
International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

Methodology for Deriving and Integrating
Countermeasures Design Models for Electronic

Commerce Systems

Tanvir Tahir1, Kamar Abbas2

1Department of Computer Science & Engineering, Institute of Engineering & Technology, Sitapur Road, Lucknow, UP, India
2Azad Institute of Engineering & Technology, Lucknow, UP, India

Abstract: In this paper, we provide a detailed description of methodology for deriving and applying Electronic Commerce (EC)
security countermeasures design models from the existing IT standards. Our goal is to describe a model-based approach of how to
extend such a model or “specialize” it in order to apply it to e-commerce systems.

Keywords: e-commerce, malicious user, Sniffing, Spoofing, Brute-force, Cryptography & Decryption.

1. Introduction

This paper describes a new methodology for deriving
countermeasures design models for e-commerce systems.
The methodology is based on the E-Commerce security
services model. Our approach focuses on satisfying
legitimate user requirements while blocking malicious user
requirements at system design time. This assessment shows
that our methodology is systematic through a case study that
derived four countermeasures design models for
authentication, authorization, access control enforcement,
and transaction privacy. The derived countermeasures design
models were assessed through a realistic case study on a
SET-integrated in e-commerce systems. These models were
also proven to be effective against all security attacks related
to the e-commerce domain.

2. A Unique Aspect of our Approach

A unique aspect of our approach is that it focuses on
introducing the appropriate security countermeasures early in
the design process [1] while taking into consideration the
different types of malicious users and the attack power each
type might have. In general, malicious users can be grouped
into three categories: crackers, intruders, and insiders. A
cracker is someone who breaks systems for nefarious ends.
An intruder is someone who gains access into systems by
force. An insider is a person who is in a position of power or
has access to system confidential information. The power
such users might wield and the threats they may impose vary
from one user category to another [2]. Therefore, security
designers, and our methodology in this case, have to take
into account these different categories and design
countermeasures accordingly.

3. Understanding Malicious Users and their
Motivations

Taking into consideration the above-mentioned “malicious
user” categories supports our methodology for the systematic
introduction of the proper security countermeasures early in
the system design process as follows. Every EC system is
normally built upon a set of user requirements. In the context

of security, user requirements are: availability, integrity,
confidentiality, accountability, and assurance.

Malicious user requirements (MUR), on the other hand, are
requirements allowing malicious users to attack the EC
system. Our methodology captures these requirements
through a new notion: “attack enablers”. By capturing these
requirements, we will be able to understand malicious users
and their motivations. This enables an effective security
design that provides effective countermeasures against all
known malicious behaviors.

4. A New Design Goal: Block Malicious User
Requirements

In a typical EC system life cycle, user requirements are
captured during the system design phase and the EC system
is designed to satisfy those requirements. Our proposed
methodology deals with malicious user requirements
(MURs) on a similar basis with the exception that the system
design must block these requirements rather than satisfy
them.

It is worth noting that MUR can exist in different system
components: EC system itself, operating system platform,
third party software components, etc. In this paper, we will
deal only with MURs for the EC system at the design phase.

Phases of the Methodology

Our methodology, depicted below, can be divided into two
functional phases.

Phase 1: Select features and derive design models
Phase 2: Instantiate and integrate the derived models into an
e-commerce system design

In Phase 1, security features are selected and security-
oriented design models are derived and verified. In Phase 2,
the derived security-oriented design models from Phase 1 are
instantiated and integrated into an existing e-commerce
system design.

393

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

Phase 1: Select Features and Derive Design Models

Step 1 - Select security features.
In this phase, we apply steps 1 through 2.4 of our
methodology. In this paper, we select four security features
of the security services model; namely

 Authentication,
 Authorization,
 Access control enforcement, and
 Transaction privacy.

For each selected security feature, we will derive a security-
oriented design model.

Step 2 - For each security feature, derive a
countermeasures design model:

Step 2.1 – Identify and abstract all attacks related to the
security feature.

This includes all attacks referenced in OSSTMM as well as
other attacks that are applicable to the selected security
feature from other referenced literature. In this paper, we
perform an exhaustive investigation into the set of all known
attacks related to authentication, authorization, access
control enforcement, and transaction privacy. This list of
attacks will be used in this step of the methodology. The
goal of having an abstract description of the attacks is to
mask platform-specific execution details, such as operating
system releases, and concentrate more on the functionality
and requirements for understanding how the attack
mechanism works?

5. Applying the Design for Security
Methodology to the Security Services Model

Every section will begin with a definition of the security
feature to which we intend to apply our methodology.

1. We select security features. For our case study we select

authentication, authorization, access control enforcement,
and transaction privacy.

2. For each feature,
2.1. We identify and abstract all related security attacks
2.2. For each attack,
2.2.1. We derive all attack enablers
2.2.2. We prescribe appropriate security countermeasures
2.2.3. For each countermeasure,
2.2.3.1. We analyze the countermeasure for residual
vulnerabilities
2.2.3.2. We add corrective measures to overcome
vulnerabilities
2.3. We derive the complete security-oriented
countermeasures design model for the feature

Security-Oriented Authentication Design Model

Step 1 is to select a security feature. Here we select
authentication.

Authentication is the process of verifying the identity of a
user, process, or device, often as a prerequisite to allowing
access to resources in a system. [3] The identity of a certain
user or process is challenged by the system and proper steps
must be taken to prove the claimed identity.

Authentication models may depend on specific
technologies. An example of such a model is the open
authentication model supporting electronic commerce in
distributed computing [4] that is based on CORBA
technology [5] and provides an extension to the Kerberos
authentication framework [6] using a public key
cryptosystem. Another example of an authentication model
is a general framework for constructing and analyzing
authentication protocols in realistic models of
communication networks. [7].

The above referenced literature emphasizes satisfying
standard security requirements while providing extensions to
different technologies such as CORBA and Kerberos. As
discussed earlier, the main emphasis in current standards for
security requirements is on satisfying legitimate user
requirements from a security point of view; however, in this
paper, we emphasize blocking malicious user requirements
at system design time (this is also known as preventive
security design) [8]. The goal of this section is to show how
our methodology is useful for deriving a preventive design
model for authentication that can either be incorporated into
any integrated authentication model (such as above) or can
be implemented as a standalone authentication module in e-
commerce systems.

Step 2.1: Identify all attacks related to authentication
Security attacks related to authentication can be identified
from the literature and from personal experience. In this
paper, we have projected all known security attacks onto
various types of e-commerce authentication models
described [9, 10, 11,7,12 & 4]. This comprises most known
attacks applicable to authentication in the domain of EC
systems.

Note that the main focus of this paper will be on attacks
directly related to e-commerce systems. Attacks related to
network components, to third-party software components,
and attacks against the operating system that is supporting
the e-commerce application will not be discussed here. In
practice, of course, these types of attacks also have to be
handled.

The specific security attacks related to authentication in e-
commerce systems are ([13, 2,14,15,16 & 17] :

Sniffing attacks (also known as man-in-the-middle attacks)

 Dictionary attacks
 Replay attacks
 Brute-force attacks
 ID spoofing attacks (also known as spoofing attacks)
 Credential decryption attacks (supplementary to other

types of attacks)
 Side-channel attacks

394

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

We will now consider each type of attack, derive attack
enablers, and prescribe effective countermeasures.

Step 2.2: For each authentication attack, derive its
enablers and countermeasures

This section provides a succinct abstract description of all
known authentication-related security attacks. Attack
enablers are then identified, and effective countermeasures
are prescribed. The attacks are presented and discussed
below in order of dependence, since some of them are
related (e.g. dictionary attacks depends on brute-force
attacks).

5.1 Sniffing Attacks
Sniffing attacks [13, 2, 14 & 15] (also known as the man-in-
the-middle attacks) are the digital analogues to phone
tapping or eavesdropping. This attack captures information
as it flows between a client and a server. Usually, a
malicious user attempts to capture TCP/IP transmissions,
because they may contain information such as usernames,
passwords, or the actual contents of an email message.

A sniffing attack is often classified as a man-in-the-middle
attack because in order to capture packets from a user, the
machine capturing packets must lie in between the two
systems that are communicating (a man-in-the-middle attack
can also be waged on either one of the two systems).

The attack enabler in this case is the process of sending data
across communication channels in clear text format. In this
paper preventing access to the communication channel is not
a valid countermeasure, because this is due to the open
nature of the internet. However, by encrypting the
communication channel between the user/process and the
system, sniffing attacks are disabled, i.e., sniffing retrieves
only useless encrypted information. However, the
information can be duplicated and substituted for subsequent
transmissions. This type of attack is known as “replay
attacks” and will be discussed later on in this section.

5.2 ID Spoofing Attacks

ID spoofing attacks [13, 2, 14, 17 & 15] occur when a
malicious user or process claims to be a different user or
process. This attack allows an intruder on the internet to
effectively impersonate a local system's IP address. If other
local systems perform session authentication based on the IP
address of a connection (e.g. rlogin with .rhosts or
/etc/hosts.equiv files under UNIX), they will believe
incoming connections from the intruder actually originate
from a local "trusted host" and will not require a password.
The attack enabler for this attack is for authentication to rely
on static information such as IP addresses, host names, etc.
This is equivalent to trusting certain hosts or processes
according to some pre-defined static information. The
system authenticates the user or process only by checking
the given static information. In such a case, the attacker will
attempt, through complex attack tools, to “spoof” the system
by claiming that he/she is the trusted host or process. Since
no challenge is attempted in this case, the attack has a great
chance of succeeding.

The countermeasure for such an attack is to use challenge
based authentication. Challenge-based authentication
includes the use of certificates, user/password combinations,
etc. If challenge-based authentication is inapplicable for a
certain specific case, then least privilege static
authentication must be applied. Least privilege static
authentication means giving the least possible access
privilege to the fewest possible number of users, processes
or hosts after successful authentication. By doing so, the risk
associated with relying on static authentication, when
challenge-based authentication cannot be applied, is kept to a
minimum.

5.3 Brute-Force Attacks
A Brute-force attack [13, 2 & 15] is any form of attack
against a password file that attempts to find a valid username
and password by successive guessing. This type of attack is
enabled by gaining access to the credential (user names and
passwords) storage medium. The attacker first retrieves a
copy of the database system or system file holding credential
information. If the credential information is encrypted, a
brute-force attack tool will try all possible combinations of
user’s name and passwords. For each combination, the user
name and password are encrypted using the same encryption
algorithm that was used to encrypt the original credential
information. Then, the encrypted data is compared to the
retrieved copy of credential data.

Different types of encryption algorithms are used and the
attack proceeds until both credentials (user name and
password) match. The countermeasure for this type of attack
is to enforce access permissions through a strong access
control policy at the operating system level. By doing so,
malicious users will fail to retrieve a copy of credential
information and, thus, the brute-force attack is disabled.

5.4 Dictionary Attacks

A dictionary attack [2 & 15] is the “smart” version of brute-
force attacks and is directed towards finding passwords in a
specific list, such as an English dictionary. Dictionary
attacks are also executed using automated tools. Moreover,
these tools are capable of working on web interfaces without
access to the encrypted format of credential information.
These tools require the prior knowledge of the user name
only. Once given a user name, the attack tool will try all
possible combinations of that user name with a huge
database (such as a dictionary) of possible passwords. This
attack has a high probability of succeeding since we, as
humans, tend to use passwords that are easy to remember.
The attack enabler is a “high” number of allowed
consecutive unsuccessful authentication attempts.

The countermeasure, in this case, is to prevent the
automation of the attack by setting an upper limit on the
allowed number of successive unsuccessful authentication
attempts. This can be done through an account auto-lock or a
timeout procedure. In other words, when a certain number of
consecutive, unsuccessful authentication attempts is reached,
the system will automatically lock or disable the account and
will alarm the system administrator. This will prevent the
dictionary attack from proceeding and, thus, the attack is
disabled. Enabling or unlocking the account can be done

395

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

either by the user or automatically by the system after a
certain period of time. A residual vulnerability of the
countermeasures in this case, account auto-locks or timeouts,
occurs when malicious users target them as means for denial
of service attacks [13, 2, 14 & 1].

5.5 Replay Attacks

A replay attack occurs when a malicious user captures an
authentication sequence that was transmitted through the
network by an authorized user, and then replays the same
sequence to the server to get himself/herself authenticated
[15]. The attack enabler in this case is, again, access to the
communication channel and data sent in clear text format.
The proper countermeasure is to encrypt and time-stamp all
sensitive data sent across the communication channel. By
doing this, “replayed” messages can be recognized and
discarded and this type of attack is disabled.

5.6 Credential Decryption Attacks

Credential decryption is a basic supplementary attack for
sniffing attacks, brute-force attacks, and dictionary attacks.
A tool whose aim is to break the encryption algorithm that
was used to encrypt credential information usually performs
these attacks [16].

 Attack enablers for this attack might be a weak

cryptographic algorithm, a weak credential policy, or an
incorrect implementation of the cryptographic algorithm.

 Cryptography increases the probability of success for a
brute-force attack or a sniffing attack by allowing the use
of cryptographic systems that are easy to crack. Its
countermeasure is to use a strong cryptographic algorithm
that is hard to crack.

 Please note that a weak cryptography is not the same as a
weak credential policy.

 A weak credential policy, on the other hand, increases the
probability of a dictionary attack's success by allowing the
existence of easy-to-guess passwords.

 Its countermeasure is to have a strong credential policy
that forces legitimate system users to create and maintain a
safe password that is easy to remember for a legitimate
user and difficult to guess for a malicious user.

 The countermeasure to an incorrect implementation of
cryptography is to thoroughly verify the cryptographic
algorithm after system implementation. This cannot be
done at design time, and is therefore not discussed further
in this paper.

5.7 Sides-Channel Attacks

Side-Channel Attacks: In cryptographic devices such as
smart cards, data useful to an attacker other than input data
and output data may ‘leak out’ during cryptographic
procedures. The computation time of cryptographic
procedures is one kind of such data, as is power
consumption. Because the smart card uses an external power
source, power consumption can be monitored [35] developed
a side channel attack in which an attacker infers stored secret
information in a cryptographic device by using such leaked
data. This type of attack, which includes a timing attack, a

Simple Power Analysis (SPA) attack, and a Differential
Power Analysis (DPA) attack, renders smart cards
particularly vulnerable.

 A timing attack is a side channel attack in which an

attacker infers the secret information by using computation
time as leaked data. Some methods of timing attack use
statistical analysis to reveal the secret information, others
infer it from a one-time computation.

 A Simple Power Analysis (SPA) attack is a side channel
attack in which an attacker infers the secret information by
using power consumption as leaked data. An SPA attack
captures the secret information by direct observation of a
device’s power consumption without the need for
statistical analysis.

 A Differential Power Analysis (DPA) attack is a side
channel attack in which an attacker infers the secret
information by using statistical analysis of power
consumption. This attack is the most powerful side
channel attack.

For the purpose of our research, smart cards might be used
for authentication purposes only at the client side. In this
case, the card and the external power source are both
assumed to be secure since they are used by the client and
not by the EC system itself. The main emphasis of our
research is on securing the EC system. In other words, our
goal is to secure data transmitted and received by the EC
system. Accordingly, this paper will not deal with these
types of attacks. Yet, it is important that security architects
be aware of the existence of these types of attacks.

6. Applying and Integrating Authentication
Design Model

We have applied our methodology to the authentication
security feature of the security services model. The result
was a countermeasures design model that is effective against
the set of all known security attacks related to authentication.
In this section, we will apply the derived countermeasures
design mode to the e-commerce system design described, in
order to check the effectiveness and applicability of the
derived authentication countermeasures design model to a
realistic e-commerce system design with SET. The first step
in applying the derived countermeasures design model is to
instantiate its features. This is a straightforward process that
takes every feature of the model and converts it into an
implementable design. A description of how the
authentication model features described are instantiated is
provided below. This process is not dependent on any order
of instantiation, and therefore, can be done in any desired
order.

6.1 Encrypted Channel

The “encrypted channel” feature is instantiated to SSL
(Secure Sockets Layer) [18]. SSL is a protocol developed by
Netscape Communications Corporation to provide security
and privacy over the internet. This protocol supports server
and client authentication, is application independent, and
allows HTTP (Hypertext Transfer Protocol) to be layered on
top of it transparently. Furthermore, SSL is optimized for

396

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

HTTP and is able to negotiate encryption keys as well as
authenticate the server before the web browser exchanges
data. The SSL protocol maintains the security and integrity
of the transmission channel by using encryption,
authentication and message authentication codes. In our
case, SSL is selected because it provides an encrypted
channel of communication with no requirements at the client
side. The only client requirement is to have an SSL enabled
web browser. The majority of existing web browsers, and all
major web browsers such as Internet Explorer™, Netscape
Communicated™, and Mozilla™, have built-in SSL support.

6.2 Strong Cryptography

The “strong cryptography” feature is instantiated to use the
RSA cryptosystem with 1024 bits keys. The reason for
selecting RSA is because it is a standard for secure
cryptography. RSA Laboratories
(http://www.rsasecurity.com/) currently recommends key
sizes of 1024 bits for corporate use. Several recent standards
specify a 1024-bit minimum for corporate use. Less valuable
information may be encrypted using a 768-bit key; as such a
key is still beyond the reach of all known key-breaking
algorithms.

6.3 Strong Password Policy

The “strong password policy” feature is instantiated to obey
the SANS standard [36] for strong password policies as
follows:

 All system-level passwords (e.g., root, enable, NT admin,

application administration accounts, etc.) must be changed
on at least a quarterly basis.

 All user-level passwords (e.g., email, web, desktop
computer, etc.) must be changed at least every six months.
The recommended change interval is every four months.

 User accounts that have system-level privileges granted
through group memberships or programs such as "sudo"
must have a unique password from all other accounts held
by that user.

 Passwords must not be inserted into email messages or
other forms of electronic communication.

 All user-level and system-level passwords must:
 Contain both upper and lower case characters (e.g., a-z, A-

Z)
 Have digits and punctuation characters as well as letters

e.g., 0-9,!@#$ %^&*()_+|~-=\`{}[]:";'<>?,./)
 Are at least eight alphanumeric characters long.
 Is not a word in any language, slang, dialect, jargon, etc.
 Are not based on personal information, names of family,

etc.
 Passwords should never be written down or stored on-line.

Try to create passwords that can be easily remembered.
One way to do this is create a password based on a song
title, affirmation, or other phrase.

For example, the phrase might be: "This May Be One Way
to Remember" and the password could be: "TmB1w2R!" or
"Tmb1W>r~" or some other variation.

Security-Oriented ‘Authorization’ Design Model

Step 1 is to select a security feature. Here we select
authorization.

Authorization is the process of giving someone the
permission to do or have something. In multi-user computer
systems such as EC systems, a system administrator defines
which users are allowed access to the system and what
privileges of use (such as access to which components, hours
of access, and so forth). Assuming that someone has logged
in to an EC system, the system may want to identify what
resources the user can be given during this session. Thus,
authorization is sometimes seen as both the preliminary
setting up of permissions by a system administrator and the
actual checking of the permission values that have been set
up when a user requests access.

Authorization models might rely on specific frameworks or
models for implementation guidance. An example of such
guidance is the AAA Authorization Framework which is not
intended to be a standard but serves as an asset for modeling
authorization into EC systems [19, 20 & 21]. The purpose of
this framework is to provide the base requirements for
authorization. It presents an architectural framework for
understanding the authorization of internet resources and
services and deriving requirements for authorization
protocols.

The above referenced literature emphasizes satisfying
standard security requirements. As discussed earlier, the
main emphasis in current standards for security requirements
is to satisfy legitimate user requirements from a security
point of view. Testing against the existence of malicious user
requirements is done after the system is implemented. In this
paper, we emphasize blocking malicious user requirements
at system design time (this is also known as preventive
security design [8]. The goal of this section is to have a
preventive design model for authorization that can be
incorporated into any integrated authorization model (such
as above) or can be implemented as a standalone
authorization module in e-commerce systems.

Step 2.1: Identify all attacks related to authorization
Security attacks related to authorization can be identified
from the literature and from personal experience. In this
paper, we have projected the identified security attacks onto
various types of e-commerce authorization models described
in [22 & 23]. This comprises most known attacks applicable
to authentication in the domain of EC systems. It is
important to remind that the main focus of this paper will be
on attacks directly related to e-commerce systems. Attacks
related to network components, to third-party software
components, and attacks against the operating system that is
supporting the application will not be discussed here. In
practice, of course, these types of attacks also have to be
handled.

The specific security attacks related to authorization in e-
commerce systems are [13, 2, 14, 17 & 15]:
Session hijacking attacks

 Authorization bypassing attacks

397

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

 Privilege brute-force attacks
 Replay attacks
 ID Spoofing attacks

We will now consider each type of attack, derive attack
enablers, and prescribe effective countermeasures.

Step 2.2: For each authorization attack, derive its
enablers and countermeasures
This section provides a succinct abstract description of
authorization-related security attacks. Attack enablers are
then identified and effective countermeasures are prescribed.
The attacks are presented and discussed below in order of
dependence; since some of them are related (e.g. Session
hijacking attacks depend on ID spoofing attacks).

6.4 ID Spoofing Attacks

ID spoofing attacks [13, 2, 14, 17 & 15] occur when a
malicious user or process claims to be a different user or
process. The attack enabler for this type of attacks on EC
systems is the stateless nature of the Internet part of EC
systems. Stateless means that there is no record of previous
system interactions and that each interaction request has to
be handled based entirely on information provided with it.

The proper countermeasure is to provide a stateful EC
system. Stateful means the system keeps track of the state of
interaction, usually by setting values in a storage field
designated for that purpose. In other words, stateful means
the ability to identify the user across multiple EC system
requests. In this case, state information can be kept through
the usage of session management techniques [22, 19 & 20].

Session Management is a technique that enables web
applications, and EC systems in our case, to transform the
Internet from a stateless medium to a stateful one. From a
security point of view, it is also responsible for protecting
the EC system from malicious behavior of application clients
whether intentional or non-intentional.

Most popular session management implementations make
use of cookies and/or URLs in web browsers to save session
information. A residual vulnerability for introducing session
management is enabling session hijacking attacks. This type
of attacks will be detailed later on in this section.

6.5 Replay Attacks

Replay attacks in the case of authorization are similar to a
certain extent to the case of authentication. The attack
enabler for this type of attacks on EC systems is the stateless
nature of the Internet part of EC systems. The proper
countermeasure in the case of authorization is to provide a
stateful EC system through the usage of session management
techniques [22, 19 & 20]. This will prevent malicious users
from claiming false identities when attempting to seek
authorization. Session management implementations make
use of cookies and/or URLs in web browsers for saving
session information.

6.6 Session Hijacking Attacks

A residual vulnerability for introducing session management
as a countermeasure is that malicious users will be able to
execute session hijacking attacks [13 & 15]. This type of
attack involves an attacker using captured, brute forced, or
reverse-engineered authorization information (such as
session information) to seize control of a legitimate user's
session while that user is logged into the EC system. This
usually results in the legitimate user losing access or
functionality to the current EC system session, while the
attacker is able to perform all normal application functions
with the same privileges of the legitimate user.

This type of attacks usually relies on a combination of other
simpler session management attacks (such as brute-force
attacks and replay attacks). The act of taking control of the
session after successfully obtaining or generating an
authentication token is called session hijacking. The user
may or may not still have all or partial control of his EC
system session, and may be forced out in the process. An
attacker might be able to take control of an active session
simply by pasting a URL into his web browser or by loading
stolen cookie data and accessing a particular web site or
URL (similar to a replay attack).

Session management information is usually encrypted and
sent to the client side where web browsers save a copy for
later usage. There are three options for saving session
information on the client side: using cookies, URLs, or
hidden HTML forms. Whether saved in the URL or in a
hidden HTML form, session information is clearly seen by
anyone. Thus, for the purpose of our discussion, using URLs
and hidden HTML forms are similar.

The session hijacking attack enabler has three properties:
weak session encryption, access to cookie information, and
weak URL session information. The first attack enabler
property is a weak encryption algorithm that allows
malicious users to capture session information, decrypt it,
and perform session hijacking attacks. The countermeasure
for this attack enabler property is to have a strong session
encryption algorithm. This will prevent malicious users from
retrieving useful session information for the purpose of
session hijacking attacks in a timely manner.

The second attack enabler property, access to cookie
information, occurs when a session lifetime is longer than
the web browser session. Web browsers, in this case, are
forced to save cookies on local user hard drives. This allows
malicious users, through complex tools, to retrieve saved
session information and perform session hijacking attacks.
The countermeasure for this attack enabler property is to
use volatile cookies. Volatile cookies are not saved on local
user hard drives. They are saved in the system memory, and
once the web browser session ends, i.e. the web browser is
closed, the cookie is erased from memory and cannot be
retrieved.

The third attack enabler property is using weak URL session
information. This usually occurs when cookies are not
available and is, practically, similar to saving session
information in hidden HTML forms. In this case, session

398

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

information cannot be volatile since it can be seen by the
human eye either in the URL or in the HTML file. Malicious
users can, through special tools, retrieve a copy of the
session information and start a session hijacking attack. The
proper countermeasure is to have URL enforcement. This
includes but is not limited to re-authenticating the user
before critical actions are performed (such as finalizing
purchase orders, requesting money transfers, etc.), and
mapping session information to web browser instances. By
doing so, if a malicious user successfully steals session
information and starts a session hijacking attack, our system
will either block him by capturing the fact that a different
browser instance is used or will prevent him from causing
extensive damage by requesting re-authentication before
critical actions.

6.7 Buffer Overflow Attacks

A buffer overflow is possibly the most prevalent software
vulnerability used to infiltrate a computer or a system [2]. A
buffer is a memory location in which a program stores
variable data. This data is often supplied directly by the user,
as in a name or other text entry, or by a client program such
as a web browser or email client. These buffers are usually
of a fixed, predetermined size. If the program restricts the
amount of data that can be input to the amount of data that
the buffer can store, a buffer overflow is not possible. Some
programs do not do this. Buffer overflow occurs when more
data is entered than there is space for in the buffer. The extra
data then gets written to the memory locations after the
buffer. Often, the memory after the buffer location originally
contains code, and that memory location is referenced for
future execution. A buffer overflow attack is possible when
an attacker is able to input data that will cause either a
program crash (creating a Denial of Service attack) or cause
the system to run code granting the attacker further access.

The attack enabler for buffer flow attacks is, as discussed
above, not restricting the amount of data that can be input to
the amount of data that the buffer can store. Restricting the
size of data on the client side in EC systems is infeasible
because clients are usually web browsers. EC systems cannot
depend on web browsers from a security point of view
because malicious users have full control of the web
browser.

The proper countermeasure is to use static or dynamic
source code analyzers to check the written code for buffer
overflow problems. Another possible countermeasure is to
change the programming language compiler so that it
performs bounds checking for protecting certain addresses
from overwriting.

6.8 Denial of Service Attacks

A denial of service attack [24] is characterized by an explicit
attempt by attackers to prevent legitimate EC system users
from using the system. Examples include attempts to "flood"
a network, thereby preventing legitimate network traffic; or
attempts to disrupt connections between two machines,
thereby preventing access to a certain specific service
supporting the EC system. Not all service outages, even
those that result from malicious activity, are necessarily

denial-of-service attacks. Other types of attack may include a
denial of service as a component, but the denial of service
may be part of a larger attack. Denial-of-service attacks can
essentially disable the EC system or the network that the
system resides on. Some denial-of-service attacks can be
executed with limited resources against a large, sophisticated
site. This type of attack is sometimes called an "asymmetric
attack." Denial of service attacks are therefore, related to
computer networks. Thus, our research will not deal with
this type of attacks. Yet, we are interested in one subsidiary
of this type of attacks: component failure attacks.

6.9 Component Failure Attacks

Component failure attacks occur when an EC system
component fails to respond to other components while
providing a service. Malicious users might execute a denial
of service attack on a certain component of the EC system
with an attempt to disable it. If successful, malicious users
will then attempt to attack the EC system through simpler
attacks such as spoofing attacks, replay attacks, and session
hijacking attacks. An example of such attacks might occur in
the case of centralized authorization.

Malicious users might execute a denial of service attack
against the EC system component that provides authorization
mechanisms. If the attack fails, malicious users will attempt
to perform a session hijacking attack on the EC system using
erroneous authorization information.

The attack enabler is when system components provide
tolerance for erratic trusted components. This might lead to
unsafe trust relationships, thus, rendering the EC system
behavior unpredictable. The proper countermeasure for this
type of attack is to have a zero-tolerant trust model. [25] By
doing so, components that fail while providing the service
will be considered un-trusted and, thus, the attack fails.

6.8 Backdoors

A backdoor, also called a trapdoor, is an undocumented way
of gaining access to an EC system. [2] Backdoors (a2),
whether intentional or non-intentional, are usually written by
the developer who writes the code for the EC system and are
often only known by the developer who wrote those [37].

Backdoors might exist in any component of the EC system.
Backdoors related to the operating system platform (such as
backdoors caused by operating system services like telnet
and FTP) are beyond the scope of this paper. For the purpose
of our discussion, we are concerned with backdoors that are
directly related to our EC system. For this purpose, two types
of backdoor are identified: coding backdoors and underlying
backdoors. Coding backdoors are usually generated while
coding the EC system. Developers might, intentionally or
non-intentionally, write code that would provide illegal
access to the EC system.

The attack enabler in this case is having extra code that does
not support the proper functionality of the EC system. The
proper countermeasure is to have good code coverage
testing (also known as white box testing). As a result of
applying a good code coverage testing process, uncovered

399

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

code can be identified and observed. Underlying backdoors
are backdoors existing in critical components supporting the
EC system such as web servers. An example of such is
having weak file access permissions or weak web server
aliases.

Weak file access permissions might give unauthorized
access to insiders to the EC system. An insider, in this case,
will log into the system as a legitimate user, and then exploit
these file access permissions to perform his attack. Web
server aliases, on the other hand, might give unauthorized
access to any type of user through the internet. In this case, a
web server alias, created with the intention of simplifying a
user’s task, might give uncontrolled access to other system
components. The attack enabler in both cases is a weak
implementation of the access control policy. The proper
countermeasure is to enforce the access control policy
through an explicit check after system installation. By doing
so, any existing backdoor will be uncovered and fixed.

7. Applying and Integrating Access Control
Enforcement Design Model

We applied our methodology to the access control
enforcement security feature of the security services model.
The result was a countermeasures design model that is
effective against the set of all known security attacks related
to access control enforcement. In this section, we will apply
the derived access control enforcement countermeasures
design model derived to the e-commerce system.

This application is intended to prove the applicability of the
derived access control enforcement countermeasures design
model. The first step in applying the derived
countermeasures design model is to instantiate its features.
This is a straightforward process that takes every feature of
the model and converts it into an implementable feature. A
description of how the access control enforcement model
features, are instantiated is provided below.

7.1 Zero-Tolerance Trust Model

Our “zero-tolerance trust model” feature is instantiated to
become a role-based access control model [26, 27]. In our
discussion of access control enforcement, we showed that
one of the most challenging problems in managing large
networked systems is the complexity of security
administration. Today, security administration is costly and
error-prone because system administrators usually specify
access control lists for each user on the system individually.
Role based access control (RBAC) is a technology that is
attracting increasing attention because of its potential for
reducing the complexity and cost of security administration.
The SET-integrated system can make use of this technology
for enforcing its access control policy. Our main interest in
RBAC is to be able to apply a “don't trust, verify” access
control policy. [25] In our case, this means that some
application agent A might make an assertion to agent B.
Agent B must verify the assertion before acting on it. If A
lies, the false assertion cannot cause much damage. At worst,
it causes B to waste resources checking on a false assertion.
Furthermore, Security System provides an implementation of

an RBAC web server that is helpful for our case study
during the implementation phase.

7.2 Access Control Policy Enforcement

The “access control policy enforcement” feature is
instantiated to using an automation tool called COPS for
checking access permissions to our system implementation
[28]. COPS is a collection of programs that each attempt to
tackle a different problem area security. For example, some
of the checks that COPS performs are:
 File, directory, and device permissions/modes
 Poor passwords.
 Content, format, and security of password and group files
 Scheduled system program files
 A CRC check against important binaries or key files to

report any changes therein
 Anonymous ftp setup
 Unrestricted tftp, decode alias in sendmail, SUID

uudecode problems, hidden shells inside inetd.conf, rexd
running in inetd.conf.

 Dates of CERT advisories vs. key files. These checks the
dates that various bugs and security holes were reported
by CERT against the actual date on the file in question.

7.3 Code-Coverage Testing

Code coverage testing is a countermeasure that can be
performed once the system implementation is done. Yet,
planning for this type of testing must be done while the
system is still being implemented. Furthermore, test cases
required to perform this type of testing are directly related to
the system design. Each project must choose a minimum
percent coverage for release criteria based on available
testing resources and the importance of preventing post-
release failures. Clearly, safety-critical software, such as our
case study, should have a high goal. We might set a higher
coverage goal for unit testing than for system testing since a
failure in lower-level code may affect multiple high-level
callers [29]. In our case, the “code coverage testing” feature
is instantiated to attain 80%-90% code coverage with
technical reviews discussing uncovered code before system
release.

One might argue that setting any goal less than 100%
coverage does not assure quality. Yet, our main interest is to
avoid backdoors in our system. Code coverage results of
80%-90%, accompanied with formal technical reviews
discussing uncovered code, are enough, in our opinion, to
ensure that no backdoors exist in our system.

7.4 Source-Code Analysis

The “source code analysis” feature can be instantiated
depending on the programming language used to develop
our case study. The purpose of this countermeasure is to
avoid buffer overflows in our system implementation. If the
Java™ programming language is to be used to develop the
system, buffer overflow errors are impossible. The Java™
language simply does not provide any way to store data into
memory that has not been properly allocated. If the C/C++
language is to be used to develop the system, then our

400

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

“source code analysis” feature can be instantiated to use
BOON (Buffer Overrun detection) [30]. BOON is a tool for
automatically finding buffer overrun vulnerabilities in C
source code and can be downloaded from
http://www.cs.berkeley.edu/~daw/ boon/ releases. html.

For the purpose of our case study, Java™ was used to
develop the e-commerce system. Thus, no source-code
analysis tool is required. Yet, BOON might be required to
test any third-party source code involved with SET-
integrated modules.

7.5 Access Control Enforcement Summary

Based on the instantiation discussion the derived access
control enforcement countermeasures design model:

 Can be directly incorporated into the high-level design

document of our case study e-commerce system.
 Contains effective countermeasures against the set of all

known security attacks related to access control
enforcement

 Provides implementation guidelines to avoid security
pitfalls for the different types of security attacks related to
access control enforcement.

Security-Oriented Transaction Privacy Design Model

Step 1 is to select a model security feature. Here we select
transaction privacy.

Government and private systems are increasingly required to
maintain the privacy of individuals using EC systems. The
transaction privacy service protects against loss of privacy
with respect to transactions being performed by an
individual on the EC system. In the concept of transaction
privacy is defined as a service for preventing unauthorized
disclosure of transaction contents, parties involved, location
of parties involved, and the exact time of occurrence of the
transaction [31].

Transaction privacy, thus, includes the following:

 Data privacy: The contents of the transaction must be

protected from disclosure to unauthorized parties.
 Source and destination privacy: The parties involved in

the transaction should not be revealed to unauthorized
parties.

 Location privacy: The location of the parties performing
the transaction should not be disclosed to unauthorized
parties.

 Time privacy: The exact time when a transaction occurs
should not be disclosed to unauthorized parties. Security
architects may depend on research approaches as an asset
to derive transaction privacy models. An example of such
a research is the SET specification document [32] that
serves as an open standard for protecting the privacy, and
ensuring the authenticity, of electronic transactions.

The above referenced literature emphasizes satisfying
standard security requirements. As discussed earlier, the
main emphasis in current standards for security requirements

is to satisfy legitimate user requirements from a security
point of view. Testing against the existence of malicious user
requirements is done after the system is implemented. In this
paper, we emphasize blocking malicious user requirements
at system design time (this is also known as preventive
security design [8]. The goal of this section is to have a
preventive design model for transaction privacy that can be
incorporated into any integrated transaction model (such as
above) or can be implemented as a standalone transaction
privacy module in e-commerce systems.

Step 2.1: Identify all Attacks Related to Transaction
Privacy

Security attacks related to transaction privacy can be
identified from the literature and from personal experience.
In this paper, we have projected all known security attacks
onto various types of e-commerce access control models and
frameworks described [33, 34 & 32]. This comprises most
known attacks applicable to transaction privacy. It is
important to remind that the main focus of this paper will be
on attacks directly related to e-commerce systems. Attacks
related to network components, to third-party software
components, and attacks against the operating system that is
supporting the application will not be discussed here. In
practice, of course, these types of attacks also have to be
handled.

The specific security attacks related to transaction privacy in
e-commerce systems are [13, 2, 14 & 17]:

 DBMS exploits, or attacks targeted towards exploiting

security of Data Base Management Systems
 Log data mining attacks, also known as log data

analysis attacks
 Sniffing attacks, also known as man-in-the-middle

attacks

We will now consider each type of attack, derive attack
enablers, and prescribe effective countermeasures.

Step 2.2: For each Transaction Privacy Attack, Derive its
Attack Enablers and Countermeasures

This section provides a succinct description of all known
transaction privacy related security. Attack enablers are then
identified, and proper countermeasures are prescribed. The
attacks are presented and discussed below in order of
dependence, since some of them are related (e.g. DBMS
exploits attacks depend on log data mining attacks).

7.6 Sniffing Attacks

As described earlier, sniffing attack [13, 2, 14 & 17] (also
known as the man-in-the-middle attacks) are the digital
analogues to phone tapping or eavesdropping. This attack
captures information as it flows between a client and a
server. In the case of transaction privacy, such attacks might
be successful at retrieving transaction information while the
transaction is being performed. The attack enabler in this
case is the process of sending data across communication
channels in clear text format. Preventing access to the
communication channel is not a valid countermeasure in this

401

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

case due to the open nature of the internet. By encrypting the
communication channel between the user/process and the
system, sniffing attacks are defeated, i.e., sniffing cannot
retrieve any useful information. Yet, encryption might have
an impact on the EC system from a performance perspective.

Thus, the proper countermeasure for this attack is to
encrypt the transaction information itself, at least, instead of
encrypting all data being communicated between the client
and the EC system.

7.7 Log Data Mining Attacks

Data mining is the search for significant patterns and trends
in large databases by using sophisticated statistical
techniques and software. This provides information crucial
to helping businesses and industries improve products,
marketing, sales, and customer service. Similarly, log data
mining attacks can be targeted towards retrieving private
transaction information from EC systems’ log data files. The
attack enabler for this type of attack has two properties:
having access to the log data file, and logging sensitive
transaction information in the log data file.

The first attack enabler property, physical access to the log
data file, allows malicious users to retrieve a copy of the
logged data and perform log data mining attacks.

The proper countermeasure for this attack enabler property
is to enforce access permissions on the log data file at the
underlying operating system level. By doing so, malicious
users will not be able to have access to the log data file and,
thus, the attack is disabled.

The second attack enabler property, logging sensitive
information, allows log data mining attacks to retrieve
useful transaction information in case malicious users gain
access to the log data file. This is highly probable in the case
of malicious users categorized as insiders.

The proper countermeasure for this attack enabler property
is to prevent the EC system from logging sensitive data. This
will prevent malicious users from succeeding in retrieving
useful transaction information. In case sensitive data logging
is required, database management systems (DBMS) must be
used to save this type of data.

A residual vulnerability for using DBMS to log sensitive
data is the fact that the EC system security will be dependent
on the security of the DBMS. This residual vulnerability is
discussed next.

7.8 DBMS Exploits

As discussed above, relying on Data Base Management
System (DBMS) security is considered a residual
vulnerability. This is because malicious users might be able
to exploit the EC system by exploiting the DBMS itself.

The attack enabler in this case might be any exploit in
DBMS security.

The proper countermeasure is to enforce security at the
DBMS level by keeping it up-to-date with security fixes and
patches. This will help prevent malicious users from
exploiting our EC system by exploiting the DBMS system
that we rely on for transaction privacy in general, and
sensitive data logging in particular.

8. Applying and Integrating Transaction
Privacy Design Model

We applied our methodology to the transaction privacy
security feature of the security services model. The result
was a countermeasures design model that is effective against
the set of all known security attacks related to transaction
privacy.

In this section, we will apply the derived transaction privacy
countermeasures design model derived in to the e-commerce
system.

This application is intended to prove the applicability of the
derived transaction privacy countermeasures design model.
The first step in applying the derived countermeasures
design model is to instantiate its features. This is a
straightforward process that takes every feature of the model
and converts it into an implementable feature. A description
of how the transaction privacy model features are
instantiated is provided below.

8.1 Encrypted Channel / Transaction Information

The “encrypted channel / transaction information” feature is
instantiated to use SET encryption [32]. SET uses symmetric
encryption, Data Encryption Standard (DES), as well as
asymmetric, or public-key, encryption to transmit session
keys for DES transactions. Although this has disturbing
connotations for a "secure" electronic transaction protocol
because public key cryptography is only used to encrypt
DES keys and for authentication, and not for the main body
of the transaction, the computational cost of asymmetric
encryption is cited as reason for using weak 56 bit DES.
Other reasons such as export/import restrictions and the
perceived need by law enforcement and government
agencies to access the plain-text of encrypted SET messages
may also play a role.

For the purpose of instantiating “encryption”, our case study
SET-integrated system makes use of SET modules. These
modules are responsible for encrypting transaction
information while the transaction is in progress.
Furthermore, any modification to these modules at the
encryption level might lead, in most cases, to incompatibility
problems with other SET-enabled parties. Thus, the only
instantiation possible in this case is to use SET encryption as
specified [32].

8.2 Saving Sensitive Data in DBMS

While discussing SET, we described specific cases where
SET reveals credit card information to merchants. Our
typical system scenarios also showed that order capture
tokens and receipts are involved in a SET transaction. This

402

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

type of information is considered sensitive as it contradicts
with two security objectives: privacy and confidentiality. On
the other hand, a merchant system requires saving this type
of sensitive information for future use. Thus, protecting this
information is of high importance to ensure system security.
After identifying the sensitive information involved in a
transaction, our security feature of using the DBMS for
saving sensitive transaction information is instantiated to
become “using the DBMS for saving credit card information,
order capture tokens, and receipts”.

8.3 Not Logging Sensitive Information

The “don’t log sensitive information” feature is kept as is.
This feature will serve as a guideline for the system
implementation and will be performed during the system
testing phase. The fact that this feature is built into the
system security design model better is by itself an
enhancement to system security. This will help avoid
discovering defects during the system testing phase that are
related to the system design model. The only part to be
instantiated is the term “sensitive information.” Based on the
discussion this feature is instantiated to become “don’t log
credit card information, order capture tokens, and receipts.”

8.4 Enforce DBMS Security

The “enforce DBMS security” feature is instantiated to
become the process of keeping the DBMS up-to-date with
security fixes and patches. This, of course, requires the prior
selection of a stable DBMS having a clean history with
security issues. While it is not our direct concern to secure
the selected DBMS, we must make sure a secure one is
selected in the system specification. This was the main
purpose of having this security feature in the
countermeasures design model in the first place.

8.5 Log File Access Enforcement

The “log file access enforcement” feature is instantiated to
become using COPS to ensure proper log file access
permissions [28]. This step must be done after the system is
implemented and installed. Yet, the reason for having it as a
feature in the transaction privacy countermeasures design
model is to avoid having defects related to the system
specification during the system testing phase. By including
this feature in the model, the system specification will be
aware of including it as a guideline for system
implementation and testing. The reason for selecting COPS
as the tool to automate this step is because we already use
COPS to check file access permissions in the instantiated
access control enforcement model.

Transaction Privacy Summary
Based on the instantiation discussion the derived transaction
privacy countermeasures design model is:

 Can be directly incorporated into the high-level design

document of our case study SET-integrated e-commerce
system.

 Contains effective countermeasures against the set of all
known security attacks related to transaction privacy

 Provides implementation guidelines to avoid security
pitfalls for the different types of security attacks related to
transaction privacy.

9. Conclusions

This paper describes a new methodology for deriving
countermeasures design models for e-commerce systems.
The methodology is based on the e-commerce security
services model. Our approach focuses on satisfying
legitimate user requirements while blocking malicious user
requirements at system design time. This assessment shows
that our methodology is systematic through a case study that
derived four countermeasures design models for
authentication, authorization, access control enforcement,
and transaction privacy. The derived countermeasures design
models were assessed through a realistic case study on a
SET-integrated in e-commerce systems. These models were
also proven to be effective against all security attacks related
to the e-commerce domain. The primary benefits of our
research are as follows:

i. A comprehensive matrix listing and mapping all known

security attacks to four security features in e-commerce
systems; namely authentication, authorization, access
control enforcement, and transaction privacy.

ii. Four new security models that extend the e-commerce
security services model for ecommerce systems. These
models are proven to be effective against all known
security attacks related to e-commerce systems.

iii. A faithful implementation of a countermeasures design
model was proven to be guaranteed to block all known
security attacks related to that feature.

iv. Security architects can avoid expensive system
development life cycles fixes. This is achieved by having
an effective countermeasures design model that is directly
applicable to EC systems and that specifies detailed
requirements for the security feature.

v. A cost-effective, systematic methodology for deriving
countermeasures design models for the other security
features of e-commerce systems.

vi. An overview of all known security attacks related to the
four security features discussed in this thesis; namely
authentication, authorization, access control
enforcement, and transaction privacy.

10. Future Scope of Work

Little research has been done on methodologies and
approaches for designing secure e-commerce systems.
Therefore, many research opportunities are still available.

Further research is needed to optimize our methodology and
countermeasures design models.

In particular, further studies should:
(i) Apply our methodology and approach to the remaining

features of the e-e-commerce security services model.
(ii) Further enhance the methodology to map other

security-related features, such as impact on
performance, into the design process.

403

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

(iii) Formally describe the methodology and provide
automation.
(iv) Apply the methodology to other standard security
models once available.
(v) Update the derived countermeasures design models
with new security attacks once available.

Most of these questions were raised during our research. We
were not able to answer these questions because of necessary
constraints on the scope of the work. However, we believe
we have established a foundation for such future research.

11. Acknowledgement

The authors are thankful to Institute of Engineering &
Technology, Sitapur Road, Lucknow, UP and Integral
University, Lucknow, UP for providing laboratory and other
facilities.

References

[1] G. Treese and L. Stewart, “Designing Systems for

Internet Commerce”, pp. 209- 294, Addison-Wesly,
1998. ISBN: 0-201-57167-6.

[2] J. Viega and G. McGraw, “Building Secure Software”,
Addison-Wesley, 2002. ISBN: 0-201-72152-X.

[3] National Institute of Standards and Technology (NIST),
Special Publication 800-33, “Underlying Technical
Models for Information Technology Security”, 2001.
website:http://csrc.nist.gov/publications/nistpubs/800-
33/sp800-33.pdf.

[4] K. Chang, B. Lee, and T. Kim, “Open Authentication
Model Supporting Electronic Commerce in Distributed
Computing”, Electronic Commerce Research, Vol 2, pp.
135-149, 2002, Kluwer Academic Publishers.

[5] OMG, “CORBA Services: Common Object Security
Specification.” Available at
ftp://ftp.omg.org/pub/docs/security/99-12-02.pdf.

[6] J. Kohl and C. Neuman, “The Kerberos Network
Authentication Service (V5)”, Network Working Group,
RFC 1510, September 1993, ftp://ftp.isi.edu/in-
notes/rfc1510.txt.

[7] M. Bellare, R. Canetti, and H. Krawczyk, “A Modular
Approach to the Design and Analysis of Authentication
and Key Exchange Protocols”, 1998, ACM 0-89791-
962-9 98.

[8] E. Jonsson, “An Integrated Framework for Security and
Dependability”, Proceedings of the 1998 workshop on
New security paradigms, pp. 22-29, ACM Press, 1998,
ISBN: 1-58113-168-2.

[9] S. Wilson, “Certificates and trust in electronic
commerce”, Information Management & Computer
Security, Vol. 5, No. 5, 1997, pp. 175-181, MCB
University Press. ISSN: 0968-5227.

[10] W. Ford and M. Baum, “Secure Electronic Commerce”,
Prentice Hall, 1997. ISBN 0- 13-476342-4.

[11] G. Agnew, “Cryptography, Data Security, and
Applications to E-commerce”, Electronic Commerce
Technology Trends Challenges and Opportunities, Feb.
2000, IBM Press, pp. 69-85. ISBN: 1-58347-009-3.

[12] S. Hawkins, D. Yen, and D. Chou, “Awareness and
Challenges of Internet Security”, Information

Management & Computer Security, Vol. 8, No. 3, 2000,
pp. 131-143, MCB University Press. ISSN: 0968-5227.

[13] P. Herzog, “The Open Source Security Testing
Methodology Manual”, version 1.5, May 2001, website:
http://ideahamster.org/.

[14] H. Nguyen, “Testing Applications on the Web”, pp.
285-310, John Wiley & Sons, 2001. ISBN: 0-471-
39470-X.

[15] R. Anderson, “Security Engineering: A Guide to
Building Dependable Distributed Systems”, John Wiley
& Sons, 2001. ISBN: 0-471-38922-6.

[16] SecuriTeam Security Tools Archive. Website:
http://www.securiteam.com/tools/archive.html.

[17] B. Schneier, “Secrets and Lies: Digital Security in a
Networked World”, John Wiley & Sons, 2000. ISBN: 0-
471-25311-1.

[18] Freier, Karlton, P., and Kocher, P., “The SSL Protocol
Version 3.0”, Nov. 1996. Website:
http://wp.netscape.com/eng/ssl3/draft302.txt.

[19] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G.
Gross, B. de Bruijn, C. de Laat, M. Holdrege, and D.
Spence “AAA Authorization Framework”, Network
Working Group,RFC2904, August 2000, website:
http://www.faqs.org/rfcs/rfc2904.html.

[20] J. Vollbrecht, Calhoun, P., Farrell, S., Gommans, L.,
Gross, G., de Bruijn, B., de Laat, C., Holdrege, M. and
D. Spence, "AAA Authorization Application
Examples", Network Working Group, RFC 2905,
August 2000, website:
http://www.faqs.org/rfcs/rfc2905.html.

[21] S. Farrell, et al., "AAA Authorization Requirements",
Network Working Group, RFC 2906, August 2000,
website: http://www.faqs.org/rfcs/rfc2906.html.

[22] V. Atluri and A. Gal, “An Authorization Model for
Temporal and Derived Data: Securing Information
Portals”, ACM Transactions on Information and
Systems Security, Vol. 5, No. 1, Feb. 2002, pp. 62-94.

[23] H. Wedde and M. Lischka, “Modular Authorization”,
2001, ACM 1-58113-350- 2/01/0005.

[24] CERT Coordination Center, website:
http://www.cert.org/.

[25] C. Kahn, “Tolerating Penetrations and Insider Attacks
by Requiring Independent Corroboration”, ACM Press,
1998, ISBN:1-58113-168-2.

[26] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R.
Chandramouli, “Proposed NIST Strandard for Role-
Based Access Control”, ACM Transactions on
Information and Systems Security, Vol. 4, No. 3,
August 2001, pp. 224-274.

[27] P. Bonatti, S. Vimercati, and P. Samarati, “A Modular
Approach to Composing Access Control Policies”,
2000, ACM 1-58113-203-4/00/0011.

[28] Farmer, D., “Computer Oracle and Password System”,
May 1993. Website: http://www.fish.com/cops/.

[29] Cornette, S., “Code Coverage Analysis”, Oct. 2002.
Website: http://www.bullseye.com/webCoverage.html.

[30] Wagner, D., Foster, J., Brewer, E., and Aiken A., “A
First Step towards Automated Detection of Buffer
Overrun Vulnerabilities”, Network and Distributed
System Security Symposium 2000. Website:
http://www.cs.berkeley.edu/~daw/papers/overruns-
ndss00.ps.

404

International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064

Volume 2 Issue 8, August 2013
www.ijsr.net

[31] C. Candolin and H. Kari. “Time Privacy of Electronic
Transactions”. Proceedings of the Helsinki University of
Technology Seminar on Network Security, 2000,
website: http://www.tcm.hut.fi/Opinnot/Tik-
110.501/2000/papers/candolin.pdf.

[32] SET Secure Electronic Transaction Specification, Book
1: Business Description, Version 1.0, May 31, 1997.
Website: http://www.setco.org/download/set_bk1.pdf.

[33] L. Bouchard, “Securing Transactions and Ensuring
Non-Repudiation: The Experience of the Department of
Justice in Quebec”, Electronic Commerce Technology
Trends Challenges and Opportunities, Feb. 2000, IBM
Press, pp. 339-354. ISBN: 1-58347-009-3.

[34] C. Liddy and A. Sturgeon, “Seamless Secured
Transactions”, Information Management & Computer
Security, Vol. 6, No. 1, 1998, pp. 21-27, MCB
University Press. ISSN: 0968-5227.

[35] C. Kocher, “Cryptanalysis of Di?e-Hellman, RSA, DSS,
and Other Systems Using Timing Attacks” Website:
http://www.cryptography.com/

[36] “Password Policy”, website: http://www.sans.org/
newlook/resources/policies/Password_Policy.pdf.

[37] George Mason University Center for Secure Information
Systems, “Security Glossary”, website:
http://www.ise.gmu.edu/~csis/glossary/

405

