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Abstract: In the implementation of algorithm we are evaluating the indexes of 1-D NN to the alpha by which we will get the relevant 
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1. Introduction 
 
1.1 Recurrence Coefficient: 
 
In mathematics, the term difference equation sometimes and 
for the purposes of this research article refers to a specific 
type of recurrence coefficient. However, "difference 
equation" is frequently used to refer to any recurrence 
coefficient. An example of a recurrence coefficient is the 
logistic map: 
 

                  
 
with a given constant r; given the initial term x0 each 
subsequent term is determined by this coefficient. Some 
simply defined recurrence coefficients can have very 
complex (chaotic) behaviours, and they are a part of the field 
of mathematics known as nonlinear analysis. Solving a 
recurrence coefficient means obtaining a closed-form 
solution: a non-recursive function of n.  
 
1.2 Fibonacci numbers 
 
The Fibonacci numbers are the archetype of a linear, 
homogeneous recurrence coefficient with constant 
coefficients (see below). They are defined using the linear 
recurrence coefficient 
 

 
 
with seed values: 
 

 
 

Explicitly, recurrence yields the equations: 
 
 
 

etc. 
 

We obtain the sequence of Fibonacci numbers which begins: 
 
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... 
 
It can be solved by methods described below yielding the 
closed-form expression which involve powers of the two 
roots of the characteristic polynomial t2 = t + 1; the 
generating function of the sequence is the rational function  
 

 
 
2. Experimentation And Evaluation 
 
2.1 Structure 
 
Linear homogeneous recurrence coefficients with constant 
coefficients. An order d linear homogeneous recurrence 
coefficient with constant coefficients is an equation of the 
form 
 

 
 
where the d coefficients ci (for all i) are constants.  
 
More precisely, this is an infinite list of simultaneous linear 
equations, one for each n>d−1. A sequence which satisfies a 
coefficient of this form is called a linear recurrence sequence 
or LRS. There are d degrees of freedom for LRS, i.e., the 
initial values can be taken to be any values 
but then the linear recurrence determines the sequence 
uniquely. 
 
The same coefficients yield the characteristic polynomial 
(also "auxiliary polynomial") 
 

 
 
whose d roots play a crucial role in finding and 
understanding the sequences satisfying the recurrence. If the 
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roots r1, r2, ... are all distinct, then the solution to the 
recurrence takes the form 
 

 
 
where the coefficients ki are determined in order to fit the 
initial conditions of the recurrence. When the same roots 
occur multiple times, the terms in this formula 
corresponding to the second and later occurrences of the 
same root are multiplied by increasing powers of n. For 
instance, if the characteristic polynomial can be factored as 
(x − r)3, with the same root r occurring three times, then the 
solution would take the form 
 

[1] 

 

2.2 Rational Generating Function 
 
Linear recursive sequences are precisely the sequences 
whose generating function is a rational function: the 
denominator is the polynomial obtained from the auxiliary 
polynomial by reversing the order of the coefficients, and 
the numerator is determined by the initial values of the 
sequence. 
 
The simplest cases are periodic sequences, 

, which have sequence 
and generating function a 

sum of geometric series: 
 

 
More generally, given the recurrence coefficient: 

 
with generating function 

 
the series is annihilated at and above by the polynomial: 

 
That is, multiplying the generating function by the 
polynomial yields 

 
as the coefficient on , which vanishes (by the recurrence 

coefficient) for . Thus 
 

so dividing yields 

 
Expressing the generating function as a rational function. 

The denominator is a transform of the 
auxiliary polynomial (equivalently, reversing the order of 
coefficients); one could also use any multiple of this, but this 
normalization is chosen both because of the simple 
coefficient to the auxiliary polynomial, and so that 

.  

Coefficientship to difference equations narrowly defined. 

Given an ordered sequence of real numbers: the 

first difference is defined as 

. 

The second difference is defined as 

, 
which can be simplified to 

. 
More generally: the kth difference of the sequence is 

written as is defined recursively as 

. 
The sequence and its differences are related by a binomial 
transform. The more restrictive definition of difference 
equation is an equation composed of an and its kth 
differences. (A widely used broader definition treats 
"difference equation" as synonymous with "recurrence 
coefficient". See for example rational difference equation 
and matrix difference equation.). Linear recurrence 
coefficients are difference equations, and conversely; since 
this is a simple and common form of recurrence, some 
authors use the two terms interchangeably. For example, the 
difference equation 
 

 
 
is equivalent to the recurrence coefficient 
 

 
 
Thus one can solve many recurrence coefficients by 
rephrasing them as difference equations, and then solving 
the difference equation, analogously to how one solves 
ordinary differential equations. However, the Ackermann 
numbers are an example of a recurrence coefficient that do 
not map to a difference equation, much less points on the 
solution to a differential equation. The time scale calculus 
provides for a unification of the theory of difference 
equations with that of differential equations. Summation 
equations relate to difference equations as integral equations 
relate to differential equations. From sequences to grids 
Single-variable or one-dimensional recurrence coefficients 
are about sequences (i.e. functions defined on one-
dimensional grids). Multi-variable or n-dimensional 
recurrence coefficients are about n-dimensional grids. 
Functions defined on n-grids can also be studied with partial 
difference equations [2]. 
 
2.3 Solving General Methods 
 
For order 1, the recurrence 

 
has the solution with and the most 
general solution is with . The characteristic 
polynomial equated to zero (the characteristic equation) is 
simply t − r = 0. 
 
Solutions to such recurrence coefficients of higher order are 
found by systematic means, often using the fact that an = rn 

Paper ID: 22081301 199



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 

Volume 2 Issue 9, September 2013 
www.ijsr.net 

is a solution for the recurrence exactly when t = r is a root of 
the characteristic polynomial. This can be approached 
directly or using generating functions (formal power series) 
or matrices. 
 
Consider, for example, a recurrence coefficient of the form 

 
When does it have a solution of the same general form as an 
= rn? Substituting this guess (ansatz) in the recurrence 
coefficient, we find that 

must be true for all n > 1. 
Dividing through by rn−2, we get that all these equations 
reduce to the same thing: 

 
 

which is the characteristic equation of the recurrence 
coefficient. Solve for r to obtain the two roots λ1, λ2: these 
roots are known as the characteristic roots or eigenvalues of 
the characteristic equation. Different solutions are obtained 
depending on the nature of the roots: If these roots are 
distinct, we have the general solution 

 
while if they are identical (when A2 + 4B = 0), we have 

 
 
This is the most general solution; the two constants C and D 
can be chosen based on two given initial conditions a0 and 
a1 to produce a specific solution. 
 
In the case of complex eigenvalues (which also gives rise to 
complex values for the solution parameters C and D), the 
use of complex numbers can be eliminated by rewriting the 
solution in trigonometric form. In this case we can write the 
eigen values as  Then it can be shown 
that  can be rewritten as [3]:576-585 

 
where 

 
Here E and F (or equivalently, G and ) are real constants 
which depend on the initial conditions. 
Using the facts that and 

, one may simplify the solution given 
above as 

, 
where and are the initial conditions and 

 
In this way there is no need to solve for and . 
 
In all cases—real distinct eigenvalues, real duplicated 
eigenvalues, and complex conjugate eigenvalues—the 
equation is stable (that is, the variable a converges to a fixed 
value (specifically, zero)); if and only if both eigenvalues are 
smaller than one in absolute value. In this second-order case, 
this condition on the eigenvalues can be shown[4] to be 
equivalent to |A| < 1 − B < 2, which is equivalent to |B| < 1 
and |A| < 1 − B. 

The equation in the above example was homogeneous, in 
that there was no constant term. If one starts with the non-
homogeneous recurrence 

  
with constant term K, this can be converted into 
homogeneous form as follows: The steady state is found by 
setting bn = bn−1 = bn−2 = b* to obtain 

 
Then the non-homogeneous recurrence can be rewritten in 
homogeneous form as 

 
which can be solved as above. 
The stability condition stated above in terms of eigenvalues 
for the second-order case remains valid for the general nth-
order case: the equation is stable if and only if all 
eigenvalues of the characteristic equation are less than one 
in absolute value. 
 
Solving via linear algebra 
 
Given a linearly recursive sequence, let C be the transpose 
of the companion matrix of its characteristic polynomial, 
that is 

 
where . Call 
this matrix C. Observe that 

 
Determine an eigenbasis corresponding to 

eigenvalues . Then express the seed (the initial 
conditions of the LRS) as a linear combination of the 
eigenbasis vectors: 

 
Then it conveniently works out that: 

 
This description is really no different from general method 
above, however it is more succinct. It also works nicely for 
situations like 

 
 

Where there are several linked recurrences. 
Solving with z-transforms 
 
Certain difference equations, in particular Linear constant 
coefficient difference equations, can be solved using z-
transforms. The z-transforms are a class of integral 
transforms that lead to more convenient algebraic 
manipulations and more straightforward solutions. There are 
cases in which obtaining a direct solution would be all but 
impossible, yet solving the problem via a thoughtfully 
chosen integral transform is straightforward.  

Paper ID: 22081301 200



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 

Volume 2 Issue 9, September 2013 
www.ijsr.net 

Theorem 
Given a linear homogeneous recurrence coefficient with 
constant coefficients of order d, let p(t) be the characteristic 
polynomial (also "auxiliary polynomial") 

 
such that each ci corresponds to each ci in the original 
recurrence coefficient (see the general form above). Suppose 
λ is a root of p(t) having multiplicity r. This is to say that 
(t − λ)r divides p(t). The following two properties hold: 
1. Each of the r sequences 

satisfies the 
recurrence coefficient. 

2. Any sequence satisfying the recurrence coefficient can be 
written uniquely as a linear combination of solutions 
constructed in part 1 as λ varies over all distinct roots 
of p(t). 

As a result of this theorem a linear homogeneous recurrence 
coefficient with constant coefficients can be solved in the 
following manner: 
1. Find the characteristic polynomial p(t). 
2. Find the roots of p(t) counting multiplicity. 
3. Write an as a linear combination of all the roots (counting 

multiplicity as shown in the theorem above) with 
unknown coefficients bi. 

 
This is the general solution to the original recurrence 
relation. 
(q is the multiplicity of λ*) 
4. Equate each from part 3 

(plugging in into the general solution of 
the recurrence coefficient) with the known values 

from the original recurrence 
coefficient. However, the values an from the original 
recurrence coefficient used do not have to be contiguous, 
just d of them are needed (i.e., for an original linear 
homogeneous recurrence coefficient of order 3 one could 
use the values a0, a1, a4). This process will produce a linear 
system of d equations with d unknowns. Solving these 
equations for the unknown coefficients 

of the general solution and plugging 
these values back into the general solution will produce the 
particular solution to the original recurrence coefficient that 
fits the original recurrence coefficient's initial conditions (as 
well as all subsequent values of the 
original recurrence coefficient). The method for solving 
linear differential equations is similar to the method above—
the "intelligent guess" (ansatz) for linear differential 

equations with constant coefficients is where λ is a 
complex number that is determined by substituting the guess 
into the differential equation. 
This is not a coincidence. Considering the Taylor series of 
the solution to a linear differential equation: 

 
it can be seen that the coefficients of the series are given by 
the nth derivative of f(x) evaluated at the point a. The 
differential equation provides a linear difference equation 
relating these coefficients. This equivalence can be used to 
quickly solve for the recurrence coefficientship for the 
coefficients in the power series solution of a linear 

differential equation. The rule of thumb (for equations in 
which the polynomial multiplying the first term is non-zero 
at zero) is that: 

 
and more generally 

 
Example: The recurrence coefficientship for the Taylor 
series coefficients of the equation: 

 
is given by 

 
Or 

 
This example shows how problems generally solved using 
the power series solution method taught in normal 
differential equation classes can be solved in a much easier 
way. 
Example: The differential equation 

 
has solution 

 
The conversion of the differential equation to a difference 
equation of the Taylor coefficients 
is  
It is easy to see that the nth derivative of eax evaluated at 0 is 
an 
Solving non-homogeneous recurrence coefficients 
If the recurrence is inhomogeneous, a particular solution can 
be found by the method of undetermined coefficients and the 
solution is the sum of the solution of the homogeneous and 
the particular solutions. Another method to solve an 
inhomogeneous recurrence is the method of symbolic 
differentiation. For example, consider the following 
recurrence: 

 
This is an inhomogeneous recurrence. If we substitute 

, we obtain the recurrence 

 
Subtracting the original recurrence from this equation yields 

 
or equivalently 

 
This is a homogeneous recurrence which can be solved by 
the methods explained above. In general, if a linear 
recurrence has the form 

 
where are constant coefficients and 

p(n) is the inhomogeneity, then if is a polynomial 
with degree r, then this inhomogeneous recurrence can be 
reduced to a homogeneous recurrence by applying the 
method of symbolic differencing r times. 
If 

 
is the generating function of the inhomogeneity, the 
generating function 

 
of the inhomogeneous recurrence 
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with constant coefficients ci is derived from 

 
If P(x) is a rational generating function, A(x) is also one. 
The case discussed above, where pn=K is a constant, 
emerges as one example of this formula, with P(x)=K/(1-x). 
The solution of homogeneous recurrences is incorporated as 
p=P=0. 
Moreover, for the general first-order linear inhomogeneous 
recurrence coefficient with variable coefficient(s) 

, , there is also a nice 
method to solve it:[5] 

 
 

 

 
  

Let , 

Then  

 

 

 
General linear homogeneous recurrence coefficients 
Many linear homogeneous recurrence coefficients may be 
solved by means of the generalized hypergeometric series. 
Special cases of these lead to recurrence coefficients for the 
orthogonal polynomials, and many special functions. For 
example, the solution to 

 
is given by 

 
the Bessel function, while 

 
is solved by 

 
the confluent hypergeometric series. 
Solving a first order rational difference equation 
A first order rational difference equation has the form 

. Such an equation can be solved by 
writing as a nonlinear transformation of another variable 

which itself evolves linearly. Then standard methods can 
be used to solve the linear difference equation in . 
Stability 
Stability of linear higher-order recurrences. The linear 
recurrence of order d, 

 
has the characteristic equation 

 
The recurrence is stable, meaning that the iterates converge 
asymptotically to a fixed value, if and only if the 
eigenvalues (i.e., the roots of the characteristic equation), 
whether real or complex, are all less than unity in absolute 
value. Stability of linear first-order matrix recurrences 
In the first-order matrix difference equation 

 
with state vector x and transition matrix A, x converges 
asymptotically to the steady state vector x* if and only if all 
eigenvalues of the transition matrix A (whether real or 
complex) have an absolute value which is less than 1.  
Stability of nonlinear first-order recurrences 
Consider the nonlinear first-order recurrence 

 
This recurrence is locally stable, meaning that it converges 
to a fixed point x* from points sufficiently close to x*, if the 
slope of f in the neighborhood of x* is smaller than unity in 
absolute value: that is, 

 
A nonlinear recurrence could have multiple fixed points, in 
which case some fixed points may be locally stable and 
others locally unstable; for continuous f two adjacent fixed 
points cannot both be locally stable.A nonlinear recurrence 
coefficient could also have a cycle of period k for k > 1. 
Such a cycle is stable, meaning that it attracts a set of initial 
conditions of positive measure, if the composite function 

with f appearing k 
times is locally stable according to the same criterion: 

 
where x* is any point on the cycle. 
In a chaotic recurrence coefficient, the variable x stays in a 
bounded region but never converges to a fixed point or an 
attracting cycle; any fixed points or cycles of the equation 
are unstable.   
Coefficientship to differential equations 
When solving an ordinary differential equation numerically, 
one typically encounters a recurrence coefficient. For 
example, when solving the initial value problem 

 
with Euler's method and a step size h, one calculates the 
values 

 
by the recurrence 

 
Systems of linear first order differential equations can be 
discretized exactly analytically using the methods shown in 
the discretization arena.  
 
3. Results and Discussion 
 
3.1 Applications in Biology 
 
Some of the best-known difference equations have their 
origins in the attempt to model population dynamics. For 
example, the Fibonacci numbers were once used as a model 
for the growth of a rabbit population. The logistic map is 
used either directly to model population growth, or as a 
starting point for more detailed models. In this context, 
coupled difference equations are often used to model the 
interaction of two or more populations. For example, the 
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Nicholson-Bailey model for a host-parasite interaction is 
given by 

 

 
with Nt representing the hosts, and Pt the parasites, at time t. 
 
Integrodifference equations are a form of recurrence 
coefficient important to spatial ecology. These and other 
difference equations are particularly suited to modeling 
univoltine populations. 
 
3.2 Digital signal processing 
 
In digital signal processing, recurrence coefficients can 
model feedback in a system, where outputs at one time 
become inputs for future time. They thus arise in infinite 
impulse response (IIR) digital filters. For example, the 
equation for a "feedforward" IIR comb filter of delay T is: 

 
Where is the input at time t, is the output at time t, and 

controls how much of the delayed signal is fed back into 
the output. From this we can see that 

 

 etc. 
 
3.3 Peak Signal to Noise Ratio 
 
Peak Signal-to-Noise Ratio, often abbreviated PSNR, is an 
engineering term for the ratio between the maximum 
possible power of a signal and the power of corrupting noise 
that affects the fidelity of its representation. Because many 
signals have a very wide dynamic range, PSNR is usually 
expressed in terms of the logarithmic decibel scale. PSNR is 
most commonly used to measure of quality of reconstruction 
of lossy compression codecs (e.g., for image compression). 
The signal in this case is the original data, and the noise is 
the error introduced by compression. When comparing 
compression codecs, PSNR is an approximation to human 
perception of reconstruction quality. Although a higher 
PSNR generally indicates that the reconstruction is of higher 
quality, in some cases the reverse may be true. One has to be 
extremely careful with the range of validity of this metric; it 
is only conclusively valid when it is used to compare results 
from the same codec (or codec type) and same content 
[1][2]. PSNR is most easily defined via the mean squared 
error (MSE). Given a noise-free m×n monochrome image I 
and its noisy approximation K, MSE is defined as: 

 
The PSNR is defined as: 

 
[M N] = size(clean_signal); 
MSE = sum(sum((clean_signal).^2))/(M*N);       
PSNR = 10*log10(255*255/MSE); 
Here, MAXI is the maximum possible pixel value of the 
image. When the pixels are represented using 8 bits per 
sample, this is 255. More generally, when samples are 

represented using linear PCM with B bits per sample, MAXI 
is 2B−1. For color images with three RGB values per pixel, 
the definition of PSNR is the same except the MSE is the 
sum over all squared value differences divided by image size 
and by three. Alternately, for color images the image is 
converted to a different color space and PSNR is reported 
against each channel of that color space, e.g., YCbCr or 
HSL. Typical values for the PSNR in lossy image and video 
compression are between 30 and 50 dB, where higher is 
better.  Acceptable values for wireless transmission quality 
loss are considered to be about 20 dB to 25 dB.  
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