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Abstract: This work constructs the membership functions of the system characteristics of a batch-arrival queuing system with multiple 
servers, in which the batch-arrival rate and customer service rate are all fuzzy numbers. The  -cut approach is used to transform a 
fuzzy queue into a family of conventional crisp queues in this context. By means of the membership functions of the system 
characteristics, a set of parametric nonlinear programs is developed to describe the family of crisp batch-arrival queues with multiple 
servers. A numerical example is solved successfully to illustrate the validity of the proposed approach. Because the system characteristics 
are expressed and governed by the membership functions, the fuzzy batch-arrival queues with multiple servers are represented more 
accurately and the analytic results are more useful for system designers and practitioners. 
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1. Introduction 
 
Queuing models with multiple servers are effective methods 
for performance analysis of computer and 
telecommunication systems, manufacturing/production 
systems and inventory control (Kleinrock [11], Buzacott and 
Shanthi Kumar [1], Gross and Harris [7], Trivedi [19]). In 
general, these analyses consider a queuing system where 
requests for service arrive in units, one at a time (single-unit 
arrival). In many practical situations, however, requests for 
service usually arrive in batches. For example, in 
manufacturing systems of the job-shop type, each job order 
often requires the manufacture of more than one unit; in 
computer communication systems, messages which are to 
be transmitted could consist of a random number of packets. 
If the usual crisp batch-arrival queues with multiple servers 
can be extended to fuzzy batch-arrival queues, such queuing 
models would have wider applications. 
 
For queuing models with multiple servers under various 
considerations, the M/M/c vacation systems with a single-
unit arrival have attracted much attention from numerous 
researchers since Levy and Yechiali [12]. The extensions of 
this model can be referred to Vinod [20], Igaki [8], Tian et 
al. [17], Tian and Xu [18], and Zhang and Tian [23, 24]. 
Zhang and Tian [23, 24] studied the M/M/c vacation 
systems with a single-unit arrival and a “partial server 
vacation policy”. They proved several conditional stochastic 
decomposition results for the queue length and waiting time. 
Chao and Zhao [3] investigated the GI/M/c vacation models 
with a single-unit arrival and provided iterative algorithms 
for computing the stationary probability distributions.  
 
In the literature described above, customer inter-arrival 
times and customer service times are required to follow 
certain probability distributions with fixed parameters. 
However, in many real-world applications, the parameter 
distributions may only be characterized subjectively; that is, 
the arrival and service are typically described in everyday 
language summaries of central tendency, such as “the mean 

arrival rate is around 5 per day”, or “the mean service rate is 
about 10 per hour”, rather than with complete probability 
distributions. In other words, these system parameters are 
both possibilistic and probabilistic. Thus, fuzzy queues are 
potentially much more useful and realistic than the 
commonly used crisp queues (see Li and Lee [13] and 
Zadeh [22]). By extending the usual crisp batch-arrival 
queues to fuzzy batch-arrival queues in the context of 
multiple servers, these queuing models become appropriate 
for a wider range of applications. 
 
Li and Lee [13] investigated the analytical results for two 
typical fuzzy queues (denoted M/F/1/  and FM/FM/1/ , 
where F represents fuzzy time and FM represents fuzzified 
exponential distributions) using a general approach based on 
Zadeh’s extension principle (see also Prade [15] and Yager 
[21]), the possibility concept and fuzzy Markov chains (see 
Stanford [16]). A useful modeling and inferential technique 
would be applied their approach to general fuzzy queuing 
problems (see Stanford [16]). However, their approach is 
complicated and not suitable for computational purposes; 
moreover, it cannot easily be used to derive analytic results 
for other complicated queuing systems (see Negi and Lee 
[14]). In particular, it is very difficult to apply this approach 
to fuzzy queues with more fuzzy variables or multiple 
servers. Negi and Lee [14] proposed a procedure using α-
cuts and two-variable simulation to analyze fuzzy queues 
(see also Chanas and Nowakowski [2]). Unfortunately, their 
approach provides only crisp solutions; i.e., it does not fully 
describe the membership functions of the system 
characteristics. Using parametric programming, Kao et al. 
[9] constructed the membership functions of the system 
characteristics for fuzzy queues and successfully applied 
them to four simple fuzzy queue models: M/F/1/ , 
F/M/1/ , F/F/1/  and FM/FM/1/ . Recently, Chen 
[4,5] developed FM/FM/1/L and FM/FM[K]/1/  fuzzy 
systems using the same approach. 
 
All previous researches on fuzzy queuing models are 
focused on ordinary queues with a single server. In this 
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paper, we develop an approach that provides system 
characteristics for batch-arrival queues with multiple servers 
and fuzzy parameters: fuzzified exponential batch-arrival 
and service rates. Through  -cuts and Zadeh’s extension 
principle, we transform the fuzzy queues to a family of crisp 
queues. As   varies, the family of crisp queues is described 
and solved using parametric nonlinear programming (NLP). 
The NLP solutions completely and successfully yield the 
membership functions of the system characteristics, 
including the expected number of customers in the system 
and the expected waiting time in the queue.  
 
The remainder of this paper is organized as follows. Section 
2 presents the system characteristics of standard and fuzzy 
batch-arrival queuing models with multiple servers. In 
Section 3, a mathematical programming approach is 
developed to derive the membership functions of these 
system characteristics. To demonstrate the validity of the 
proposed approach, one realistic numerical example is 
described and solved. Discussion is provided in Section 4, 
and conclusions are drawn in Section 5. For notational 
convenience, our model in this paper is hereafter denoted 
FM[x]/FM/c. 

 
2. Fuzzy Batch Queue With Multiple Servers 
 
We consider a batch-arrival queuing system with c servers 
where the customers arrive in batches to occur according to 
a compound Poisson process with batch-arrival rate . Let 

kA  denote the number of customers belonging to the kth 

arrival batch, where ,kA ,,3 ,2 ,1 k are with a 

common distribution  ,3,2,1 ,]Pr[   nanA nk  , 

and






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][
n

nnaAE
. Customers arriving at the service facility 

(servers) form a single-file queue and are served in order. 
The service time for each of all c servers is exponentially 
distributed with rate   and each server can serve only one 

customer at a time. Customers who upon entry the service 
facility find that all servers are busy have to wait in the 

queue until any one server is available. Let sN  and qW  

represents the expected number of customers in the system 
and the expected waiting time in the queue, respectively. 

Through a Markov process, we can easily obtain sN  and 

qW  in terms of system parameters 
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Where ),( nP  represents the probability that there are n 

customers in the system. And the probability depends on   
and . In steady-state, it is necessary that we 

have 1
][

0 



c

AE . 

To extend the applicability of the batch-arrival queuing 
model with multiple servers, we allow for fuzzy 
specification of system parameters. Suppose the batch-
arrival rate   for customers and service rate   for each 

server are approximately known and can be represented by 

the fuzzy sets ~  and~ . Let )(~ x  and )(~ y  denote 

the membership functions of ~  and ~ . We then have the 

following fuzzy sets: 

 Xxxx    ))(,( 
~

~ , (3a) 

 Yyyy    ))(,( ~
~ , (3b) 

where X  and Y  are the crisp universal sets of the batch-
arrival and service rates. 
Let ),( yxf  denote the system characteristic of interest. 

Since ~  and ~  are fuzzy numbers, )~,
~

( f  is also a 

fuzzy number. Following Zadeh’s extension principle (see 
Yager [21] and Zadeh [22]), the membership function of the 

system characteristic )~,
~

( f  is defined as: 
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  , (4) 

Assume that the system characteristic of interest is the 
expected number of customers in the system. It follows 
from (1) that the expected number of customers in the 
system is: 

),( yxf
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The membership function for the expected number of 
customers in the system is:

 
Unfortunately, the membership function is not expressed in 
the usual form, making it very difficult to imagine its shape. 
In this paper we approach the representation problem using 
a mathematical programming technique. Parametric NLPs 

are developed to find the  -cuts of )~,
~

( f  based on the 

extension principle. 
 

3. Parametric Nonlinear Programming 

To re-express the membership function )(~ z
sN

  of sN
~

 in 

an understandable and usable form, we adopt Zadeh’s 

approach, which relies on  -cuts of sN
~

. Definitions for 

the  -cuts of ~  and ~  as crisp intervals are as follows: 

 
The constant batch-arrival and service rates are shown as 
intervals when the membership functions are no less than a 

Paper ID: 02091301 136



International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064 
 

Volume 2 Issue 9, September 2013 
www.ijsr.net 

given possibility level for  . As a result, the bounds of 
these intervals can be described as functions of   and can 

be obtained as: , )( min 1
~ 
Lx  

, )( max 1
~ 
Ux  )( min 1

~ 
Ly

&
.)(max 1

~ 
Uy  

Therefore, we can use the  -cuts of sN
~

 to construct its 

membership function since the membership function 
defined in (6) is parameterized by  .

 
Using Zadeh’s extension principle, )(~ z

sN
  is the minimum 

of )(~ x  and )(~ y . To derive the membership function 

)(~ z
sN

 , we need at least one of the following cases to hold 

such that z = 
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Case (ii): (  )(~ x ,  )(~ y ), 

This can be accomplished using parametric NLP techniques. 
The NLP to find the lower and upper bounds of the  -cut 
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  for Case (i) are: 
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and for Case (ii) are: 
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From the definitions of )(  and )(  in (7), 

)(x  and )(y  can be replaced by 

],[ UL xxx   and ],[ UL yyy  . The  -cuts form a 

nested structure with respect to   (see Kaufmann [10] and 

Zimmermann [25]); i.e., given 10 12   , we have 

],[],[
2211

ULUL xxxx    and ],[],[
2211

ULUL yyyy   . 

Therefore, (8a) and (8c) have the same smallest element and 
(8b) and (8d) have the same largest element. To find the 

membership function )(~ z
sN

 , it suffices to find the left and 

right shape functions of )(~ z
sN

 , which is equivalent to 

finding the lower bound L
sN )(  and upper bound U

sN )(  

of the  -cuts of sN
~

, which can be rewritten as: 
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s.t. UL xxx    and UL yyy   , 

At least one of x  and y  must hit the boundaries of their 

 -cuts to satisfy )(~ z
sN

 = . This model is a set of 

mathematical programs with boundary constraints and lends 
itself to the systematic study of how the optimal solutions 

change with Lx , Ux , Ly , and Uy  as   varies over 

(0,1] . The model is a special case of parametric NLPs (see 

Gal [6]).  
 

The crisp interval [ L
sN )( , U

sN )( ] obtained from (9) 

represents the  -cuts of sN
~

. Again, by applying the 

results of Kaufmann [10] and Zimmermann [25] and 

convexity properties to sN
~

, we have L
s

L
s NN

21
)()(    

and U
s

U
s NN

21
)()(   , where 10 12   . In other 

words, L
sN )(  increases and U

sN )(  decreases as   

increases. Consequently, the membership function )(~ z
sN

  

can be found from (9). 
 

If both L
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right shape function 1])[()(  U
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from which the membership function )(~ z
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constructed: 
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In most cases, the values of L
sN )(  and U

sN )(  cannot be 

solved analytically. Consequently, a closed-form 

membership function for )(~ z
sN

  cannot be obtained. 

However, the numerical solutions for L
sN )(  and U

sN )(  at 

different possibility levels can be collected to approximate 
the shapes of )(zL  and )(zR . That is, the set of intervals 

]}1,0[|])(,){[( 
U

s
L

s NN  shows the shape of 

)(~ z
sN

 , although the exact function is not known 

explicitly. 
Note that the membership functions for the expected waiting 
time in the queue can be expressed in a similar manner. 
 
4. Numerical Example 
 
This section we present one example motivated by real-life 
systems to demonstrate the practical use of the proposed 
approach, which is based on 
http://www.macaudata.com/macauweb/book175/html/19301
.htm 
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Example: Considering one sewerage treatment system 
collects sewage from the urban areas and sends them to the 
sewerage treatment plant. The sewerage treatment plant has 
three supply pipes (referred to 3-servers). Each pipe can 
settle the larger solids and put the settled into the chemical 
process tank. After the chemical process, the treated water is 
discharged to the sea. We assume that the number of 
arriving sewage solids each time follows a geometric 
distribution with parameter 0.5p = ; i.e., the size of 

arriving sewage solids A is 
 ,2 ,1,)5.01(5.0)Pr( 1   kkA k . Clearly, this problem 

can be described by FM[x]/FM/3 system. For efficiency, the 
management wants to get the system characteristics such as 
the expected number of sewage solids in the system and the 
expected waiting time in the queue. 
Suppose the batch-arrival rate and service rate are 

trapezoidal fuzzy numbers represented by 4] ,3 ,2 ,1[
~
  

and ]14 ,13 ,12 ,11[~  . First, it is easy to find that 

]4 ,1[] ,[  UL xx  and 

]41 ,11[] ,[  UL yy . Next, it is obvious that 

when Uxx   and Lyy  , the expected number of 

sewage solids in the system attains its maximum value, and 

when Lxx  , and Uyy  , the expected number of 

sewage solids in the system attains its minimum value. 

According to (9), the  -cuts of sN
~

 are: 
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With the help of MATLAB® 7.0.4, the membership function 
is: 
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with: 

39569269988226351100500)22050(135522706039001125 23423  zzzzzzzzP , 

39569269988226351100500)22050(135522706039001125 23423  zzzzzzzzQ , 

as shown in Fig. 1. The overall shape turns out as expected. 
The membership functions )(zL  and )(zR  have complex 

values with their imaginary parts approaching zero when 

7945

4714

62

17
 z  for )(zL  and 

1175

1697

115

112
 z  for )(zR . Hence, 

the imaginary parts of these two functions have no influence 
on the computational results and can be disregarded.  
Next, we perform  -cuts of batch-arrival and service rates 
and fuzzy expected number of sewage solids in the system 
at eleven distinct   values: 0, 0.1, …, 1. Crisp intervals for 
fuzzy expected number of sewage solids in the system at 
different possibilistic   levels are presented in Table 1. 
The fuzzy expected number of sewage solids in the system 

sN
~  has two characteristics to be noted. First, the support of 

sN
~  ranges from 0.2742 to 1.4443; this indicates that, 

though the expected number of sewage solids in the system 
is fuzzy, it is impossible for its values to fall below 0.2742 
or exceed 1.4443. Second, the  -cut at 1  contains the 
values from 0.5933 to 0.9739, which are the most possible 
values for the fuzzy expected number of sewage solids in 
the system. 

 

 

Figure 1: The membership function for fuzzy expected 

number of sewage solids in the system 

Table 1:  -cuts of batch-arrival and service rates and 

expected number of sewage solids in the system 

  Lx
Ux

Ly  
Uy  

L
sN )(
 

U
sN )(
 

0.00 1.00 4.00 11.00 14.00 0.2742 1.4443
0.10 1.10 3.90 11.10 13.90 0.3039 1.3919
0.20 1.20 3.80 11.20 13.80 0.3340 1.3410
0.30 1.30 3.70 11.30 13.70 0.3646 1.2912
0.40 1.40 3.60 11.40 13.60 0.3957 1.2427
0.50 1.50 3.50 11.50 13.50 0.4273 1.1953
0.60 1.60 3.40 11.60 13.40 0.4594 1.1491
0.70 1.70 3.30 11.70 13.30 0.4920 1.1038
0.80 1.80 3.20 11.80 13.20 0.5252 1.0596
0.90 1.90 3.10 11.90 13.10 0.5590 1.0163
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1.00 2.00 3.00 12.00 13.00 0.5933 0.9739

 

Similarly, the membership function for the fuzzy expected 

waiting time in the queue ( qW
~

) is obtained as shown in Fig. 

2. Crisp intervals for the fuzzy expected waiting time in the 

queue at different possibilistic   levels are given in Table 

2. For the fuzzy expected waiting time qW
~

, the range of qW
~

 

at 1  is [0.0714, 0.0790], indicating that expected 

waiting time for any sewage solids definitely falls between 

0.0714 and 0.0790. Moreover, the range of qW
~

 at 0  is 

[0.0657, 0.0896], indicating that the expected waiting time 

in the queue will never exceed 0.0896 or fall below 0.0657. 

 

Figure 2: The membership function for fuzzy expected 

waiting time in the queue 

Table 2:  -cuts of batch-arrival and service rates and 

expected waiting time 

  Lx  Ux  Ly  
Uy  

L
qW )(
 

U
qW )(
 

0.00 1.00 4.00 11.00 14.00 0.0657 0.0896
0.10 1.10 3.90 11.10 13.90 0.0662 0.0884
0.20 1.20 3.80 11.20 13.80 0.0667 0.0872
0.30 1.30 3.70 11.30 13.70 0.0672 0.0860
0.40 1.40 3.60 11.40 13.60 0.0678 0.0849
0.50 1.50 3.50 11.50 13.50 0.0684 0.0838
0.60 1.60 3.40 11.60 13.40 0.0689 0.0828
0.70 1.70 3.30 11.70 13.30 0.0695 0.0818
0.80 1.80 3.20 11.80 13.20 0.0701 0.0808
0.90 1.90 3.10 11.90 13.10 0.0708 0.0799
1.00 2.00 3.00 12.00 13.00 0.0714 0.0790

 
5. Conclusions 

 
This paper applies the concepts of  -cuts and Zadeh’s 
extension principle to a batch-arrival queuing system with 
multiple servers and constructs membership functions of the 
expected number of customers and the expected waiting 
time using paired NLP models. Following the proposed 
approach,  -cuts of the membership functions are found 
and their interval limits inverted to attain explicit closed-

form expressions for the system characteristics. Even when 
the membership function intervals cannot be inverted, 
system designers or managers can specify the system 
characteristics of interest perform numerical experiments to 
examine the corresponding  -cuts and then use this 
information to develop or improve system processes. 
 
For example, in Example, a designer (manager) can set the 
range of the number of sewage solids to be [0.5252, 1.0596] 
to reflect the desired service and find that the corresponding 

  level is 0.8 with Ly 11.80 and Uy 13.20. In other 

words, the designer can determine that the service rate is 
between 11.80 and 13.20. Similarly, a designer can also set 
the expected waiting time with “rounder” numbers like 
[0.0678, 0.0849] to reflect the desired service, and the 

corresponding   level is 0.4 with Ly 11.40 and 

Uy 13.60. As this example demonstrates, the approach 

proposed in this paper provides practical information for 
system designers and practitioners. 
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