
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 1, January 2014
www.ijsr.net

Identification of Software Rot Using Range Control
Limits

Harinder Kaur1, Raveen Bajwa2

1M. Tech., Computer Science & Engineering, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib, India

2Assistant Professor, Department of CSE/IT, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib, India

Abstract: In this research work we have developed a threshold algorithm that helps to differentiate the metrics values into four
categories for identification of degree for software rot ,that might occur in life cycle of software project been build, development and
release based on agile development model .Our algorithm make use of dynamic range values for each metric rather than using simply
mean for calculating multiple deviations for degree of software rot .As a result from this algorithm we can infer how much prone is
software project leading to software rot or near amendment of software project.

Keywords: Software rot, Agile development model, Conflicts, Software Erosion

1. Introduction

Agile Model does not involve long term planning as it works
by breaking tasks into small increments with minimal
planning. At the end of the iteration a working product is
demonstrated to stakeholders [3]. This minimizes overall
risk and allows the project to adapt to changes quickly.
Multiple iterations might be required to release a product or
new features hence Change is intrinsic to agile model [2].
However, Agile development also has its other side, due to
its inherent nature of dealing with change from the
stakeholders of the project, it becomes constant source of
change leading to conflict, abandonment and non
conformance of standards and increased friction between the
parties, then the incremental nature of its releases, gives
unfound opportunities to keep on rethinking, refactoring
each aspect of the project from different Identifying Degree
of Software rot using Range control limits levels of
management etc. There is no final agreement and
disagreement, everything is left for next meeting, for next
iteration, this may lead to software rot and finally gives the
way to software project dissolvent although Agile model
fulfill the customer need from beginning to end and
continuous improvement to add into valuable software.
Agile allow change in requirements in the late Development
[2]. Agile works on delivering software on regularly interval
However in case of large software deliverables, it is difficult
to assess the effort required at the beginning of the software
development life cycle. There is lack of emphasis on
required designing and documentation [2]. The project can
easily get taken off track if the customer is not clear what
final outcome that they want, only senior programmers are
capable of taking the kind of decisions required during the
development process. Hence it has no place for new/novice
programmers, unless combined with experienced resources.
Daily cooperation between business people and developers
throughout the project include face-to-face conversation [3]
leading to wastage of time with no desired results. It does
not provide detail documentation at end which may lead to
problem on later stages of maintenance [2], which may
change to software rot or design erosion in future.

Software designs tend to erode over time to the point that
redesigning from scratch becomes a feasible substitute

compared to extending the life of the existing design [4].
Software leads to erosion when inappropriate software
model testing tools are used there is increase in complexity
(due to high dependency between modules) is one of the
main cause of software rot .When the actual developer are
no longer part of the project and their undocumented
documentation may also lead to architectural drift for the
new inexperienced developer [4]. Inadequate requirement
[7] and time pressure are two more factors which cause
software rot [6]. Unused code (interfaces etc.) which
normally remain unexecuted start containing bug, with
change in user requirements and other environmental
factors, this code may executed later thereby introducing
bugs and making the software less functional and redundant
[6]. We have surveyed various related work on interpersonal
conflicts and software rot as mentioned in next section.

2. Related Work

Early phases of software development are more prone to
overall project risks [8]. Five types of interpersonal conflicts
which may lead to project failure as shown in case study of
Enterprise Resource Planning system are presented by
Avinder [9]. Software design erosion is inevitable. There are
number of non technical factors except technical factors that
lead to Design erosion. Software organizations should not be
judged by how effectively they prevent erosion but how
effectively they identify and resolve eroded components [1].
Design decision earlier taken in evolution of system may
conflict with requirements that need to incorporate later in
evolution. In this paper evidence of architecture drift,
vaporized design decision, design erosion has been given the
optimal design strategy does not deliver an optimal design
because of change in requirements in later evolving system
and has also been discussed extension to object oriented
paradigm is required as a solution for design erosion [4].
The decision making system has been proposed using fuzzy
logics to deal with erosion symptoms by firstly recognize
suitable metrics and results the maintenance actions for
system based on resultant symptoms [5]. After conducting
systematic review and interacting with multiple
programmers we have developed a new model to solve these
issues as discussed in next section.

Paper ID: 02013725 52

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 1, January 2014
www.ijsr.net

3. Methodology

This section discusses the various steps involved in
identification of software rot:
3.1. Development of rubic for identification of issues,
metrics that lead to software rot.
3.2. Selection of metrics that influence software rot as
shown in Table 1.

Table 1: Metrics Relationship with Software rot
S.No Metric

name
Relation with Software rot

1 WMC Higher methods per class means more complexity.
2 DIT Increase in density of bugs lead to software rot.
3 NOC High NOC indicates improper abstraction and high

reuse of base class is not good.
4 CBO High CBO it makes the design monolithic and

dependent
5 RFC High RFC susceptibility of changes, Density of

bugs.
6 LCOM High LCOM value susceptible to ambiguity.
7 Ca High Ca means High susceptibility for change.
8 NPM High NPM means class is highly accessible to

complexity and understandability.

3.3. Development of selection criteria for selection of
projects: In this step we have selected those five Open
Source projects written in Java which were introducing
maximum number of insertions and deletions on continuous
basis in the coding by developers in very short span of time,
building a fact that there was conflict between the
developers/analysts or stakeholders as there are continuous
changes in coding affecting the overall project by adding
more tightly coupled classes or methods to base class or
others increasing complexity, ambiguity and improper
abstraction of classes which may ultimately lead to software
rot as shown in Table 2.

Table 2: Projects Description
Project CVS Releases Contributors Total Commits
Orientdb GitHub 8 33 6458
Spout GitHub 0 69 5910
Okhttp GitHub 7 20 541
Jogl GitHub 39 28 5126
RxJava GitHub 48 44 1640

3.4. Algorithm for identification of limits that can help us to
find degree of software rot.

Step-1: Let ‘n’ be the number of Metrics
a. HE is High Prone to Software rot degree,
b. ME is Moderate Prone to Software rot degree,
c. LE is Low Software rot degree.
d. UTH,MTH,LTH representing Upper Threshold , Middle
Threshold, Lower Threshold.
e. STD represents Standard Deviation.
f. Variance is represented by Vi.
g. Let Metric values represented by IN. M represent the
mean of your metric values and n is total no. of metric
values.
Let where M1-array be the numeric values of metric1
Let M2-array be the numeric values of metric2
Let M3-array be the numeric values of metric3
Let M4-array be the numeric values of metric4
Let MN-array be the numeric values of metricN

Step-2: For each metric in metrics
1. Let x1, x2……xn are the metric values (IN). (1)
2. M=x1+x2+xn/n giving the V. (2)
3. Vi=(x1-V)^2+(x2-V)^2+(xn-V)^2 (3)
 4. Vi=(x1-V)^2+(x2-V)^2+(xn-V)^2/n. (4)
 5. STD= Sqrt (Vi). (5)
 6. MULTIPLY STD by 3 giving R. (6)
 7. V+R result it UTH. (7)
 8. V-R LTH. (8)
 IF (IN> UTH) THEN
 {

“add in the group of the high prone to software rot
object”

 }
 ELSE IF (IN<=UTH &&IN>= MTH) THEN
 {

“add in the group of the medium prone to software rot
object”

 }
 ELSE IF ((IN <= MTH) &&(IN>LTH) THEN
 {

“add in the group of the less prone to software rot object”
 }
 ELSE
 {

“add in the group of the no prone to software rot object”
 }

As shown above we have used different equations for
calculations. We have used Equation (4) to calculate
variance and standard deviation has been calculated using
Equation (5). The ranges are calculated from Equations (6)
to (8) and IF-THEN-ELSE control structure is used for
selection procedure as mentioned above.

4. Results and Interpretation

4.1. Weighted Methods per Class (WMC) limits

Figure 1: Weighted Methods per Class

The above bar graph (Figure 1) shows the different threshold
values found by the threshold algorithm for WMC limits. It
is visible from the graph that if the class experiences the
analysis by using tool we have build, we will get value of
WMC metric. If the value of WMC is between 1 and 3 then
there is no probability of Software rot. If value is between 3
and 9.01 there is chances of Software rot which can be

Paper ID: 02013725 53

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 1, January 2014
www.ijsr.net

resolved. If it lies between 9.01 and 54.4 then it is medium
software rot which need to be resolved. If it is above 54.4
then the project will be leading to software rot. High WMC
value in a class means it is highly application specific [10].

4.2. Depth of Inheritance (DIT) limits

Figure 2: Depth of Inheritance

The above bar graph (Figure 2) shows the different threshold
ranges found by the threshold algorithm for DIT. It is
apparent from the graph if the class undergoes the analysis
by using tool we have build, we will get value of DIT
metric. If the value of DIT is close to 1 then there is no
probability of Software rot, if value is between 1 and 2 there
is chances of Software rot which can be resolved or avoided
as it is not risky. If it lies between 2 and 3 its medium
software rot which need to be resolved. If above 4 then the
project will be highly affected and leading to software rot.
The deeper the class hierarchy inherits large methods which
make it more complex for the prediction of its behavior [10],
then will move to conflicts and may cause base for software
rot.

4.3. Number of Children (NOC) limits

Figure 3: Number of Children

The above bar graph shows the different threshold limits
found by the threshold algorithm for NOC as shown in
Figure 3. It is noticeable from the graph if the class
undergoes the analysis by using tool we have build, we will
get value of NOC metric. If the value of NOC is close

between 1 and 2 then there is no probability of Software rot,
if value is between 2 and 3 there is chances of Software Rot
which can be resolved or avoided as it is not risky. If it
ranges between 3 and 4 its medium software rot which need
to be resolved. If above 4 then the project will be highly
endure and leading to software rot. High NOC indicates
improper abstraction, high reuse of base class which is not a
good practice [10].

4.4 Coupling between Object Classes (CBO) limits

Figure 4: Coupling Between Object Classes

As shown in Figure above different threshold ranges found
by the threshold algorithm for Coupling Between Object
Classes Threshold Values .It is given from the graph if the
class undergo the analysis by using our customized tool, we
will get value of this metric. If the value lies between 1 and
2 then there is no probability of Software rot, if value is
between 2 and 7.97 there is chances of Software Rot which
can be resolved or avoided as it is not risky. If it ranges
between 7.97 and 39.2 its medium software rot which need
to be resolved. If above 39.2 then the project will be highly
prone to software rot. High CBO is not desirable
consequently it makes the design monolithic and dependent
and hence much more susceptible to changes since either of
the coupled classes face changes others will require change
thus it will lead to software rot in future[10].

4.5 Response for a Class (RFC) limits

Figure 5: Response For a Class

Paper ID: 02013725 54

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 1, January 2014
www.ijsr.net

As shown in Bar graph (Figure 5) the different threshold
ranges found by the threshold algorithm for Response for
Class. It is traceable from the graph if the class undergoes
the analysis by using customized tool we will get value of
this metric. If the value is close in range from 1 and 4 then
there is no probability of Software rot, if value is between 4
and 27.85 there are chances of Software Rot which can be
resolved or avoided as it is not risky. If it ranges between
27.85 and 141.9 its medium software rot which need to be
resolved. If above 141.9 then the project will be prone to
high software rot. High RFC means High susceptibility of
changes; include Density of bugs [10].

4.6 Lack of Cohesion of Methods (LCOM) limits

Figure 6: Lack of Cohesion of Methods

The above bar graph(Figure 6) shows the different threshold
limits found by the threshold algorithm for Lack of
Cohesion of Methods .It is apparent from the graph if the
class undergo the analysis by using tool we have build ,We
will get resultant value of metric. If the value is close
between 1and 6 then there is no probability of Software rot,
if value is between 6 and 111.68 there is chances of
Software rot which can be resolved. If it ranges between
111.68 and 2227.89 its medium software rot which need to
be resolved. If above 2227.89 then the project will be highly
leading to software rot. High LCOM value implies class
more susceptible to errors and might be disaggregated into
two or more classes and increase complexity [10].

4.7. Afferent Coupling (Ca) Limits

Figure 7: Afferent Coupling

The above bar graph shows the different threshold limits
found by the threshold algorithm for Afferent Coupling as
shown in Figure 7. It is noticeable from the graph if the class
undergo the analysis by using tool we have build, We will

get value of Afferent Coupling metric .If the value of
metrics is close to range 1-2 then there is no probability of
Software rot, if value is between 2 and 3 there is chances of
Software rot which can be resolved or avoided as its not
risky. If it ranges from 3 to 11.61 its medium software rot
which need to be resolved. If above 11.61 then the project
will be leading to high software rot. High Ca leads to High
susceptibility for change.

4.8. Number of Public Methods (NPM) Limits

Figure 8: Number of Public Methods

The above bar graph (Figure 8) shows the different threshold
ranges found by the threshold algorithm for Number of
Public Methods. It is noticeable from the graph if the class
undergoes the study by using tool we have build, we will get
value of this metric. If the value NPM is close to 1- 2 then
there is no probability of Software rot, if value is between 2
and 7.75 there is chances of Software Rot which can be
resolved. If it lies between 7.75 and 48.75 then it leading to
medium software rot which need to be resolved. If above
48.75 then the project will be leading to high software rot.
High NPM means class is highly accessible to other parts of
software thus High NPM leads to High susceptibility for
changes and complexity.

5. Conclusion

In this research work we have been successfully able to
model the interpersonal conflicts reflected in the coding
process of building project by measuring the factor/metrics
that influence the software rot and based on these values we
are able to find the various possible intervals that can be
represented in terms of degree of software rot of overall
projects in agile development model. From all the graph
representations, we can conclude that for these five projects,
the range or threshold limits really varies from metric to
metric and in each case the value/magnitude identified by
the threshold algorithm is quite high. in each case ,For
example WMC(54.4),DIT(4), LCOM(2227.89), Ca(11.61),
CBO(39.2), RFC(141.9), NOC(4), NPM(48.75). It can also
seen that lower bounds found by algorithm basically reflect
the conformance levels which must be maintain for the

Paper ID: 02013725 55

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Volume 3 Issue 1, January 2014
www.ijsr.net

degree of code to remain relevant for current context of its
development in agile development model.eg all this is
apparent from values 1 in case of LCOM ,Ca etc and
conforming to standards .finally we can safely say that this
algorithm can work as base for similar projects studied here
for identification of software rot. Suitable and corrective
measures can be taken as soon as these metric values go
beyond the limits found by this algorithm.

6. Future Scope

We can further extend our work by using machine
algorithms for designing decision support system by
calculating the value of different parameters.

References

[1] V.Gurp, Jilles,Jan Bosch, and Sjaak Brinkkemper.
"Design Erosion in Evolving Software Products." In
ELISA workshop, p. 134. 2003.

[2] L. R.Vijayasarathy, Dan Turk,”Agile Software
Development: A Survey of early Adoption”, Journal of
Information Technology Management ,Volume
X1X,Number-2,2008.(journal style)

[3] Software Engineering: A Practitioner’s Approach,7/e
(McgrewHill, 2009) by Roger S. Pressman, Slides
copyright@1996,2001,2005,2009. (book style)

[4] Van Gurp , Jilles, and Jan Bosch. "Design erosion:
problems and causes." Journal of systems and software
61, no. 2: 105-119, 2002.(journal style)

[5] R. Perez -Castillo,Ignacio and Mario Piattini,
”Diagnosis of Software Erosion through Fuzzy logics”,
Software Maintenance and Reengineering, 2009. CSMR
'09. 13th European Conference ,2009 . (conference
style)

[6] H.P.S Dhami & Dr Anuj Kumar”, Analysis of software
design issues “, International journal of advance
research in computer science and software engineering,
july, 2013.(journal style)

[7] Damian, Daniela E., and Didar Zowghi. "An insight
into the interplay between culture, conflict and distance
in globally distributed requirements negotiations." In
System Sciences, 2003. Proceedings of the 36th Annual
Hawaii International Conference on, pp. 10-pp. IEEE,
2003.(conference style)

[8] A.Shawo, “Determination of risk during requirement
engineering process”, Journal of emerging trends in
computing & information science 3(3), 358-
364,2012.(journal style)

[9] walia, Khalid Shergil, ”Impact of interpersonal conflict
on requirements”, A Research Review”, University of
westernontario ,London ONN6A5B7.

[10] S.R Chidamber and Chris F Kemerer, ”A Metrics Suite
for Object Oriented Design, IEEE Transactions on
Software Engineering, Vol 20 no-6 , 476-493, June
1994.

Author Profile

Harinder Kaur received the B.Tech degree in
Computer Science & Engineering from Beant College
of Engineering & Technology in 2005. In 2005, she
joined Institute of Engineering & Technology Bhaddal
as Lecturer in the Department of Computer Science.

She is actively involved both in academics and research projects in
the field of Computer Engineering & Information Technology.
�

Raveen Bajwa received the B.Tech and M-Tech
degrees in Computer Science & Engineering from
Baba Banda Singh Bahadur Engineering College in
2005 and 2011 respectively and pursuing her P.H.D
from Punjab Technical University Jalandhar. In 2005,

she joined Baba Banda Singh Bahadur Engineering College as
Assistant Professor in the Department of Computer Science. Her
areas of interests include Computer Networks, Database
Management System and Computer Graphics.��

Paper ID: 02013725 56

