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Abstract: Level set methods are a popular way to solve the image segmentation problem. The solution contour is found by solving an 
optimization problem where a cost functional is minimized. The purpose of this paper is the level set approach to simultaneous tissue 
segmentation and bias correction of Magnetic Resonance Imaging (MRI) images. A modified level set approach to joint segmentation 
and bias correction of images with intensity in homogeneity. A sliding window is used to transform the gradient intensity domain to 
another domain, where the distribution overlap between different tissues is significantly suppressed. Tissue segmentation and bias 
correction are simultaneously achieved via a multiphase level set evolution process. The proposed methods are very robust to 
initialization, and are directly compatible with any type of level set implementation. Experiments on images of various modalities 
demonstrated the superior performance over state-of-the-art methods. 
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1. Introduction 
 
One popular approach for solving the image segmentation 
problem is to use the calculus of variations. The objective of 
the segmentation problem is defined with energy functional, 
and minimization of this functional represents the resulting 
segmentation. The solution of the segmentation problem is 
the contour which extremizes this functional. The standard 
way of solving this optimization problem is by gradient 
descent search in the solution space, which typically suffers 
from many unwanted local optima and poor convergence. 
Classically, these problems have been circumvented by 
modifying the energy functional. The functional depends on 
properties of the image such as gradients, curvatures and 
intensities, as well as regularization terms, e.g. smoothing 
constraints. Early variation methods, such as Snakes and 
Geodesic Active Contours [1]–[4], often have boundary 
based terms such as an edge map. A parameterized curve, 
the active contour, is evolved according to the minimization 
of the cost functional until it converges to an equilibrium 
state representing the resulting segmentation. Later variation 
methods often include terms which are more region-based, 
allowing segmentation of objects without distinctive edges. 
These methods are often based on the Mumford-Shah 
segmentation model [5] where the image is partitioned into 
piecewise smooth regions with short boundaries. Chan and 
Vese used this model together with implicit contours 
represented by level sets [6]–[9]. This made the optimization 
problem easier and it naturally handles segmentation 
topology changes. 
 
2. Related Work 
 
Level set methods are a popular way to solve the image 
segmentation problem in computer image analysis. A 
contour is implicitly represented by the zero level of a 

signed distance function, and evolved according to a motion 
equation in order to minimize a cost function. This function 
defines the objective of the segmentation problem and also 
includes regularization constraints. Gradient descent search 
is the defacto method used to solve this optimization 
problem. It deforms an initial contour in the steepest 
(gradient) descent of the energy. The equations of motion for 
the contour, and the corresponding energy gradients, are 
derived using the Euler-Lagrange equation [10] and the 
condition that the first variation of the energy functional 
should vanish at a (local) optimum. Then, the contour is 
evolved to convergence using these equations. The use of a 
gradient descent search commonly leads to problems with 
convergence to local optima and slow convergence in 
general. The problems are accentuated with noisy data or 
with a non-stationary imaging process, which may lead to 
varying contrasts for example. The problems may also be 
induced by inaccurate initial conditions for certain 
applications. Traditionally, the energy functional have been 
modified to avoid these problems by, for example, adding 
regularizing terms to handle noise, rather than to analyze the 
performance of the applied optimization method. This is 
however discussed in [11], [12], where the metric defining 
the notion of steepest descent (gradient) has been studied. 
By changing the metric in the solution space, local optima 
due to noise are avoided in the search path. 

 
There are many and much more advanced, alternatives to 
gradient descent. For non-convex functional, there are global 
optimization techniques such as subdivision schemes with 
much better performance [13]. Their high complexity, 
however, makes them applicable for small problems only. 
Stochastic methods such as the Monte-Carlo (MC) family 
are another alternative. Simulated annealing implemented 
with the Metropolis algorithm and local updates have been a 
popular choice [14], [15]. Unfortunately its convergence to a 
global solution is logarithmically slow, limiting its 
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usefulness but spurring the development of more advanced 
MC methods, such as basin hopping [16]. 

 
In spite of these more advanced methods, optimization using 
gradient descent search is still very common and in active 
use. This is partly due to its simple implementation, but also 
to its direct applicability to general non-convex functional. 
The focus of this paper is to show that the performance of 
these standard searches can easily be improved upon by very 
simple modifications with, (i) Momentum Method and (ii) 
Rprop method. These methods are commonly used in the 
machine learning community. In a series of 2D/3D 
experiments using real and synthetic data with ground truth, 
the modifications are shown to reduce the sensitivity for 
local optima and to increase the convergence rate. 
 
2.1. Momentum Method 
 
Turning to gradient descent with Momentum, we will adopt 
some terminology from the machine learning community 
and choose a search vector according to: 
 
�� = −η(1 − �)∇f� + ωs� − 1 (1) 
 
Where η is the learning rate and ω ∈ [0, 1] is the momentum. 
Note that ω = 0 gives standard gradient descent sk = −η∇fk, 
while ω = 1 gives “infinite momentum” sk = sk−1. The 
intuition behind this strategy is that the current solution xk 
has a momentum, which prohibits sudden changes in the 
velocity. These will effectively filter out high frequency 
changes in the cost function and allow for larger steps in 
favorable directions. Using appropriate parameters, the rate 
of convergence is increased while local optima may be 
overstepped. 
 
2.2. Rprop Method 
 
In standard implementations of steepest descent search, αk = 
α is a constant not adapting to the shape of the cost-surface. 
Therefore if we set it too small, the number of iterations 
needed to converge to a local optimum may be prohibitive. 
On the other hand, a large value of α may lead to oscillations 
causing the search to fail. The optimal α does not only 
depend on the problem at hand, but vary along the cost-
surface. In shallow regions of the surface a large α may be 
needed to obtain an acceptable convergence rate, but the 
same value may lead to disastrous oscillations in 
neighboring regions with larger gradients or in the presence 
of noise. In regions with very different behaviors along 
different dimensions it may be hard to find an α that gives 
acceptable convergence performance. 
 
The Resilient Propagation (Rprop) algorithm [17] was 
developed to overcome these inherent disadvantages of 
standard gradient descent using adaptive step-sizes k called 
update-values. There is one update-value per dimension in x, 
i.e. dim(k) = dim(xk). However, the defining feature of 
Rprop is that the size of the gradient is never used. Only the 
signs of the partial derivatives are considered in the update 
rule. Another advantage of Rprop, very important in 
practical use, is the robustness of its parameters; Rprop will 
work out- of-the-box in many applications using only the 
standard values of its parameters [18]. 

Rprop provides a modification which uses individual (one 
per parameter) adaptive step sizes and considers only the 
signs of the gradient components. This modification makes 
Rprop less sensitive to local optima and avoids the harmful 
influence of the magnitude of the gradient on the step size. 
Individual adaptive step sizes also allow for cost functional 
with very different behaviors along different dimensions 
because there is no longer a single step size that has to be 
appropriate for all dimensions. The Rprop method succeeds 
in reaching the global minimum neighborhood within ten 
iterations. It passes the area with small gradients quickly 
since it only uses the signs of the gradient components, not 
the magnitude. 

 
3. Our Contribution 
 
This paper proposes a modified variation level set approach 
to bias correction and segmentation for images corrupted 
with intensity in homogeneities. A unique feature of this 
method is that the computed bias field is intrinsically 
ensured to be smooth by the data term in the variation 
formulation, without any additional effort to maintain the 
smoothness of the bias field, and it can approximate bias 
fields of more general profiles, such as those in 3T or 7T 
MRI images.  
 
Magnetic resonance imaging (MRI),is a medical imaging 
technique used in radiology to visualize internal structures of 
the body in detail. MRI makes use of the property of nuclear 
magnetic resonance (NMR) to image nuclei of atoms inside 
the body. To produce an image, an MRI machine uses a 
powerful magnet to generate a magnetic field. MRI provides 
good contrast between the different soft tissues of the body, 
which makes it especially useful in imaging the brain, 
muscles, the heart, and cancers compared with other medical 
imaging techniques such as computed tomography (CT) or 
X-Rays. Unlike CT scans or traditional X-Rays, MRI does 
not use ionizing radiation. 
 
MRI scans require a magnetic field with two properties, 
uniform field density and strength. The magnetic field 
cannot vary more than 1/10,000 of 1% and field strength 
ranges (depending on the scanner) from 0.2 to 3 Teslas in 
strength in scanners currently used clinically, with research 
scanners investigating higher field strengths such as 7 
Teslas. The Tesla (T) Images unit of magnetic flux density 
in the International System of Units, equal to the magnitude 
of the magnetic field vector necessary to produce a force of 
one Newton on a charge of one coulomb moving 
perpendicular to the direction of the magnetic field vector 
with a velocity of one meter per second. The lower field 
strengths (3T) can be achieved with permanent magnets, 
which are often used in "open" MRI scanners for 
claustrophobic patients. Higher field strengths (7T) can be 
achieved only with superconducting magnets.  
 
3.1. Geometric Model of Images with Intensity in 
Homogeneity 
 
Intensity in-homogeneities in MRI images can substantially 
reduce the accuracy of segmentation and registration. 
Despite advances of correcting spatial intensity in-
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homogeneities of modern scanner software, the advent of 
multichannel phased array coils and 7T+ scanners have 
increased (again) the importance of this problem for post-
scan processing since images may exhibit substantial 
intensity in-homogeneities across space .(image on left side). 
In this approach, low-order polynomials are used to model 
low-frequency variations across 3T image space; these 
polynomials are fitted to a subset of voxels that have been 
labeled as belonging to white matter. After estimating the 
low-frequency intensity fluctuations (producing a "bias 
field", image on lower right side), they are removed from the 
data producing voxels with much more homogeneous 
intensities (image on upper right side) that improve 
visualization and also are better starting points for 
subsequent segmentation tools. 
 
The image intensity can be approximated by Gaussian 
distribution with mean and variance. However, using only a 
single Gaussian model is not accurate enough to describe the 
statistical characteristics of the image intensity. In order to 
accurately model the intensity distribution, the intensity 
distribution in each object domain should be ascribed to a 
Gaussian model. 
 
3.2. Bias Correction 
 
A bias field is a low frequency smooth undesirable signal 
that corrupts MRI images because of the in-homogeneities in 
the magnetic fields of the MRI machine. Bias field blurs 
images and thus reduces the high frequency contents of the 
image such as edges and contours and changes the intensity 
values of image pixels so that the same tissue has different 
gray level distribution across the image. A low level 
variation will not have great impact on clinical diagnosis. 
However it degrades the performance of image processing 
algorithms such as segmentation and classification or any 
algorithm that is based on the assumption of spatial 
invariance of the processed image. A preprocessing step is 
needed to correct for the effect of bias field before doing 
segmentation or classification. 
 
Methods of bias correction can be categorized into two 
classes: prospective methods and retrospective methods. 
Prospective methods aim to avoid intensity in-homogeneities 
in the image acquisition process. These methods, while 
capable of correcting intensity in-homogeneity induced by 
the imaging device, are not able to remove subject-induced 
intensity in-homogeneity. In contrast, retrospective methods 
only rely on the information in the acquired images. 
Therefore, they can also remove intensity in-homogeneities 
regardless of their sources. 
 
The bias field in a brain MRI image can be assumed to be 
formed of two components, i.e. one observed image and an 
unknown field, as follows: 
 
I =  bJ +  n (2) 
 
Where I: observed image, J: true image to be restored, b: an 
unknown bias field and n: additive Gaussian noise with 
zero-mean. The aim is to obtain the value of bias field 
component from the observed image and correct the 
intensity in-homogeneity. In general, the bias field b is 

assumed to be slowly varying in the entire image domain. 
Ideally, the intensity J in each tissue should take a specific 
value, reflecting the physical property being measured. This 
property, in conjunction with the spatially coherent nature of 
each tissue type, implies that the true signal J is 
approximately a piecewise constant map. 
 
While bias field correction is needed for good segmentation, 
many approaches have exploited the idea that a good 
segmentation helps to estimate the bias field. Dawant et al. it 
manually selected some points inside white matter and 
estimated the bias field as the least-squares spline fit to the 
intensities of these points [19]. They also presented a 
slightly different version where the reference points are 
obtained by an intermediate classification operation, using 
the estimated bias field for final classification. 
 
3.3. Energy Formulation 
 
The intensity in homogeneity caused by the bias field 
measure intensities are not separable by using traditional, 
intensity based classification methods. A new method for 
joint segmentation and bias correction. An observation that 
the intensities in a relatively small region are separable, 
which can be varied by the below assumptions of (i) The 
bias field is slowly varying in the entire image domain. (ii) 
The true image intensities approximately a constant within 
each class of tissue, being a partition of bias field. Directly 
minimizing the energy with the partition variable is not 
convenient. The multiple levels set functions to represent a 
partition. The energy minimization can thus be performed by 
solving a level set evolution. The gradient descent search 
flow for an energy functional consisting of texture 
(proportional to length) and bulk energies (proportional to 
region), is developed. 
 
The local intensity clustering property explained above 
exemplifies that the intensities in the neighborhood can be 
classified into N clusters, with centers mi ≈ b (x) ci, i= 1, 2, 
3, 4…N. Hence, standard membership function to classify 
these local intensities can be applied. In particular, for the 
intensities Image (X) in the neighborhood NGy, the 
membership function includes boundary condition and 
threshold function is an iterative process to minimize the 
pixel intensity which can be presented as follows, 
 
 EFy = � �|Image(X) −  mi|� u�(x)dx�

���Ω�⋂���  (3) 
 
Where EF: Energy formulation; mi: cluster center of the i-th 
cluster, ui: membership function of the region Ωi i.e. to be 
determined, ui(x) =1, for x € Ωi and ui(x) = 0, for x € Ωi. 
 
The kernel function K is chosen as a truncated Gaussian 
function defined by 
 

K(u) = �
�
�

e�ǀ�ǀ�/���,
0, other wise

  for ǀuǀ ≤ ρ (4) 

 
Where a is a normalization constant such that ∫K (µ) = 1, σ is 
the standard deviation (or the scale parameter) of the 
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Gaussian function, and ρ is the radius of the neighborhood 
NGy. 
 
The radius  of the neighborhood NGy should be selected 
appropriately according to the degree of the intensity in-
homogeneity. For more localized intensity in-homogeneity, 
the bias field b varies faster, and therefore the approximation 
is valid only in a smaller neighborhood. A smaller  should 
be used as the radius of the neighborhood NGy, and for the 
truncated Gaussian function, the scale parameter  
(variance) should also be smaller. 
 
The objective is integrated over the entire domain and 
incorporated into a variation level set formulation. The 
energy minimization is performed via a level set evolution 
process. By minimizing this energy, this method is able to 
simultaneously segment the image and estimate the bias 
field, and the estimated bias field can be used for bias 
correction. Moreover, it is robust to initialization, and 
therefore allows automatic applications. 
 
3.4. Multiple Level Set Evolutions  
 
The significant number of problems in science reduces to the 
study of the evolution of curves, which are usually the 
boundaries between different media. During the evolution 
process, the Multiple Level Set Functions (MLSFs) need to 
be periodically regularized in order to keep numeric 
stability. The constant kernel values in each iteration, which 
can be seen as a special case of the method. The MLSF 
keeps the property of Euclidean distance function, so it can 
make the evolution stable. The size of the kernel should not 
be too large. The contours are constants with different signs 
inside and outside. With this initialization, the convergence 
speed is much faster than that by distance function, and the 
tissue segmentation results are also much more accurate. 
 
In the multiple-phase case: the image domain Ω is 
segmented into two disjoint regions Ω1 and Ω2. The level set 
function  is used to represent the two regions Ω1 and Ω2. 
The regions Ω1 andΩ2 can be represented with their 
membership functions defined by M1( ) = H( ) and by M2(

) = 1-H( ), respectively, where H is the Heaviside 
function. Thus, for the case of N=2, the energy can be 
expressed as the following level set formulation: 
 ε = �(∑ � K(y − x)ǀI(x) − b(y)c�ǀ�M�(∅(x))dx)dy�

���  (5)  
By exchanging the order of integrations, 
 
ε = �(∑ (� K(y − x)ǀI(x) − b(y)c�ǀ�dy)M�(∅(x))dx�

���  (6) 
 
The constants c1,...,cN are represented with a vector c= 
(c1,...,cN). The level set function; the vector c and the bias 

field b are the variables of the energy , which can be 
written as ( , c, and b). The energy can be rewritten as: 
 
�(∅, �, �) = � ∑ ��(�)���∅(�)��� �

��� (7) 
 
By minimizing this energy, the result of image segmentation 
given by the level set function and the estimation of the 

bias field b will be obtained. The energy minimization is 
achieved by an iterative process: In each iteration, minimize 
the energy � ( , c, b) with respect to each of its variables , 
c and b, given the other two updated in previous iteration. 
The solution to the level set energy minimization with 
respect to each variable is given the image region. 
 
4. Implementation 
 
The level set algorithm has also been implemented in 
Matlab: Version 2010a. The implementation steps are: 
 
Step 1: Pre-processing: In this step, the pre-processing stage 
checks whether the input image contains number of 
channels. Ifthere are 3 channels then the image is converted 
into grayscale as indexed image. For regularizing the level 
set function after the each iteration the kernel value is 
mentioned along with the channel. Assign the Point Spread 
Function (PSF) with corresponding pixel intensity variance. 
 
Step 2: Contour Plot: The contour plot is defined as 
separating the background and foreground region in the MRI 
image.  
 
Step 3: Regularization: In Regularization process, (i) The 
typical image is passed from the degradation function (in 
practice this degradation function) then an additive noise is 
also added to get an artificial corrupted image. Using these 
two images an optimal filter mask is found. (ii) To find m x 
n coefficients of the filter mask, iteratively. For 
implementing fitness function must be defined as a criterion 
for maximization. Absolute difference between the degraded 
image and the image estimated by filter mask is the natural 
fitness function. 
 
Step 4: Bias Correction: In bias correction process, the 
image membership values are convoluted according to the 
image dimensions. The convolution process is establishes 
the unfairness pixels present in the instance.  
 
The proposed method is demonstrated in the two phase case 
(i.e., N=2) as well as multiphase case. The parameter  is set 
to 4 for the experiments. The multiphase method is applied 
to 10 medical images with intensity in-homogeneities. As a 
pre-processing step, a convolution with a Gaussian kernel is 
applied to smoothen the image. The scale parameters of the 
Gaussian kernel are chosen as 2. The initial contours are 
plotted on the original images. The corresponding results of 
segmentation, bias field estimation are shown in ensuing 
pages. These results demonstrate desirable performance in 
segmentation. 
 
5. Results 
 
To evaluate the algorithm on both synthetic data and real 
datasets in 3T and 7T (Tesla) with the metrics: PSNR, 
coefficient of variation, segmentation time calculation. The 
narrow band parameter N controls the size of the region 
close to the zero level set where calculations are performed. 
This is a computational optimization which is valuable 
especially in 3T. There are three classes of tissues: white 
matter (WM), gray matter (GM), and background. The 
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histogram of the bias corrected image by MLS method has 
three well-separated peaks, which correspond to the 
background, GM, and WM from left to right, respectively, 
while the peak of the GM is not distinct since its volume is 
relatively small. It should be noted that it is very flexible to 
initialize the LSFs in MLS method. The initial contours can 
be set inside, outside or across the object boundary. The 7T 
MRI image, whose intensity in-homogeneity is so severe 
that even the experts are difficult to tell the structures, by 
applying MLS method; the image quality can be 
significantly improved, Many regions (e.g. the regions inside 
the red circles and ellipses) that are difficult to distinguish 
can be much better viewed after the bias correction.  
 

 
Figure 1: 3T MRI image of brain with MLS Method 

 
Figure 2: 7T MRI image of brain with MLS Method 

 
MLS method has been tested on 7T MRI images. At 7T, 
significant gains in image resolution can be obtained due to 
the increase in signal-to-noise ratio. However, susceptibility-
induced gradients scale with main field, while the imaging 
gradients are currently limited to essentially the same 
strengths as used at lower field strengths (i.e., 3T). This 
appears as a localized and stronger bias, which is 
challenging to traditional methods for bias correction. 
 
The test image is matched with database to identify high 
frequency regions. The PSNR fraction measure of quality of 
reconstruction of lossy compression codecs (e.g., for image 
compression). The signal in this case is the original data, and 
the noise is the error introduced by compression. 
 
 
 
 
 

 
Table: 1 MRI images with Comparison of PSNR Values in 

dB 
MRI Images Momentum Rprop MLS method 

3T Brain Image 15.32 18.27 46.26 
7T Brain Image 20.56 24.53 48.57 

 
 

 
Figure 3: PSNR Calculations 

 
Above Table1shows comparison of MRI Image with PSNR 
Values an approximation to human perception of 
reconstruction quality. Although a higher PSNR generally 
indicates that the reconstruction is of higher quality. 
 
The coefficient of variation (CV) is a normalized measure of 
dispersion of a probability distribution or frequency 
distribution. The coefficient of variation represents the ratio 
of the standard deviation to the mean, and it is a useful 
statistic for comparing the degree of variation from one data 
series to another, even if the means are drastically different 
from each other. Coefficient of Variance is defined as a 
quotient between standard deviation and mean value of 
selected tissue class. A good algorithm for bias correction 
and segmentation should give low CV values for the bias 
corrected intensities within each segmented region. 
 
Our MLS method is compared with the existing Leem put 
etal. and Wells et al [20]-[22] methods. Coefficient of 
variance (CV) metricis used to evaluate the performance of 
the algorithms for bias correction and segmentation. Two 
simulated images obtained from Brain Web in the 
linkhttp://www.bic.mni.mcgill.ca/brainweb/,one corrupted 
with bias field without noise and the other corrupted with 
both bias and noise. The CV values for the two images are 
listed in Table 2 and Table 3. It can be seen that the CV 
values of MLS method is lower than those of Leemput’s and 
Wells’s methods, which indicates that the bias corrected 
images obtained in this method is more homogeneous than 
those of the other two methods. 
 
Table 2: Co-efficient of Variation of MRI Image with bias 

and noise 
  Tissue Wells Leemput MLS method

Image with Bias and 
Noise 

White matter 6.97% 7.92% 6.45% 

  Grey matter 13.68% 14.68% 12.03% 
 

 
Figure 4: Co-efficient of variation of MRI image with bias 

and noise 
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Table 3: Co-efficient of Variation of MRI Image with bias 
MRI Images Momentum Rprop MLS method 

3TBrianImage 16.24 sec 14.45 sec 12.23 sec 
7TBrain Image 18.35 sec 16.54 sec 14.26 sec 

 

 
Figure 5: Co-efficient of variation of MRI image with bias  

Above Table 2 shows the comparison of the coefficient of 
variation of MRI Image with bias and noise for two tissue 

methods and Table 3 with bias for two tissue methods. 

Execution speed is another performance metric that is used 
to analyze the performance of the algorithms. It is defined as 
the time taken by the algorithm to produce the segmented 
image. The results obtained are shown in Table 4. 
 

Table 4: Segmentation Time (In seconds) 

Image with 
Bias 

Tissue Wells Leemput MLS method 
White matter 6.33% 6.81% 5.45% 
Grey matter 16.11% 16.97% 15.55% 

 

 
Figure 6: Segmentation Time calculation 

 
From the Table 4, it is evident that the MLS Method 
produces quick result when compared to the traditional 
Momentum and Rprop Methods. 
 
6. Conclusion 
 
In this paper we have worked to the multiphase level set 
with bias correction and energy formulation. We presented a 
unified framework of bias correction and segmentation. A 
unique advantage of this method is that the smoothness of 
the computed bias field is intrinsically ensured by the data 
term in the distinction formulation. This method is able to 
capture bias of quite general profiles, and can be used for 
images of various modalities. Moreover, it is robust to 
initialization, thereby allowing automatic applications. 

Comparisons with two well-known bias correction methods 
demonstrate the advantages of the proposed method. 
 
7. Future Work 
 
In future we have planned to find the solutions by changing 
the unfairness object correction method of solving the 
optimization problem rather than modifying the instance 
evolution and energy functional using hardware basis. 
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