the system does not provide any optimization per 
second, future work should include the incorporation of 
optimization routines to improve throughput and reduce 
delay. Such routines will need to operate in real-time, which 
will be a challenge given the size of the problems and the 
number of flights involved. However, the system provides a 
framework within which optimization can be accomplished 
while still ensuring feasible solutions are presented to 
controllers and traffic managers. Further this research work 
can be extend to model for multiple aircraft. The problem of 
routing under convective weather becomes much more 
complex in a congested airspace because both aircraft 
conflicts and traffic flow management issues must he 
resolved at the same time. To provide a dynamic routing 
strategy for multiple aircraft that minimizes the expected 
delay of the overall system while satisfying the 
consideration of the constraints obtained by the sector 
capacity, as well as avoidance of conflicts among the 
aircraft. Moreover, we have used a more general weather 
dynamic model where it will predict accidents free zone in 
the future work. 
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