
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 1, January 2014
www.ijsr.net

Current States of Aspect Oriented Programming Metrics
Esubalew Alemneh

School of Computing and Electrical Engineering, Bahir Dar University
P. O. Box 26, Bahir Dar, Ethiopia

Abstract: Aspect Oriented Programming (AOP) is a new technology for separating crosscutting concerns that are usually hard to do in
object-oriented programming. As AOP has better capability to handle crosscutting concerns than object-orientation it helps to write
more modularized and more maintainable code. And numerous publications discuss about the advantages of AOP design and
implementation. However, with respect to metrics for this new programming paradigm the work is in its infancy. In this paper we have
surveyed, summarized and reviewed all available internal metrics for aspects-oriented systems.

Keywords: Aspect Oriented programming, software metrics, crosscutting

1. Introduction

Programming in its outset was done by plugging and
unplugging cables. Then it is evolved to assembly language
where programming is done by using zero and one. In this
era only experts can write a program using such method.
Meanwhile human like non-structural programming
language called FORTRAN is emerged. This programming
language has replaced cumbersome and challenging
programming by much easier and simpler on. People were
not still satisfied with the existing programming paradigm
and come up with structured imperative languages like
ALGOL, Pascal and then to the object-oriented paradigm,
with languages like Smalltalk, C++ and Java which is the
fourth level of programming structure and evolution. The
evolution of program paradigm has not give up yet. An ever-
growing complexity of software has revealed the
weaknesses of Object oriented programming. To deal with
this problem a new programming paradigm, aspect-oriented
programming has emerged.

In an Object-Oriented (OO) application, classes collaborate
to achieve the application's overall goal. However, there are
parts of a system that cannot be viewed as being the
responsibility of only one class, they cross-cut the complete
system and affect parts of many classes. Aspect-oriented
software development (AOSD) is a technique to support
separation of concerns in software development [2]. AOSP
which may arise at any stage of software life cycle,
including requirements specification, design implementation
etc, involves modularizing crosscutting aspects of a system.
Some of examples of crosscutting aspect are logging,
exception handling, synchronization, resource sharing,
performance optimization and security.

Aspect-oriented programming (AOP) is a promising new
software development technique claimed to improve code
modularization and therefore reduce complexity of object-
oriented programs [1, 11]. In this paradigm a new kind of
component called aspect to model the crosscutting concerns
in software system is introduced. An aspect is a modular
unit of crosscutting implementation. It is defined very much
like a class (aspect oriented system also contains classes),
and can have methods, fields, and initializers and pointcuts,
advice and introductions for the crosscutting
implementation. This concepts and methods can be
implemented in one of AOP languages. The most popular

example is Aspect J, which has been created at Xerox
PARC. It is a seamless aspect-oriented extension to java.
AOP and hence AspectJ highly relies on object-oriented
programming principles.

Although plenty of research in a software metrics has been
focused on procedural or object-oriented software as well as
software architectures until now, a little is done on metrics
of aspect oriented programming [5]. The emphasis is on
problem analysis, software design, and implementation
techniques. But, there must be a rigorous and quantitative
way, at least, to evaluate these design techniques. Software
developed using AOSD is deemed to have high quality. But,
unfortunately there are no sufficient methods to prove this
quantitatively, albeit the statement seems to be correct.

AOP is inherently originated from Object-Oriented
Programming (OOP) and procedural programming concepts.
So, though it cannot be applied directly from its origin,
existing metrics from OOP and procedural programming can
be used as a starting point to measure AOP metrics.
Accordingly, some metrics has been purported for AOP
though validated rarely. Examples include coupling,
cohesion, complexity, crosscutting metrics, and program
structure metrics. For some of these metrics theoretical
validation has been addressed. To the best of our knowledge
no empirical validation has been addressed to AOP metrics
mentioned above. Validating these metrics is very important
to have meaningful measures and to predicate external
attributes like usability, maintainability and reliability.

The rest of the paper is organized as follows. Section 2
summarizes the works done on metrics of AOP. Some
selected example metrics and frameworks are discussed in
section 3. The summary of metrics of AOP is also presented
in tables in section 3. Finally, at section 4 conclusion and
future works are given.

2. Related Works

Software metrics have always relied strongly on the
paradigm used in the respective period. Among the earliest
metric, McCabe Cyclomatic complexity number was design
for measuring the testing efforts written using the non-
structural FORTRAN program [12]. Implementations of
object-oriented programming methods have large procedural
components. In turn implementation of AOP is highly relied

Paper ID: 02013755 142

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 1, January 2014
www.ijsr.net

on OOP principles [1]. Thus most of the metrics for AOP
are derived from the concepts of OOP. Figure 1 shows the
framework of OOP measure as formulated in [13]. This
framework can be generalized or can be customized to
measure metrics of AOP.

Based on dependence model some metrics are proposed to
quantify information flow of aspect-oriented programs [5].
The dependence graphs of the model are defined at three
levels (module-level, aspect-level and system-level) and for
each level different kinds of metrics are defined.

Figure 1: An object oriented measurement framework

Coupling for aspect oriented is derived from Chidamber and
Kemerer’s framework for Object-Oriented measures. Zhao,
Bartsch and Harrison define coupling measures for aspect-
oriented programming [2, 7]. Zhao designs coupling
framework for AO system and formally define various
coupling measures in terms of different types of
dependencies between aspects and classes only, while
Bartsch and Harrison focuses on the evaluation of five
aspect-oriented coupling measures in the intension of
increasing quality of software.

The first attempt to measure cohesion of aspect-oriented
system is made by Zhao [4]. In this work an approach for
assessing the aspect cohesion based on dependence analysis
is proposed. Another work regarding cohesion is by Gelinas
J., Badri M., and Badri L, in [9] in which they have
proposed a new approach for aspect cohesion measurement
based on dependencies analysis. Several cohesion criteria
taking into account aspects' features and capturing various
dependencies between their members are introduced. They
also proposed new aspect cohesion metric and compare it,
using several case studies.

There is no appropriate metric tool to present quantitative
results on the structural complexity of AOP programs [1].
Lack of multiparadigm metrics that are valid on both
Object-Oriented and generic paradigm is one of the reasons.
Pataki, Sipos and Porkolab have analyzed the GoF design
patterns and their implementations in pure Java and an AOP
version in AspectJ in order to answer questions such as why
is it easy to understand some solutions than the others if they
are implemented using different paradigms. Their findings
show that aspect-orientation does not necessarily reduce the
complexity in its own.

A basic code metrics that categorize crosscutting according
to the number of classes crosscut and the language
constructs used are presented by Roberto and Sven [3]. The
metrics are applied to four non-trivial open-source programs
implemented in AspectJ and it is found that the number of
classes crosscut by advice per crosscutting is small in
relation to the number of classes in the program. Apel Sven,
Batory Don, Rosemuller Marko, in [17] concentrated in the
crosscutting concern in presenting a framework for
classifying the structural properties of crosscutting concern
into those benefit from AOP and that should be
implemented by OOP mechanism.

No metrics for AOP is validated though some of the metrics
may be well -defined. A short overview on the necessary
steps for validating definitions and applications of metrics
that are to be used in an evaluation process are depicted in
[6]. Unless the metrics are well-defined and validated the
usefulness of the metrics is in question.

3. Metrics of AOP

Software metrics have many applications in software
engineering tasks such as program understanding, testing,
reuse, maintenance, and project management. Though not
much, some metrics are proposed to AOP. Almost all
metrics proposed for AOP are based on AspectJ
implementation of aspect-orientation. In the following
subsections we will summarize the well-known internal
metrics of AOP.

3.1 Coupling

Coupling is an internal software attribute which measures
the degree to which each program module relies on each one
of the other modules. Coupling is thought to be a desirable
goal in software construction, leading to better values for
external attributes such as maintainability, reusability, and
reliability [2]. Low coupling is the characteristics of good
software design. Coupling in AO system mainly appears
between aspects and/or classes (basic components of AOP)
through advice, inter-type declaration, pointcut, and method
call.

Although coupling has been widely studied for object-
oriented system, only few researches has studied coupling in
aspect oriented systems. Zhao J has proposed a measure
suite for assessing the coupling in AO systems [2]. In this
work first they have presented a coupling framework for AO
system which specially designed to count dependencies
between aspects and classes in the system (though aspect
might contain interface they haven’t considered it). And
then various coupling measures in terms of different types of
dependences between aspect and class are formally defined
based on the metrics. Finally the mathematical properties of
this measures have been discussed, in which they showed
that the measure satisfy the properties that a good coupling
measure should have.

In other work evaluation of coupling measures for AspectJ
has been conducted. The focuses were on the evaluation of
five aspect oriented coupling measures with the aim to
constructively increase the quality of software evolution [7].
These five coupling measures, which are suggested by

Paper ID: 02013755 143

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 1, January 2014
www.ijsr.net

cecceto and Tonella previously, are coupling on advice
execution (CAE), coupling on intercepted module (CIM),
coupling on method call (CMC), coupling on field access
(CFA), and crosscutting degree of an aspect (CDA). Some
of these metrics are well-defined but no metrics is validated
from measurement point of view. So, all measures including
coupling measures need to be validated to gain confidence
in the results taken from the measurement.

3.2 Complexity

Metrics for assessing the complexity of aspect-oriented
software, which are specifically designed to quantify the
information flows in aspect oriented program, is proposed
by Zhao in [5]. The metrics are defined based on a
dependence model of aspect oriented software. The model
has three level dependence graph; module level dependence
graph, aspect level dependence graph and system level
dependence graph. For each level different metrics has been
identified. Some object oriented or procedural programming
complexity metrics like McCabe’s cyclometic complexity
can also be directly adapted to measure section of aspect
oriented program.

A multiparadigm metric to measure the complexity of aspect
oriented programs is studied in [1]. The metrics are used to
compute structural complexity of all the object oriented,
aspect oriented and procedural component of AOP code,
hence called multiparadigm. Pure object oriented
programming by java and aspect oriented programming by
AspectJ are used to implement Gang-of-Four (GoF) design
patterns which are functionally equal. The metrics used is
AV complexity. The implementations are tested and the
metrics revealed that aspect orientation doesn’t necessarily
the complexity in its own. The complexity highly depends
on the nature of the actual problem.

3.3 Cohesion

Cohesion refers to the degree of relatedness between
members of a software component and mainly about how
tightly the attributes and modules cohere. It is a structural
attributes whose importance is well recognized in software
engineering community and is considered to be a desired
goal in software development, leading to better values for
external attributes. Several metrics have been proposed in
order to assess cohesion of aspects -oriented software [4].
Their approach for aspect cohesion measurement based on:

a. Dependencies analysis
Jean-François Gélinas, Mourad Badri and Linda Badri in
[9] has introduced several cohesion criteria taking into
account aspects' features and capturing various
dependencies between their members. The proposed
metric measures the degree of relatedness of its modules
called ACoh metric. A low value of ACoh indicates that
the aspect members are poorly related.

b. Dependency graphs
Zhao and Xu's approach [4] is the first proposal in the
field of aspect cohesion measurement. It is based on a
dependency model for aspect-oriented software that
consists of a group of dependency graphs. According to
Zhao and Xu’s approach, cohesion is defined as the

degree of relatedness between attributes and modules.
Zhao and Xu present, in fact, two ways for measuring
aspect cohesion based on inter-attributes, inter-modules,
and module-attribute dependencies.

c. Lack of Cohesion in Operations
Sant Anna et al. proposed in [8] an extension of the well-
known Lack of Cohesion in Methods (LCOM) metric
developed by Chidamber and Kemerer [10] for OOP.
The proposed metric LCOO (Lack of Cohesion in
Operations) measures the amount of method/advice pairs
that do not access to the same instance variables. This
metric measures the lack of cohesion of a component. A
high LCOO value indicates disparateness in the
functionality provided by the aspect.

3.4 Crosscutting Metrics

Despite of the fact that aspects improve modularization by
crosscutting concerns little research has been done in
characterizing and measuring crosscutting concerns [3].
Crosscutting can be dynamic or static; static crosscuts affect
the static structure of a program while dynamic crosscuts
run additional code when certain events occur during
program execution. Homogenous concern is one that applies
a same piece of advice to several places; whereas a
heterogeneous concern applies different pieces of advice to
different places [3]. Adapting these concepts the following
metrics are defined;

 FCD, Feature Crosscutting Degree, Corresponds to the
number of classes that are crosscut by all pieces of advice
in a feature and those crosscut by the inter-type
declarations.

 ACD, Advice Crosscutting Degree. Corresponds to the
number of classes that are crosscut exclusively by the
pieces of advice in a feature.

 HQ, Homogeneity Quotient as the division of the advice
crosscutting degree (ACD) by the feature crosscutting
degree (FCD):

 PHQ, Program Homogeneity Quotient. It corresponds to
the summation of the homogeneity quotients for all the
features in a program, divided by the number of features
(NOF).

 Classes, interfaces, and aspects (CIA) project. The CIA
metric determines the number of occurrences (NOO) of
classes, interfaces, and aspects, as well as the LOC
associated with each. It tells us if aspects (as opposed to
classes and interfaces) are a small or a large fraction of the
used modularization mechanisms in a software project,
and if these implement a significant or only a small part of
the code base of that project [17].

 CRR, Code Replication Reduction. Determine the
reduction in the LOC when using the homogenous advice,
roughly the number effected join points, multiplied by the
LOC associated with them [17]. Overall code reduction
born from the sum of the saved LOC of all advice and the
intertype declarations. They argued that the structure of a
concern decides over how it is implemented.

 Degree of Scattering (DOS). Measure the difference
between the concentrations of concern over all
components with respect to the worse case. A high DOS
indicated the implementation of a concern is highly
crosscutting [18].

Paper ID: 02013755 144

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 1, January 2014
www.ijsr.net

 Degree of Focus [DOF]. Show the variances of the
dedication of a component to every concern with the
respect of worse case. The average degree of focus gives
an overall picture of how well concerns are separated in
the program [18].

Note that features refer to aspects, classes or interfaces.

3.5. Program Structure Metrics

The following are list of program structure metrics for AOP
as mention in [3]. They represent the contribution of aspects
to the overall structure of programs measured in line of
code.

 Number of features, NOF, Counts the number of features
in a program.

 Number of Aspects, NOA, Counts the number of aspects
in a program.

 Number of classes and interfaces, NCI, Counts the
number of classes and inheritances in a program.

 Base Code Fraction, BCF, Corresponds to the number of
lines of the code that come from standard java classes and
interfaces relative to the line of code in the program.

 Aspect code Fraction, ACF, Corresponds to the numbers
of line of code that come from aspects relative to the line
of codes in a program.

 Introduction Fraction, IF, Corresponds to the numbers of
line of code that come from introductions or inter-type
declarations relative to the line of codes in a program.

 Advice Fraction, AF, Corresponds to the numbers of line
of code that come from piece of advises relative to the line
of codes in a program.

To sum up, though metrics which are not validated can be
useful in some circumstances all metrics should be validated
in order to have assurance on the results of measures. No
AOP metrics are validated thought some are defined. For
defined it means the metrics can be mapped without any
ambiguity to the framework of the attribute and validation
refers to the conformance to validation framework. Except
coupling, to the best of our knowledge, all other metrics of
AOP have no frameworks of well-definedness and
validation. So, we cannot attribute these metrics as defined
or validated. In addition different measures of an attribute
which are proposed by different people can be somehow
overlapping, but as long as they are not exact copy of one
another we presented all in the following tables

Table 1: Metrics of AOP
Attribute Measures Proposed by
Cohesion Aspect Cohesion (ACoh) Gélinas, Mourad, Linda

(2006)
Lack of Cohesion in
Operations (LCOO)

Anna,Garcia,Chavez, Lucena,
Staa (2003)

Inter-Attribute cohesion* Jianjun Zhao & Baowen Xu -
2004Module-attribute

Inter-module cohesion*
Complexi

ty
Module-level Metrics*

Jianjun Zhao (2002) Aspect-level metrics*
System-level Metrics*
AV complexity Pataki, Sipos, Porkolab

(2004)
Cross

cutting
Feature Crosscutting
Degree (FCD)

Lopez-Herrejon, Apel
(2004)

Advice Crosscutting
Degree (ACD)
Homogeneity Quotient
(HQ)
Program Homogeneity
Quotient (PHQ)

Program
Structure
Metrics

Number of features

Lopez-Herrejon, Apel (2004)

Number of Aspects
Advice Fraction (AF)
Base Code Fraction(BCF)
Aspect code Fraction
Introduction Fraction (IF)
Number of classes and
interfaces(NCI)

Items with * indicate it may contains more than one
measure.

Table 2: Coupling and its measures
Attribute Measure Proposed

by
Defined Validated

Coupling coupling on advice
execution (CAE)

Cecceto
and

Tonella,
2004

No No

coupling on intercepted
module (CIM) Yes No

coupling on method call
(CMC) No No

coupling on field access
(CFA) No No

Crosscutting degree of an
aspect (CDA). No No

Attribute-class dependence
measure

Jianjun
Zhao,
2003

No No

Module-class dependence
measure
Module-method dependence
measure
Aspect-Inheritance
dependence measure

4. Conclusion and Future Work

In an OO application classes collaborate to achieve the
application's overall goal. However, there are parts of a
system that cannot be viewed as being the responsibility of
only one class, they cross-cut the complete system and affect
parts of many classes [16]. AOP is the solution for this
problem. But measure of this new programming language is
rarely done. In this paper we have summarized the metrics
available for AOP. Almost all metrics are not well-defined
and validated although the metrics proposed are few in

Paper ID: 02013755 145

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 1, January 2014
www.ijsr.net

number. Some future research directions on AOP metrics
are definition of new metrics for the language and design
and evaluation of frameworks to evaluate the well-
definedness and validation of existing and new metrics.

Reference

[1] Pataki N. Sipos A., and Porkolab Z., “Measuring the
complexity of Aspect-Oriented programs with
Multiparadigm Metric”, 2004.

[2] Zhao, J., “Measuring Coupling in Aspect-Oriented
Systems”, Technical Report SE-142-6. Information
Processing Society of Japan (IPSJ), June (2003).

[3] Lopez-Herrejon R. E. and Sven A., “Measuring and
characterizing crosscutting in Aspect-Based programs:
Basic Metrics and Case Studies”, 2004.

[4] Zhao, J. and Xu, B., “Measuring aspect cohesion”.
Proceedings of the International Conference on
Fundamental Approaches to Software Engineering
(FASE), LNCS 2984, Barcelona, Spain, March 2004.
Springer Verlag, pp.54-68.

[5] Zhao, J. “Towards a Metrics Suite for Aspect-Oriented
Software”. Technical-Report SE-136-25, Information
Processing Society of Japan (IPSJ), March 2002.

[6] Mehner K., “On using Metrics in the Evaluation of
Aspect-Oriented Programs and Designs”, 2005.

[7] Bartsch, M., Harrison, R, “An Evaluation of Coupling
Measures for AspectJ”, LATE Workshop AOSD
(2006).

[8] C. Sant'Anna, Alessandro Garcia, Christina Chavez,
Carlos Lucena & Arndt von Staa, “On the Reuse and
Maintenance of Aspect-Oriented Software: An
Assessment Framework”. XXIII Brazilian Symposium
on Software Engineering, Manaus, Brazil, October
2003.

[9] Jean-François Gélinas, Mourad Badri, Linda Badri, “A
Cohesion Measure for Aspects”, Journal Of Object
Technology, Vol. 5, No. 7, pp 97-114, September-
October 2006.

[10] S.R. Chidamber and C.F. Kemerer,”A Metrics suite for
object Oriented Design”, IEEE Transactions on
Software Engineering, Vol. 20, No. 6, pp. 476-493,
June 1994.

[11] The AspectJ Team, “The AspectJ Programming Guide,”
2001.

[12] McCabe, T.J.,” A Complexity Measure, IEEE Trans.
Software Engineering”, SE-2(4), pp. 308-320, 1976.

[13] Sandeep Purao and Vijay Vaishnavi; “Product Metrics
for Object-Oriented Systems”, SANDEEP PURAO,
ACM Computing Surveys, Vol. 35, No. 2, June 2003,
pp. 191–221.

[14] Chidamber S.R., Kemerer, C.F., “A metrics suit for
object oriented design”, IEEE, Trans. Software
Engeneering, vol.20, pp.476-498, (1994).

[15] Apel Sven, Batory Don, Rosenmuller Marko. “On the
Structure of Crosscutting Concerns:Using Aspects or
Collaborations?”, 2007

[16] Marc Eaddy, Alfred Aho, “Towards Assessing the
Impact of Crosscutting Concerns on Modularity”, 2007

Author Profile

Esubalew Alemneh Jalew has received his Bachelor of Science
degree in Computer Science from Addis Ababa University,
Ethiopia and his masters in computer science from Universiti Putra
Malaysia. Now he is a lecturer in Bahir Dar University, Ethiopia.

Paper ID: 02013755 146

