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Abstract: The paper highlights the role that speculation plays in making stock price fluctuation chaotic. The positive feedback produce 
by speculative behavior determines the general dynamics of stock prices. The price dynamics is described by a logistic equation. This 
logistic equation is also known as Verhulst equation. This equation was originally developed to describe the dynamic behavior of 
population of an organism. A discrete form of the Verhulst equation called as Ricker model is done to simulate the price dynamics. The 
simulation of the iterative process in the Ricker model demonstrates that speculation can produce chaos. By varying the value of the 
parameter describing speculation, the price dynamics becomes chaotic for sufficiently high degree of speculation. The extreme 
sensitivity to initial condition of a chaotic system produced the so-called “butterfly effect”. A simulation of the butterfly effect is done 
using two exactly identical discrete logistic equations. The equations differed only in their initial values by a very minute amount. It 
shows how two exactly identical dynamical systems quickly behave very differently even if the difference in their initial conditions is so 
infinitesimally small. The implication of the butterfly effect in doing experiments in the physical world is analyzed. The presence of 
butterfly effect in a chaotic system raises the issue of measurement errors in the conduct of physical experiments. No matter how 
accurate the scientific device used in the experiment, it is still subject to measurement errors. Butterfly effect tremendously magnifies 
the measurement errors over a short span of time. This implies that long-term prediction in a chaotic system is impossible 
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1. Introduction 
 
This paper demonstrates how speculative behavior can create 
chaotic price fluctuations in stock market. The activity of 
buying more stocks as its price increases in the hope that it 
will further increase, provides a positive feedback 
mechanism in price dynamics [1]. This positive feedback 
then produces a looping sequence of price increases. 
However, the series of price increases is being limited by the 
fundamental value of the stock. It is the expected present 
value of future income flows of the stock’s underlying 
assets. The price of stock cannot continually grow if it is 
already way above its fundamental value. In this case, there 
is a downward adjustment of the stock price towards its 
fundamental value. 
 
A model of price dynamics is formally outlined in Section 2. 
The model is in the form of a discrete logistic equation. This 
equation was originally developed to describe the behavior 
of population of biological specie.  
 
Section 3 shows the result of a simulation of the discrete 
logistic equation. The section illustrates how the movement 
of stock prices becomes chaotic as the degree of speculation 
is increased. A chaotic behavior can be thought to be 
random, but unlike randomness, chaotic movement follows a 
deterministic rule. Thus, stock price fluctuations though 
appearing to be random, may just be a product of chaos. 
 
The so-called butterfly effect, which is a consequence of a 
chaotic system’s extreme sensitivity to initial condition, is 
simulated in Section 4. It shows how two exactly identical 
dynamical systems quickly behave very differently even if 
the difference in their initial conditions is so infinitesimally 
small. 
 
Section 5 discusses the impact of butterfly effect in doing 
scientific experiments especially in the issue of measurement 

errors. This leads to the conclusion that making long-term 
prediction in a chaotic system is impossible [2]. 
 
2. The Model 
 
The paper proposes that the stock price dynamics is 
governed by the following differential equation 
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where p is the price, v is the fundamental value of the stock 
and r is a positive-valued parameter denoting the degree of 
speculation. 
 
The fundamental value of a stock is derived from the 
expected present value of future income flows of its 
underlying assets. Speculative behavior may push the price 
above its fundamental value but will exert a downward 
pressure to price to adjust towards its fundamental value. 
The parameter r is the mechanism by which speculation 
creates positive feedback in the price dynamics. This can 
result into a looping system of price increases. If p is below 
its fundamental value, then both r and the term in the 
parenthesis reinforce each other in producing positive 
feedback. 
 
Eq. (1) is a form of logistic equation also known as Verhulst 
equation [3] originally developed to model population 
growth limited by the carrying capacity of the available 
resources. A discrete form of this dynamical equation can be 
written as 
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 Eqn. (2) is the Ricker model [4] developed to study the 
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population dynamics of fisheries. The iterative process in 
Eq. (2) can produce chaotic behavior in the price movement 
[5] as we will see later.  
 
3. Simulating Price Dynamics 
 
Normalizing to unity, let v = 1 and assume initial price is p0 
= 0.5. Figures 1 to 4 below shows the price dynamics for the 
cases r = 0.5, r = 1, r = 2 and r = 3 after 200 iterations. For 
the case r = 0.5 and r = 1, price adjust smoothly towards the 
fundamental value [Fig. 1 and 2]. For the case r = 2, price 
adjust towards the fundamental value in a regular fluctuating 
pattern [Fig. 3]. Finally, for the case r = 3, price behaves 
erratically [Fig. 4]. Although there is no discernible pattern 
in its fluctuations, its behavior is not actually random. This is 
because the behavior is ruled by the relatively simple 
dynamics in Eq. (2). This is an example of chaos. 
 

 
Figure 1: Price dynamics from t = 0 to t = 200 for r = 0.5 

 
Figure 2: Price dynamics from t = 0 to t = 200 for r = 1 

 
Figure 3: Price dynamics from t = 0 to t = 200 for r = 2 

 
Figure 5: Price dynamics from t = 0 to t = 200 for r = 3 

 
This shows that the irregular fluctuation of stock prices may 

not be random but just chaotic. Furthermore, this 
demonstrates that speculative activity can create chaos.  
 
4. Simulating Butterfly Effect 
 
One central feature of a chaotic system is its extreme 
sensitivity to initial condition. This implies that even with an 
infinitesimally small difference in their initial conditions, 
two exactly identical systems will end up having very 
different dynamics after some relatively short period. This is 
dubbed as the butterfly effect because it has the implication 
that a small flap of butterfly wings in Brazil may produce a 
tornado in Texas several months after.  
 
To illustrate the butterfly effect, let and follow the dynamics 
specified in Eq. (2). This dynamical system can be written as  
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where i = 1, 2.  
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Figure 6: The butterfly effect for δ0 = 10-3 given 1

0p 0.5, v 

= 1, and r = 3 
 

 
Figure 7: The butterfly effect for δ0 = 10-12 given 1

0p  0.5, v 

= 1, and r = 3 
 

Assuming 1
0p  0.5, v = 1, and r = 3, Figure 5 and 6 show 

the dynamics of t  for the initial conditions, 0  10-3 and 

0 10-12 respectively. For 0  10-3 [Fig. 5], t  begins 

moving irregularly almost right at the start. This means that 

the dynamics of 1
tp and 2

tp  quickly behave very differently 

even though they initially differ by only one-tenth of 1%. 
Thus, the system is extremely sensitive to initial condition. 
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For some very close initial position like the case of 0  10-

12 [Fig. 6], initially, t  remains very close to zero with no 

noticeable fluctuation. After some period however, t  starts 

to behave erratically. This shows that even for 1
tp  and 2

tp  

which have almost exactly the same initial values, after 
moving together for some periods, they will end up moving 
very differently. The extreme sensitivity to initial condition 
is again demonstrated. 
 
5. Conclusion 
 
The existence of chaos even in a relatively simple dynamic 
equation like Eq. (2) has enormous implication in the 
conduct of experiment and data gathering. The extreme 
sensitivity of a chaotic system to initial condition 
confounded the problem of measurement error. It raises the 
issue of the accuracy of apparatus or measuring device used 
in experiments. 
 
Consider modeling a system which behavior is described 

by 1
tp  in the previous section and let δ0 be the measurement 

error. Even if the exact model is known, and the measuring 
device has a very high degree of accuracy in such a way that 
its measurement error is to the magnitude of 0  10-12, the 

butterfly effect tremendously magnifies this error over a 
short span of time. This implies that long-term prediction in 
a chaotic system is impossible. 
 
For a system to be chaotic it must be nonlinear. Hence, chaos 
poses no problem for most of the well-studied systems in 
physics so far, which are linear. However, it is believed that 
far more numerous hidden mysteries in the natural world can 
be unlocked with nonlinear systems. 
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